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Abstract 

Real time state of charge (SoC) and state of health (SoH) monitoring plays an essential role in electric 

vehicles, hybrid electric vehicles and generally in battery powered applications. Between these two state 

estimations, only the SoC has been studied rigorously until the current dates, while SoH or capacity 

estimation are much less referenced on the literature. Additionally, the SoC and the SoH estimation are 

strongly correlated by widely used coulomb counting equation and consequently wrong capacity estimation 

would lead to a SoC estimation error, which in turn, will lead to a further capacity estimation error. In this 

sense, the first job was to develop the equivalent electric model, design SoC estimator and to verify both of 

them experimentally. Then, different alternative techniques for estimating the capacity are analyzed, 

selecting the best choice considering the observability degree of the object of estimation: capacity. Then, in 

this paper we propose a new method for estimating the capacity, called iterative transferred charge, which 

adapts the current capacity estimation value based on the SoC correction made by the corresponding 

estimator. Finally, the developed algorithm is evaluated by comparing the capacity estimation with the 

reference over the life of the cell, by extensive experimental tests. 
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1 Introduction 
The environmental concern of the current society 

associated to the increasing CO2 emissions, has 

lead to think in more eco-friendly vehicles. In 

this regard, electric vehicle (BEV) and hybrid 

electric vehicles (HEV) are alternatives to reduce 

these emissions. Moreover, the future of the 

transport sector is clearly targeting electrificacion 

and energy storage, decreasing the dependence of 

the fossil fuels. Nowadays, lithium ion battery 

technology is the most promising technology due 
to its outstanding properties [1, 2]: high energy 

and power density, long cycle life, no memory 

effect, etc.  

In the course of recent research and development 

in the field of Li-ion batteries, iron-based olivine 

type cathodes (mainly lithium iron phosphate, 

LiFePO4) were identified as promising alternatives 

to cathodes based on transition metal oxides (i.e. 

LiCoO2, LiNiO2) in terms of power density, cycle 

life time and safety, due to the great thermal 

stability [3]. These olivine typed cathode materials 

are environmental benign (nontoxic) and therefore 

have found the way to lower-cost large scale 

energy storage systems, due to the involved 

materials being accessible in high quantities. 
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However, lithium ion cells exhibit degradation 

phenomena [4] activated by different degradation 

mechanisms such as temperature, depth of 

charge/discharge, current rate, etc [5, 6]. One of 

the most important degradation indicators is the 

reduction of capacity due to the loss of Lithium 

ions [4], which is used for quantifying the SoH of 

the cell, by comparing the actual value respect to 

the initial capacity value. 

Similarly, there is a strong correlation between 

SoC and SoH, as the capacity is often used to 

describe the dynamic evolution of the SoC [7], 

by the coulomb counting equation. Therefore, it 

is important to estimate accurately both of them. 

If not, wrong capacity estimation would lead to a 

SoC estimation error, which in turn, will lead to a 

further capacity estimation error. 

Analyzing the current state of the art, the SoH 

estimation has not been studied as widely as the 

SoC, apparently due to the complexity of it and 

to the required large number of experimental 

tests for verifying the estimation done. Different 

capacity estimation methods have been proposed 

in literature during the last years [8-10], but they 

present high computational cost [8, 9], they have 

been checked only at one stage of the life of the 

cell (not over the life of the cell) or the accuracy 

of the estimation is dependent on the model’s and 

the current measurement’s accuracy [10]. 

In this regard, this paper is focused on the 

capacity estimation of a LiFePO4-graphite cell 

over its life cycle. 

The first part of this work is dedicated to model 

electric behaviour of the cell considering the 

inputs (current flow through the cell) and the 

outputs (voltage at the cells terminals) of the 

system. Then, the SoC is estimated using 

adaptive extended Kalman filter (AEKF) 

considering the observability degree of the SoC 

on the voltage measurement. 

Within the second part, different alternatives for 

estimating the capacity are analyzed, selecting 

the best choice considering the observability 

degree of the capacity. Then, this paper proposes 

a very intuitive strategy for estimating the 

capacity, which updates the value taking into 

account the SoC correction done by the 

corresponding estimator. Finally, the estimation 

done is compared against the reference over the 

life in order to validate the developed 

methodology. 

