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Abstract 

This paper represents a simulation model for a 2D-thermal model applied on a Lithium-ion pouch battery. 

This model is able to describe the transient response of the thermal distribution accurately.  The heat 

generation parameters used in this model have been obtained experimentally from dedicated estimation 

technique. The experimental and simulation are performed at different charge and discharge current rates. 

The experimental results are in good agreement with the developed model. The battery thermal 

distributions using natural and forced convection cooling are studied. 
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1 Introduction 

As the global economy begins to strain under the 

pressure of rising petroleum prices and 

environmental concerns, research have spurred 

into the development of various types of clean 

energy transportation systems such as Hybrid 

Electric Vehicles (HEVs), Battery Electric 

Vehicles (BEVs) and Plug-In Hybrid Electric 

Vehicles (PHEVs) [1-5]. 

Lithium-ion batteries play an important role as 

energy carriers in our society mainly in BEVs 

and HEVs. During discharging or charging, 

various exothermic chemical and electrochemical 

reactions occur. These phenomena generate heat 

that accumulate inside the battery and therefore 

accelerate the reaction between cells 

components. With higher discharge/charge 

current rates, the heat generation in a battery 

increases significantly. If heat transfer from the 

battery to the surroundings is not sufficient, the 

battery temperature can rise very fast and in the 

worst-case scenario thermal runaway can occur [1, 

6]. 

In order to meet the safety issues on one hand and 

to increase its performance on other hand, the 

knowledge of the battery temperature distribution 

is necessary. Therefore a good use of batteries may 

increase its lifetime and performance. In this work, 

a lithium iron phosphate pouch cell with a rated 

capacity of 45Ah has been used. In order to keep 

the cell temperature in the safe temperature range, 

there is a need of a thermal model to predict the 

cell temperature distribution over the surface of the 

battery and maintain an equal heat distribution. 

Due to the large size and small thickness of the 

lithium-ion pouch cell used in this work, a 2D 

thermal model is developed to predict the transient 

response of the surface thermal distribution by 
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using the ANSYS


 software at different 

charge/discharge current rates. Because of the 

high dependency of the internal resistance as 

function of SoC, current rate and working 

temperature, the proposed thermal model has 

been associated with the 1D electrical battery 

model. 

2 Thermal Modeling 

Taking into account the small thickness of the 

used lithium-ion pouch battery the heat 

distribution in the y-direction has been neglected. 

Therefore a two-dimensional transient model has 

been developed. As shown in Figure 1, the size 

and different domains (Tabs, case and electrodes 

domains) of the battery are described. These 

domains are made of different materials. A 

transient heat conduction equation is sufficient to 

describe the thermal phenomena in the battery 

and the convective term inside the battery 

(electrode-electrolyte) can generally be neglected 

[12]. 

 

 

Figure 1: Schematic diagram and dimension (mm) of 

Li-ion pouch battery 

Based on the above assumptions, the energy 

balance equation over a representative 

elementary volume (REV) in a battery, enable to 

predict the transient response of the temperature 

distribution for the 2D thermal modeling is 

formulated as: 
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) are the average density, the average specific 

heat and the average thermal conductivity along 

the x-direction and z-direction, respectively.  

The density heat flux from battery surface to the 

surrounding is given by both the radiation and the 

convection heat contributions: 

     (    )    ( 
    

 ) (4)   

Where h (W.m
−2

.K
−1

) represents the convective 

heat transfer, ε the emissivity of the cell surface, σ 

the Stefan–Boltzmann constant, T the battery 

surface temperature and Ta the ambient 

temperature. Because of the use of a thermal 

camera, the battery is painted black, and then the 

emissivity is taken equal to 1. In this case the cell 

is cooling by natural convection. 

In natural convection, the Rayleigh number 

controls the flow regime [21]. The Rayleigh 

number is defined as: 

    
     (    ) 
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Where: 

     : The coefficient of thermal expansion (1/°C) 

     : The cinematic viscosity (m
2
/s) 

 : The acceleration of gravity (m/s
2
) 

 : The length of the battery (m) 

 

In laminar convection, where 
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In turbulent convection, where 
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    : The thermal conductivity of air 

(W.m
−1

.K
−1

)
 
 

 

The thermal parameters used in this work are 

listed in Table 1. 
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2247 785 30 3 5.669 

10
-8

 

Table 1 : Parameters used for thermal modelling  

Furthermore,    (W.m
-3

) is the volumetric heat 

source, where R () is the internal resistance, 
  

  
 

(V.K
-1

) the entropy coefficient and I (A) the 

current (negative during discharge and positive 

during charge).  

Knowing the heat generation change and thermal 

parameters, finite volume numerical method is 

used to solve the energy balances by ANSYS 

software. The thermal model is validated by 

comparing with the experimental measurements. 

A test bench has been set-up to charge the battery 

until the maximum voltage (Vmax: 3.65 V) and 

also to discharge it until the cut-off voltage (Vmin: 

2V) with different It-rate (0.33 It, 2/3 It and 1 It). 

In order to analyze the thermal distribution of the 

battery, several thermocouples are placed on the 

battery surface and the ambient air as shown in 

Figure 2 and a thermal camera is also used.  

 

Figure 2: Thermocouples position on the battery 

3 Results 
The electrical characterization of the used cell, 

based on Omar et al work [10], is performed by 

identifying from the HPPC tests (10s pulse) the 

internal resistance of the electrical model at 

different current, temperature and also SoC.  

