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Abstract 

The Netherlands Organisation for Applied Scientific Research (TNO) is engaged in research, development 

and testing of a range of technologies relating to hybrid and electric vehicle energy management and 

performance. The impact of driver behaviour on vehicle energy consumption is a significant factor, and one 

which can often be reduced with eco-driving, typically 5-10% or higher in some cases. Eco-driving can be 

extended not only to take into account information sources, improved user acceptance, and integration with 

powertrain control. In this paper, TNO illustrates the possible applications of model-based control for 

(hybrid) electric vehicles and shows preliminary results of the developed system. 
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1 Introduction 

Over the past decades, there has been an 

increased rise on the number of hybrid and 

electric vehicles, which is a trend expected to 

continue in order to meet the European 

greenhouse gas emission levels. One of the main 

market points of HEVs and EVs is their 

improved fuel economy and effective range 

respectively. It is therefore unsurprising that 

many of the vehicles on the market are closely 

linked with driver feedback systems, wherein the 

successful operation of the vehicle is centred 

around a strong driver-vehicle combination. As 

increasing degrees of integration of ICT services 

and coupling of PHEV and EVs with the grid 

become more prevalent in future, the 

comprehensive management of energy becomes 

a key topic. 

 

Besides energy efficiency, energy storage is 

important for electric vehicles specifically. 

Lithium-ion batteries have emerged as a 

preferred means of energy storage, partly owing 

to their high energy density.  

 

Figure 1: Trends and predicted focus in powertrain 

development [8] 

However, it is recognised that the current cost and 

energy density (both mass and volume) for battery 

systems are major limiting factors in the mass 

take-up of EVs, particularly with public concern 

over widespread anxiety that limited driving range 

is predominant over conventionally fuelled 

alternatives.  

Furthermore limitations of existing battery energy 

storage (and the requirement to keep battery pack 

size to a minimum) prompts more efficient and 

effective use of the available energy. The 

combination of measures to ensure better energy 
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efficiency is a significant topic, and comprises 

many contributing factors. 

To mitigate range anxiety, it is important to both 

offer an accurate range prediction to the driver, 

as well as a comprehensive means to manage the 

energy efficiency within the vehicle and improve 

wherever possible. 

 

2 Eco-Driving 

The area of eco-driving, particularly that 

supported by human-machine interfaces (HMI) 

has received increased interest over recent years, 

for both conventional and advanced powertrains. 

The features of eco-driving typically include, but 

at not limited, to the following [1]: 

 Moderation of acceleration 

 Keeping the engine at low RPM: 

moderation  of gear shifts 

 Anticipating traffic signals avoiding 

sudden start-stops 

 Maintaining an even driving pace 

(including use of cruise control and 

coasting) 

 Driving at or below the speed limit 

 Eliminating excessive idling 

 Minimising use of auxiliary systems 

Eco-driving for both conventional light duty and 

heavy duty range from 5-10% in fuel 

consumption reduction dependent partially on 

whether an HMI is provided, as well as the time 

and mode of vehicle operation [1]: 

 

 

Figure 2: Schematic of Eco-Driver Architecture [6] 

 

For the purposes of this paper, we categorise eco-

driving support into five levels: 

 Level 1: General eco-driving training and 

the offline provision of advice 

 Level 2: Data collection from OBD or 

CAN to provide driver advice offline 

 Level 3: Integrated (in-vehicle) coaching 

system making use of a predictive model 

 Level 4: Integrated advice system taking 

input from external information sources 

 Level 5: Fully integrated system: 

including external sources and interaction 

with powertrain control 

Level 1 does have an immediate effect on energy 

consumption, but the effect of a training is 

gradually lost over time [2][17]. 

 

The next generation of systems under development 

(Levels 4-5) take additional information sources 

relating to traffic light state, and other vehicle and 

external information to present a more 

comprehensive view. This is further described in 

Section 3. Because of this effect, driver support 

systems are a logical next step. The system 

complexity increases with the eco-driving support 

level. Because of driver acceptance, it is important 

to provide accurate advice to the driver. A model-

based approach therefore is very useful [7]. 