2 Equivalent electric modelling 

2.1 Experimental Setup and Cell 

Features 

The most important electric features of the 

commercial cell used in this work are shown in the 

Table 1. A battery cycler model HPS manufactured 

by Basytec was used to control the current profile 

(±240A maximum) and to measure different 

variables: current, voltage and the temperature 

(±0.05%, ±0.05% and ±1ºC measurement accuracy 

of each variable, respectively). A climatic chamber 

of Vöstch, shown in Fig. 1, is used to maintain 

environmental conditions controlled.  

2.2 Open circuit voltage (OCV) 

The equilibrium voltage of LiFePO4 stands out 

from the rest of the Li-ion technologies due to the 

flat curve and pronounced hysteresis phenomenon 

[11]. The hysteresis phenomenon is known as the 

voltage difference between the equilibrium 

reached after charge and discharge, for identical 

SoC and temperature. Considering the 

characteristics of the OCV vs. SoC curve and the 

pronounced hysteresis phenomenon, special 

attention must be paid observing this phenomenon 

and to describe the electric behaviour of the cell 

accurately. Therefore, this section is divided into 

two subsections. 

Table 1: Cell characteristics 

Chemistry LiFePO4 - Graphite 

Nominal voltage   3.2 V 

Maximum voltage     3.65 V 

Minimum voltage 2 V 

Capacity 14 Ah 

Maximum discharge current 70 A (continuous) 

Maximum discharge current 140 A (30 seconds) 

Maximum charge current 7 A 

 

Figure 1: Battery cycler and the climatic chamber. 
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2.2.1 OCV vs. SoC 

In order to observe the OCV for each SoC (see  

Fig. 2) the voltage relaxation technique will be 

used [12]. Firstly, the cell is fully charged in 

constant current-constant voltage mode (CC-CV, 

at 1C current rate until it reaches 3.65v and then 

is kept at constant voltage until the current is 

decreased below to 0.05C). Then, by definition, 

the SoC is set automatically to 100%. At this 

particular SoC the cell is rested for 24 hours for 

stabilization.  

After this rest period the measured voltage will 

be considered as the equilibrium voltage for this 

SoC. Afterwards the cell is discharged 5% of the 

SoC (3 minutes at 1C current rate) followed by 1 

hour rest period. This discharge-rest process is 

repeated until the cell reaches the minimum 

voltage. The SoC will be set to 0% automatically 

when current decrease below 0.05C at this 

minimum voltage.  

The same process is repeated applying partial 

charges to observe the equilibrium voltage during 

the charge. This test was repeated at 10ºC, 25ºC 

and 45ºC to observe the effect of the temperature 

on the OCV. 

2.2.2 Hysteresis 

The hysteresis phenomenon means that the cell  

reaches different OCV for the same SoC and 

temperature, depending on the previous charge-

discharge history. In order to observe the 

hysteresis phenomenon the cell is firstly charged 

in CC-CV mode and discharged to the initial 

SoC, SoC0. Then, the cell is charged 2% of SoC 

(72 seconds at 1C) followed by one hour rest 

period in order to observe the OCV. This charge-

rest process is repeated 15 times generating 30% 

of SoC difference respect to SoC0. 

 
Figure 2: OCV vs. SoC curve at 10ºC, 25ºC and 45ºC. 

Immediately, the cell is discharged in the same 

conditions; discharging 2% of SoC followed by 

one hour rest period. This step is repeated 15 times 

and as a consequence the SoC will be identical to 

SoC0, as the injected and withdrawn amount of 

charge is identical. This process is repeated for 

different SoC0 (10%, 20... 50% and 60%) in order 

to see this phenomenon in wide range of SoC. 

For describing the hysteresis phenomenon, the 

current integration method will be used [11], 

shown in equations (1-2), which considers the 

current profile previous to the rest. The final 

equilibrium voltage is estimated as weighted mean 

(Ψ) between the OCV vs. SoC curves of charge 

(OCVc) and discharge (OCVd). 

     
  

  
          

  

  
      

 

 

 

 

 (1) 

                                     (2) 

The fitting of the parameters of this equation has 

been done using least square technique. The results 

are shown in Fig. 3, where the solid points 

represent the measured OCV and lines constitute 

the estimated OCV.  