Figure 3 and Figure 4 show the internal resistance 

variation in function of SoC and temperature at 1 It 

charge and discharge process. As we can observe 

the internal resistance of the battery increases the 

more the working temperature and the SoC 

decrease. For the investigated lithium-ion battery 

the internal resistance varies between 8m and 

2m. The internal resistance is also measured at 

different currents. The internal resistance is also 

high at very high SoC. 

 

 

Figure 3: Internal resistance of charge in function SoC 

and temperature at 1 It =45A 

 

Figure 4 : Internal resistance of discharge in function 

SoC and Temperature at 1 It =45A 

The entropy coefficient for a given SoC is obtained 

experimentally from the slope of the curve of the 

open circuit voltage (OCV) as a function of 

temperature. Then the experiment has been, 

repeated at every SoC level.  Figure 5 shows the 

measurements of the entropy coefficient in 

function of SoC during charge and discharge 

process. For low charge or discharge rate, the 
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reversible heat becomes dominant than the 

irreversible heat. According to the reversible heat 

formula (( [
  

  
])   ), this term may be positive 

or negative depending the sign of the current 

(positive in charge and negative in discharge) 

and also the sign of the entropy coefficient. If the 

reversible heat is positive then the chemical 

reactions are exothermic otherwise they are 

endothermic. Physically, an endothermic reaction 

is obtained when the chemical bonds of the 

reactants are higher than those of the products: 

then extra energy should be absorbed from the 

external environment to create new bonds. 

During exothermic reaction the opposite situation 

occurs. 

 

 

Figure 5: Entropy coefficient as a function of state of 

charge (SoC) 

Figure 6 shows the comparison of the full 

thermal distributions of the cell between the 

thermal imager measurement and the model results 

at different time steps at 1 It charge capacity test, 

where the battery has been charged at 1I t until the 

maximum voltage (3.65V) has been reached. This 

indicates that the battery surface temperature is 

nearly uniform, excepted in the middle where the 

maximum temperature is located by the 

thermocouple T6. The maximum temperature 

difference on the surface of the battery is about 

0.7°C. 

As we observe in Figure 7, the simulation results at 

different It-rates are in good agreement with the 

experimental results. The error varies between 0 – 

0.7°C. The full thermal distribution of the cell has 

also been investigated at 1 It discharge capacity 

test, where the thermal imager measurements are 

compared to the model as shown in Figure 9. 

This comparison shows a thermal distribution 

slightly uniform except at the end of discharge, 

where the maximum temperature difference is 

equal to 3.4°C. The hottest zone is also located at 

the centre of the battery as in charge process. The 

model is also validated by the thermal imager 

measurements at discharge capacity test 
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Figure 6: Thermal distributions based on experimental thermal imager and modelling at 1 It charge rate 

 

.

 

Figure 7: Comparison between experimental and 

model results at different charge rates 

 

The same test has been performed at different 

discharge It-rates and compared to the model as 

shown in Figure 8. The simulation results are in 

good agreement with the experimental results, 

where the error varies between 0-1.5°C 

 

 

Figure 8 : Comparison between experimental and model 

results at different charge rates 

In EVs and HEVs applications, the batteries are 

usually subjected to heavy demands such as fast 

charge and quick acceleration of the vehicles. 

These solicitations increase significantly the 

battery temperature and may exceed the safety 

range temperature. Thus, to avoid this, there is a 

need for a good cooling system. The appropriate 

cooling system depends on the applied heat 

transfer coefficient 

 

T
h

er
m

al
 i

m
ag

er
 

S
im

u
la

ti
o

n
 

World Electric Vehicle Journal Vol. 6 - ISSN 2032-6653 - © 2013 WEVA Page Page  0633



EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  6 

 

Figure 9 : Thermal distributions based on experimental thermal imager and modelling at 1 It discharge current rate 

 

. In order to evaluate this aspect, the model is 

used to simulate at 1 It of charge, with an 

ambient temperature about 20 °C and at different 

heat transfer coefficient. In Figure 10, the 

influence of the heat transfer coefficient is 

investigated and shows that more the heat 

transfer coefficient is important, the more is the 

heat transfer from battery to the surrounding and 

then less is the temperature. 

At natural convection, where h varies from 3 till 

10 W/m
2
K, the maximum temperature increase is 

about 10°C. At forced convection, where h varies 

from 10 to 100 W/m
2
K the maximum 

temperature increase is about 5°C.  

  

Figure 10 : Evolution of the surface temperature at 

different heat transfer coefficient at 1 It, which current 

rate? 

 

Conclusion 
 

In this work, a 2D thermal model is developed 

for a large size lithium iron phosphate pouch 

battery cell, which is able to predict the surface 

temperature distribution of the battery at different 

current rate and ambient temperature. The 

experimental results show a thermal distribution 
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slightly uniform, with 0.7°C of maximal 

temperature difference, during charge and 

discharge process excepted at the end of 

discharge where the maximal temperature 

difference is equal to 3.4°C. The simulation 

results performed at different current rates are in 

good agreement with the experimental results, 

where the error varies between 0-1°C and also 

identify the localization of the hottest zone at the 

centre of the battery. 

Finally more the heat transfer coefficient is 

important, the more is the heat transfer from 

battery to the surrounding and less is the battery 

surface temperature. 
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