 

Within the market for hybrid and electric vehicles, 

many of the existing commercially used vehicles 

have some form of driver fuel-efficiency feedback 

(typically Level 1-3). Some of these approaches 

extend to mode switching (e.g. the Honda Eco 

Assist and ECON mode, NISSAN CARWINGS 

and Toyota Prius Eco Mode). More advanced 

systems of level 3 and higher typically have an 

architecture that is similar to the one shown in 

Figure 2: information is gathered from the vehicle 

and its environment. Predictions make use of a 

vehicle model and are used for generating advice. 

Advice (consisting of feedback and/or 

feedforward) is presented to the driver in an HMI 

and can be altered based on the driver’s 

performance. 

 

One important trade-off one encounters when it 

comes to eco-driving is between energy 

consumption and time. Lower vehicle speeds 

(usually) lead to lower energy consumption. 

However, a driver’s decisions are based on time . 

For (plug-in H)EV’s, the charging time has to be 

taken into account as well. Model-based routing 

advice can also take into account charging times 

and charge station availability[12]. 
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3 Integrated Eco-Driving 

Eco-driving is achieved if the vehicle speed is 

such that the energy efficiency for travelling a 

specific distance is improved. Advising the 

driver to control the vehicle speed to the desired 

speed can be achieved in various ways. Potential 

savings increase from Levels 1 to 4 simply 

because the driver behaviour can be advised 

better if more data on the actual situation are 

available. The Sentience programme 

demonstrated an integrated EMS (Energy 

Management System), saving through simulation 

of 6-16% with track demonstration at 5-24% 

using a hybrid [18]. Zhang showed in simulation 

a saving of 13% for a PHEV [20] although it is 

most likely to be this effective in hilly 

environments [9]. 

 

External information can be used to identify 

future constraints on the vehicle’s path. Then, 

using a vehicle model, a vehicle-specific advice 

can be generated to guide the driver through 

constraints set by his environment. An 

illustrative example is provided in Figure 4, 

which origins from a previous project [10] on 

using an electronic horizon (eHorizon). A real-

world scenario was recorded and used as a 

baseline. The hybrid truck (orange, at bottom of 

figure) receives information on the (future) 

traffic light states: distance to the intersection, 

time-to-red, time-to-green and length of the 

queue. Subsequently, the driver is advised to 

adapt the vehicle speed to that. The green dashed 

area indicates a queue at the intersection, where 

it is assumed that the queue dissolves linearly. 

 

 

The eco-friendly alternative speed profile is driven 

on a closed test track as it would not be possible to 

encounter the exact same situation again on the 

public road. Driver compliance was perfect, as he 

was accurately instructed by the passenger. The 

fuel savings resulting from this traffic light 

preview information is significant: 14 per cent, 

which corresponded to simulation results. 

 

Although traffic light preview is not common yet, 

more and more test sites across Europe show that 

this is a trend for the future. However, integrated 

eco-driving in general has found its way to the 

market already. Most examples can be found in the 

heavy-duty and luxury segment [3]. 

 

Amongst others, Scania and Freightliner both have 

“predictive cruise controls”, which take into 

account hill preview information and automatically 

adapt the cruise control set point in order to reduce 

the amount of braking whilst going downhill. To 

compensate for time loss at these slower sections, 

the cruise control speeds up before going uphill. 

 

Amongst others, Porsche and BMW show “active 

cruise controls”, which are able to adapt the 

vehicle speed based on radar information, but also 

on curve radius preview. With systems like these, 

both safety and energy efficiency is increased [13]. 

 

Aforementioned examples indicate that integrated 

eco-driving is increasingly applied. Future 

developments will show more automated 

interventions in the vehicle behavior, going 

towards autonomous driving.  