2.3 Internal impedance 

For quantifying the internal impedance of the cell 

the current pulse method has been used [13]. This 

method consists of applying a known current pulse 

during 30 seconds and to observe the evolution of 

the cell’s voltage. Then, considering the relation 

between the current and the voltage, the internal 

impedance of the cell is estimated. 

This process starts charging the cell in CC-CV 

mode and immediately it is discharged to 90% of 

the SoC by discharging the cell at 1C during 6 

minutes. Then, the internal impedance is 

characterized considering current, SoC and the 

temperature as input variables. 

 
Figure 3: Hysteresis test at 10ºC, 25ºC and 45ºC. 
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Firstly, C/2 constant discharge current pulse is 

applied to the cell during 30 seconds followed by 

a rest period of identical period. Afterwards, 

another C/2 constant charge current pulse is 

applied to the cell for keeping constant the SoC 

of the cell. The cell is rested during one hour to 

reach the equilibrium state. The same process is 

repeated for different current magnitudes (1C, 

2C, 3C, ... , 9C and 10C) in order to see the effect 

of the current rate on the internal impedance. The 

current rate was limited to 10C to respect the safe 

operating area defined by the manufacturer. This 

process is repeated for different SoC (90%, 

80%...20%, 10%) and temperatures (10ºC, 25ºC 

and 45ºC) and as a consequence the internal 

impedance will be characterized for different 

current rate, SoC and temperature. 

According to Fig. 4, the cell exhibits quick 

voltage drop due to the current rate. Similarly, 

during the constant current period the voltage 

present an exponential decreasing. This electric 

behaviour can be described by a first order 

Randell model [7]. Accordingly, the equivalent 

electric circuit shown in Fig. 5 will be used to 

describe the electric behaviour of the cell. 

The fitting of each parameter of the equivalent 

model (R, R1 and C1) is done using least square 

technique as it was done previously with the 

hysteresis model parameters. According to the 

results show in Fig. 6, the resistance value (R) is 

indifferent to current magnitude. 

 
Figure 4: Cell voltage under different current pulses. 

 
Figure 5: Selected equivalent electric circuit. 

However, R1 presents a general trend of 

decreasing as the discharging current is increased. 

Nevertheless, it presents a small increasing at 

current rates above to 7C, according to the results. 

Consequently, the effect of the current magnitude 

has to take into consideration for accurate electric 

modelling. 

2.4 Electric model verification 

First of all, the equations that meet with the 

equivalent circuit shown in Fig. 5 are developed in 

the discrete space state form. The state vector   

contains the SoC, the voltage across the R1C1 

network and the voltage drop in the Ohmic 

resistance R. 
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                        (4) 

To describe the dynamic evolution of the SoC, the 

coulomb counting equation has been used 

considering the nominal capacity of the cell (Cn) 

and the simulation step time (h). Similarly the 

values of the OCV and the internal impedance 

parameters are updated continuously to each 

working condition. This update will be done 

accordingly to the input variables of each 

subsystem: SoC, T, Ψ and I. 

For quantifying the developed model’s accuracy 

the battery has been charged in the conventional 

CC-CV mode. Then, it has been discharged 

continuously under New European Driving Cycle 

(NEDC) profile until the cell reaches the minimum 

discharging voltage. The comparison between the 

measurement and the estimation is shown in Fig. 7. 

The result has been excellent, having an average 

absolute error of 0.65%. 

 
Figure 6: Evolution of R and R1 
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Figure 7: Electric model’s accuracy. 

Additionally, the maximum error in 100%-5% 

SoC range has been low, below to 3.5%. 

However, during the last part of the discharge, 

the cell’s voltage decreases below 2V and the 

equivalent model estimates 2.6V, being the 

maximum error up to 30% for very small period 

of time (10 seconds). Anyway, the developed 

equivalent model is considered accurate and 

valid for the next steps: SoC and SoH estimation. 

3 SoC estimation 
During the last years several methods have been 

proposed [14] by different research groups for 

estimating the SoC: ampere hour counting [15], 

discharge test, open circuit voltage measurement 

[16], impedance spectroscopy [17, 18], linear 

equivalent methods [19], neural networks [20], 

fuzzy logic [20], stochastic filters [21], etc. 

However, most of them, they present some 

disadvantages such as measurement’s accuracy 

or long rest period’s dependency, technical 

complexity or the necessity to perform long 

training tests. In this sense, stochastic filters are 

very good alternative to due to the state updating 

by means of the comparison between the 

estimated and measured result. 

3.1 Extended Kalman Filter (EKF) 

Within the stochastic filters, the EKF is very 

good choice due to the capability to work with 

non linear systems, such as batteries.  

The filter is graphically described in Fig. 8 and it 

consists of three steps. 

0. Initialization: a-posteriori state vector (  ) 

and the covariance matrix are (  ) 

initialized. 

1. State prediction: a-priori estimations of the 

state vector (   ) and the covariance matrix 

 
Figure 8: EKF equations. 

(   ) are performed considering the equivalent 

model and covariance propagation equation. 

2. State correction: Kalman gain      is 

calculated firstly and this will be used to 

update the a-posteriori state estimation (  ). 

This correction will be done accordingly to 

the real voltage (  ) and the estimated voltage 

by the equivalent model. Similarly a-

posteriori estimation of the covariance matrix 

is calculated (  ). 

For being applicable the Kalman Filter theory to 

non linear systems, the EKF calculates the first 

derivates of the state and output equations. 

       
                    

     
 (5) 

       
                    

     
 (6) 

Similarly,    and    are defined as white noise 

vectors, zero mean and    and    covariance 

values, corresponding to the process noise and 

measurement noise, respectively. 

              (7) 
              (8) 

Bearing in mind the main objective of this section, 

the updating of SoC based on voltage correction, 

the observability degree of the SoC on the voltage 

measurement is calculated, based on the developed 

equivalent model. For doing this, the total derivate 

of voltage prediction respect to the SoC is 

calculated. In other words, this equation 

symbolizes how much will change the voltage at 

the cell terminals if the SoC changes. 
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Figure 9: The OCV change respect to the SoC. 

The equation (9) is disclosed in three partial 

derivates, one of each state variable respect to the 

SoC. The first term is shown in Fig. 9, the 

derivate of OCV respect to the SoC (very low 

change, below 1 mV in a wide range of SoC), is 

always observable as this is not depending on the 

current rate (  ), while the other two variables 

depends on the current rate.  

   variable, see equation (10), is more observable 

when the resistance presents big change over the 

SoC and big current magnitudes. Regarding to 

the observability of    , this is not only 

dependant on the R1 and C1 variance over the 

SoC, this is strongly depending on the current 

magnitude and on the variance of it. In constant 

charge or discharge, when the Vc1 reaches a 

steady voltage, the first term of equation (11) 

will be zero, reducing the observability degree of 

SoC on the voltage measurement. Therefore, the 

observability of SoC regarding to this state 

variable will be bigger when the current presents 

big magnitude and variance. 

As a conclusion of this study, the observability 

degree of the SoC is not only depending on the 

chemistry of the cell, the input of the system 

plays an important role on this particular 

estimation. Therefore, this knowledge will be 

used for proposing an adaptive EKF (AEKF) to 

enhance the performance of the filter. The 

variability of the filter is proposed by modifying 

the process noise covariance as it is shown in the 

equation (12). The measurement noise 

covariance is assumed to be constant, shown in 

(13). 
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     (13) 

 
Figure 10: SoC estimation under different initializations. 

3.2 SoC estimation verification 

After proposing the AEKF, the performance of the 

filter is quantified. Firstly, the cell is charged in 

conventional CC-CV mode and the SoC is 

automatically set to 100%. Then, the cell is 

discharged under 6 dynamic stress test cycles 

(DST) and immediately it is charged using the 

same power profile (6 DST cycles) with 50% of 

power. This reduction of power has been done to 

avoid exceeding the maximum charging current 

peak. Afterwards, the cell is allowed to rest during 

30 minutes and it is discharged at constant current 

at 1C during 20 minutes. Finally, the cell is fully 

charged again in CC-CV mode. This process is 

repeated three times and the SoC reference 

corresponding to this current profile is shown in 

Fig. 10 as top line. The rest of the estimations are 

initialized incorrectly (10%, 20%, 30%, 40% and 

50% SOC error) to observe the convergence of the 

estimation through the reference. During the test, 

the SoC reference has been calculated by the 

coulomb counting method due to the excellent 

measurement accuracy of the equipment used in 

this work (±0.05%). 