Figure 3: Energy Consumption as a Function of Driver-Cycle Grade [15] 
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Advanced traffic management and a growing 

market share for smartphones both contribute to 

the availability of information for integrated 

systems. Together with the availability of safety 

systems on newer vehicles (e.g. radar and/or 

camera, rain sensors, etc.) the automotive world 

seems to be ready for advanced eco-driving. 

 

4 Integrated Powertrain Control 

Overall, Integrated Powertrain Control (IPC) 

represents a trade-off between fuel consumption, 

emissions, as well as maintaining driveability of 

the vehicle within operational cases. 

 

 

Figure 5: Integrated factors, adapted from [5] 

 

 

The term ‘driveability’ is often subjective and 

requires clarification based on the context. For the 

purposes of this paper, the term is used to define 

the acceptance range for influencing the driver 

behaviour, without a compromise on the vehicle 

operation. 

 

Control of advanced powertrains to achieve 

maximum energy efficiency within the applicable 

emission constraints has become a great challenge 

for the automotive industry. For maximum 

performance all components in the powertrain 

should cooperate seamlessly. IPC is a supervisory 

control system for powertrains of conventional, 

hybrid and electric vehicles that exploits system 

interactions in a systematic and modular way. IPC 

uses a cost-based optimisation strategy (typically 

based around ECMS) that explicitly deals with 

requirements on pollutant emissions and 

driveability [11][19]. 

 

For a number of years TNO has been developing 

IPC, focused on an integral approach to fuel 

economy, emissions and other factors/constraints. 

Even for long-haul applications, results have 

shown potential savings on running costs up to 

3.5% above existing hybrid control strategies, or 

DriveabilityDriveability
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EnergyEnergy
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Figure 4: Illustration of eHorizon concepts for vehicle control and driver advice [10] 
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savings on pollutant emissions up to 24.9% 

depending on the calibration of IPC [11]. The 

IPC approach is extended further by 

accommodating external factors and monitoring 

of the driver behaviour, such that in the case that 

the driver cannot be influenced by driver 

coaching systems, the supervisory control system 

is adapted around the particular driver behaviour.  

Typically, a hybrid vehicle has more powertrain-

based control parameters than conventional and 

electric vehicles, which can offer a larger degree 

of freedom to influences on energy efficiency for 

hybrid vehicles. It is therefore expected that for 

hybrid vehicles the potential for cost reduction 

via powertrain control is highest.  For 

conventional and electric vehicles, the number of 

parameters to control is often less than that of a 

hybrid vehicle, particularly in regard to 

propulsion management, and therefore the impact 

of the driver is more significant. However, in all 

cases, it is recognised that the behaviour of the 

driver is an integral consideration for all vehicle 

types. 

 

5 Driver Classification and 

Impact 

It is recognised that driver behaviour plays a 

significant factor in the energy efficiency of 

vehicle [14][17]. In the case of plug-in hybrids 

and electric vehicles, this behaviour can extend 

to the charging strategies as well, recognizing the 

higher energy efficiency of slow charging 

compared to fast charging. 

Rosca and Wilkins [15] present a sensitivity 

analysis to assess at the impact of driver 

behaviour on the energy consumption of a 

current commercial electric vehicle (Nissan 

Leaf). An algorithm has been developed to assign 

a driver-cycle grade based on a reduced-order 

vehicle model and driven speed profiles. In 

parallel, the energy consumption of the vehicle 

was measured at the battery.  

 

Figure 3 shows the correlation found between the 

driver grade obtained by a drive cycle and the 

energy consumption per kilometre measured at 

the battery terminals of the Nissan Leaf. It can be 

seen that the driver-cycle grade, and as such the 

driver behaviour, has a significant influence on 

the energy consumption of the vehicle, variations 

of up to 50% being visible in the results. The 

maximum range also proves to be highly 

sensitive to the level of aggressiveness on the drive 

cycle. 

 

The method applied to describe this effect uses two 

drive cycle parameters. The first is the Relative 

Positive Acceleration (RPA), which relates to  the 

inertial forces that have to be overcome. The 

second is the Relative Cubic Speed (RCS), which 

is related to the drag force. 