As it can be seen in Fig. 10, all the incorrect 

estimations reduce initial error and they converge 

through the reference (continuous blue line). The 

error is reduced specially at the end of the charging 

processes, where the observability degree of the 

SoC is increased and as a consequence the 

estimator is able to correct the estimation. 

4 SoH estimation 
In literature, the capacity of the cell has been 

estimated using different strategies based on 

double stochastic filters, which presents high 

computational cost. Additionally, the capacity of 

the cell has been estimated only at one stage of the 

life without verifying the performance of the 
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algorithm at other degradation states. In this 

sense, in this section a very intuitive and easy 

implementable method will be proposed, and 

validated by extensive tests. 

4.1 Capacity observability degree 

The first challenge when estimating a non 

measureable variable is to find the best indicator 

of it. In this case, two alternatives will be studied 

for capacity estimation; based on voltage 

measurement and on SoC estimation. 

4.1.1 Voltage measurement 

The voltage at the cells terminals is an output 

variable of the system that can be measured 

directly. In this sense, it will be quantified how 

much will change the voltage if the capacity 

changes. This will be observed obtaining the total 

derivate of the output equation respect to the 

capacity. 

   
   

 
                

   
    

    

    
 

 

    
 
   (14) 

 
Figure 11: Capacity observability on the voltage. 

 

 
Figure 12: Capacity observability on the SoC. 

 

During the development of the equation (14), the 

derivate of different impedance parameters respect 

to the capacity is assumed to be zero. The 

numerical values of equation (14) are shown in 

Fig. 11 and according to the results, the voltage 

differences generated by capacity change are very 

low and hardly measureable using conventional 

equipment. 

4.1.2 SoC estimation 

The second alternative is to study how much will 

change the SoC estimation due to capacity 

deviation. This SoC difference is described by the 

equation (15). 

       
 

     
 

 

    
 
 

  
  

 

   

 (15) 

According to this equation, the capacity estimation 

deviation will be more observable with bigger 

capacity deviation and when the experimental test 

is carried out for longer period of time, namely 

bigger N. This SoC deviation generated by wrong 

capacity estimation is quantified in Fig. 12. As it 

can be seen, the SoC will diverge from the 

reference proportionally to the capacity deviation 

and to the elapsed time (assuming constant   ). 

As a conclusion of this study can be stated that the 

capacity deviation will generate a SoC deviation 

and accordingly, it can be used for updating the 

capacity. 

4.2 Iterative transferred charge method 

The basis of this method is shown in Fig. 13 and it 

consists of analyzing the relation between the 

transferred charge and the SoC change generated 

by this. In this example can be seen the transferred 

charge to from empty to full charge state in two 

different cells: partially and fully degraded cells. 

 
Figure 13: Charged ampere hours in two cells. 
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Figure 14: Iterative transferred charge method. 

Taking into account this degradation indicator, 

the algorithm shown in Fig. 14 is proposed [22]. 

It basically consists on two steps: identifying a 

starting point and updating the capacity. 

At the beginning of the test the capacity will be 

initialized and the state of the cell, by default, 

will be set to “Rest” state. Assuming that the cell 

is discharging, during the first iteration of the 

flowchart, the algorithm will change status of the 

cell from “Rest” to “Discharging” state. Then, it 

will check if the transferred charge (Q) in the 

previous state has been higher than the minimum 

transferred charge (Qmin). As long as this 

requirement is not met, the algorithm will 

reinitialize all the variables. During the next 

iterations the algorithm will compute the 

transferred charge until the current flow direction 

changes. As the status is “Discharging” the 

algorithm will change the status to “Charging” 

state. If the transferred charge is bigger than the 

minimum, the algorithm considers that this 

situation is a suitable for updating the capacity 

and it updates. A similar process occurs 

following the designed flowchart when the cell is 

discharged after charging process. 

After identifying a suitable situation for updating 

the capacity, the capacity is updated according to 

equations (16) and (17). 

                                  
 

    
 (16) 

                    (17) 

In equation (16) the SoC error generated by 

wrong capacity estimation is evaluated. For that, 

the transferred charge in the previous state ( ), 

the estimated capacity in the previous iteration 

(    ) and the initial and the final SoC 

estimation will be used                      . 