 

In addition to the convenience of a longer range 

through eco-driving, it is likely that the vehicle’s 

battery pack will suffer from less wear. As eco-

driving decreases the energy use, the depth-of-

discharge (DoD) is lower. Repeated high DoD’s 

cause damage to the battery pack. 

 

6 Test Results from Driver HMI 

and Acceptance 

The hybrid truck example from section 3 had a 

“perfect driver”, which followed the advice 

closely. However, real-world applications will 

require an HMI that is intuitive and therefore has a 

low workload. Furthermore, it is important to 

guide a driver within his own limits of comfort: a 

driver should still feel safe and in control of 

pursuing his own goals [16]. 

 

Work on testing realistic HMI’s has been 

developed over several projects, and most recently 

in EcoDriver [3] which runs from  October 2011 – 

September 2015. This section illustrates both 

simulation and real world tests of the integrated 

eco-driver system. 

 

As shown in section 3, driver behaviour plays a 

significant role in the energy efficiency of the 

vehicle. Convincing the driver to adapt his 

behaviour to the advice is necessary for the advice 

to have impact. By giving the correct advice the 

difference between actual driving behaviour and 

optimal behaviour can be reduced. Higher 

compliance, i.e. how much the driver follows the 

advice, means more impact. High compliance 

means that the driver is willing to follow the 

advice. Whether or not the driver accepts the 

advice depends on several factors, such as 

credibility of the advice, possibility to actually 

follow the advice and the manner in which the 

advice is presented to the driver. This last part, the 

human machine interface (HMI) has been tested 

and developed in several  projects, most recently in 

EcoDriver [4]. This section illustrates both 
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simulation and real world tests of the integration 

of an eco-driver system. 

 

In the ecoDriver project, besides the practical 

implementation of a an ecodriving HMI, several 

fundamental principles of ecodriving HMI’s have 

been tested. A selection of the most interesting 

principles and results found will be described in 

this section. 

 

Personalization 

 

One of the findings of social psychology that are 

relevant for increasing acceptance of HMI’s is 

related to personalization. The idea behind this 

concept is that different people respond 

differently to different advice or feedback. In 

other words, choosing the appropriate form of the 

advice or feedback increases acceptance. In a 

series of tests, different groups of drivers that 

were identified to be sensitive to different kinds 

of feedback were exposed to HMI’s tailored to 

those different group. The effects of 

personalization were studied and two dimensions 

were identified. Their value orientation was 

plotted on one dimension. This indicated whether 

the driver belonged to a group sensitive to 

increase their eco-driving performance for their 

own personal gains and or for the better of all.  

 

Another dimension to split types of advice or 

feedback on is the goal orientation of drivers, i.e. 

whether drivers are more interested in developing 

their own skills or in comparing their current 

performance with other people. An experiment 

comparing the effects of personalization on this 

goal orientation dimension, performed in the 

ecoDriver project, showed the effects of tailoring 

the HMI to the type. In the experiment the 

behavior of drivers with a performance goal 

orientation was compared with the behavior of 

drivers with a learning goal orientation. Both 

groups drove with a basic advice HMI, indicating 

solely the most energy efficient speed to drive at 

and two HMI’s that were tailored to the groups. 

One was tailored to the learning orientation 

group, the other to the learning orientation group.  

 

First results show that the performance group 

gave the (mismatched) learning oriented HMI a 

lower rating on acceptance, ease of use, 

favoritism and a lower general rating. The 

learning oriented group rated both adapted 

systems higher than performance group and rated 

the systems also higher than the basic HMI on 

acceptation, general rating and favored  both 

adapted systems over the basic version. 

Overall compliance was better with the adapted 

HMI’s; here  no clear difference between groups 

was found. Compliance with advised speed around 

traffic lights, showed a group difference, where 

both the learning and performance oriented 

complied best when using their matched HMI. 

 

Both subjective and objective data suggest that 

personalizing the HMI increased the impact of the 

given advice by increasing acceptance or 

compliance. 

 

Driver type detection 

 

From the previous subsection one can draw the 

conclusion that it is important to know what kind 

of driver is behind the wheel. This may help in 

personalizing the advice and increasing the impact 

of the advice because of better compliance. As 

described in section 3, there are also different 

driver behavior aspects that have a direct impact 

on energy efficiency. Taking these characteristics 

into account, i.e. giving the correct advise for this 

particular driver, may increase the impact of the 

advice too. For the latter, we also need to know 

what kind of driver is in the vehicle. The preferred 

method for this would be that a system within the 

vehicle can establish the type of driver from 

driving behavior recorded and analyzed while 

driving. An automatic system would mean low 

intrusiveness which is necessary for such a system 

to be acceptable for drivers. Driver type detection 

would preferably be based on driving behavior 

measured via OBD or CAN and include driving 

speed, acceleration, rpm and other measures that 

may be associated with a particular driver type. 

 

Within the ecoDriver project a prototype has been 

developed for on-trip driver type detection. The 

prototype makes use of a two-stage approach 

adopting Neural-Symbolic Cognitive Agents to 

model the performance and driver type indicators. 

It also enables the extraction of learned knowledge 

in human readable form for offline validation of 

the models. To develop a method for on-trip 

automated driver type detection we need to model 

the correlations between the collected vehicle data 

and driver type indicators. Driver types, such as 

described in the previous section on 

personalisation, need to be correlated to 

performance indicators that describe low level 

driving behaviour. These performance indicators 

are based on temporal relations in the collected 
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vehicle data (e.g. “RPM > 4000 for a large 

amount of time”).  

Evaluation results on the training data and data 

left out of the training set are very good (average 

F1-score (test accuracy between 0 and 1) and 

average MCC (Matthews Correlation Coefficient 

between -1 and +1) were determined to be 0.528 

and 0.727 respectively, with the exception of a 

few participants for which the prediction on the 

social and sportive were incorrect. Reasons for 

these exceptions can be that the used models 

need further optimization and/or that the driver 

type indications from the questionnaire 

contradicted with the actual driving behaviour. 

To deal with the latter the system could take into 

account future pre-trip questionnaires with 

regular interval (e.g. every month or half a year) 

to update the models with new information on 

driver type indications and related driving 

behaviour. 

 

The overall conclusion is that the driver type 

detection module works fine, perhaps even better 

than may be expected from results reported in 

literature. 

 

7 Discussion and Conclusion 

It is possible to collect data from a vehicle and 

provide eco-driving advice, making use of OBD, 

CAN or a nomadic device. The advice is then 

based on this data and checks the conformity 

with the advice methodology described in Level 

1. When an eco-coaching system can make use 

of a vehicle model, advice can really be 

generated for a specific vehicle. This way 

efficient operating points and many vehicle-

specific control strategies (e.g. the gear-shifting 

algorithm in an automatic transmission) can be 

taken into account. 

 

When data is collected from the vehicle, the 

driver behaviour can be compared with 

alternative behaviour and using the vehicle 

model, the driver can receive quantitative 

feedback. If the driver type is known, the 

feedback can also be personalized. Some drivers 

might be triggered if they beat their own personal 

record, whereas others are more competitive and 

can better be motivated through a comparison 

with others. This way of personalization is likely 

to increase the acceptance level even more.  

 

When an eco-coaching system can make use of 

external data, an advice for the future becomes  

possible. Often, this is called eHorizon-based 

advice. One can use data from the infrastructure, 

but also from a radar/LIDAR system to monitor 

other road users. 

 

The combination of an advanced powertrain and a 

well-performing driver seems to be a good one. 

Because of the complexity, integrated systems 

guide the driver in performing eco-friendly and are 

more and more intervening in addition to that. It 

can be expected that future ecodriving systems 

have higher intervention levels and therefore the 

vehicles will become more autonomous as well. 
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