The SoC estimation provided by the AEKF is 

assumed to  be  closed  from the true SoC as  this  

 
Figure 15: Capacity estimation validation. 

state is updated considering the real voltage 

measurement. Finally, the capacity is updated in 

(17) considering the SoC error, the transferred 

charge, gain coefficient      and the capacity 

value in the previous iteration. 

4.3 Capacity estimation verification 

In order to quantify the accuracy of the capacity 

estimation over the life of Li-ion cell, the 

methodology shown in Fig. 15 has been designed. 

The first step is to evaluate the initial capacity. For 

that, the cell was charged in CC-CV until the 

charging current was decreased to 0.05C. 

Similarly, the cell was discharged until 1C current 

rate and then kept at minimum voltage until the 

current decreased again below to 0.05C. Thus, 

according to the adopted definition in this work, 

the cell is discharged from 100% to 0% of SoC. 

The discharged ampere hours in this test will take 

as an initial capacity. 

If the SoH of the cell bigger than the minimum 

(80% of the initial capacity) the cell is subjected to 

an accelerated degradation, where the cell is 

charged/discharged at 3C current rate. After 150 

cycles, a predetermined current profile will be 

applied to the cell. This current profile contains 

partial and full charge/discharges, continuous and 

variable current and rest periods. The objective of 

this current profile is to emulate the current profile 

of real application and the designed algorithm for 

capacity estimation will be applied to these results. 

Afterwards, the capacity will be measured as it 

was done in the first step of the methodology. This 

process is repeated until the end of life. 

From different iterations of the methodology, the 

measured capacity decrease due to the degradation 

process of the sample. As a consequence the 

estimation reference will present a stepwise 

profile.  Similarly,   the   results   of   the   capacity 

Capacity Initialization

State= Rest

no

Current =Charging

State=Charging State=Discharging

Q>Qmin

Reinitilize variables

Current measurement

yes no

yes
Reinitilize 
variables

Capacity update

yes

no

State=Charging State=Discharging yes

no

Compute QCompute Q

Begin

Evaluate SoH

SoH>SoHmin

Accelerated 
degradation

Apply predermined 
cycle

Evaluate SoH

End

World Electric Vehicle Journal Vol. 6 - ISSN 2032-6653 - © 2013 WEVA Page Page  0759



EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  9 

 
Figure 16: Different capacity estimation. 

estimations of different iterations from Fig. 15 

will be concatenated and as a consequence the 

estimation should follow the reference value. 

In order to ensure that the algorithm works as 

expected under different situations, the capacity 

is initialized intentionally with wrong values, 

with an excess of +15%, +10%, +5%, 0%, and -

5% respectively. The capacity shows a 

decreasing trend and as a consequence it will be 

more common to have positive initialization 

errors than negatives. 

The evolution of such different initializations can 

be seen in Fig. 16, where most of the estimations 

(-5%, 0% and 5%) converge to the same value 

very quickly. However, the estimations with 

higher initial error (10% and 15%) take more 

time to converge. Nevertheless, once all the 

estimations converge to the same value, this 

follows the capacity reference value. 

The accuracy of each estimation respect to the 

reference value is shown in Fig. 17 and the 

absolute maximum capacity error has been found 

below 4% over the life of the battery once they 

reduce the initial error. 

5 Conclusions 
In this paper a new, simple, implementable and 

accurate capacity estimation method has been 

proposed. Firstly, the equivalent electric circuit 

has been obtained (0.65% of mean absolute 

error). Secondly, an AEKF algorithm has been 

proposed by modifying the process noise 

covariance matrix considering the SoC 

observability degree on the voltage measurement. 

This estimation has been validated under NEDC 

current profile starting from different SOC initial 

errors and converging to the reference value. 

Finally, iterative transferred charge method has 

been proposed for capacity estimation. 

 
Figure 17: Capacity estimation accuracy. 

The absolute error on capacity estimation has been 

below 4% over the life of the cell, corroborating 

the capability of this method to estimate the 

capacity of LiFePO4-Graphite cell. As for the next 

steps, this research will be focused on further 

research in capacity estimation and on the internal 

impedance real time estimation. The increasing of 

the internal impedance is the second main 

indicator of the cell degradation status after 

capacity loss, which is directly correlated with the 

maximum power that can be charged and 

discharged the cell at any time. 
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