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This paper presents the modelling and real time implementation of PEM (polymer electrolyte membrane) 
fuel cell flow control. Flow control presents a critical performance requirement to achieving dynamic power 
responses for electric vehicle motor demands. However a fuel cell’s complex structure and reactant requirements 
traditionally result in an unsatisfactory response to such dynamic loading instances. This in turn causes brief power 
losses associated with driving patterns such as acceleration and hill climbing. To improve the fuel cell’s dynamic 
response to such drive cycles, this paper presents new methodology for system identification and controller design. 
The fuel cell is modelled initially with established linear model and parameter estimation methods. The approach 
is then expanded to an on-line system identification LabVIEW programme to account for the non-linear and time 
varying characteristics. Based upon this identification process, a novel LabVIEW self-tuning PID controller is 
implemented in real time to control the response. The self-tuning controller continuously re-calculates the critical 
gain and period, and then adjusts the controller actions accordingly. Conclusions are then summarised from the 
results and future ongoing work is discussed briefly.      

Keywords: Fuel Cells, On-Line Identification, Non-Linear Dynamics, 
Time-Varying Systems, Self-Tuning Control

1.  INTRODUCTION

The use of fuel cells as alternative power sources for 
mobile and stationary applications is steadily increasing 
as concerns over global oil reserves, escalating prices, and 
the environmental impacts of CO2 emissions increase. 
The dominant fuel cell technology for the automotive 
market is PEM (polymer electrolyte membrane). This 
is due to its compact design, favourable weight and 
power densities, along with low operating temperatures 
and quick start up times. PEM’s use of solid polymers 
also makes it favourable for ease of construction, and 
it exhibits good ability to respond to rapidly changing 
loads as experienced in automotive applications.

This ability to respond to load changes depends on 
precise control of several subsystems. These include 
the temperature, humidity and pressure subsystems, 
which are closely associated to achieving final steady 
state value for a load request. Also, the reactant flow 
subsystem which is closely associated to the dynamic 
response to load changes, which is the focus of this 
research publication. The ability of the fuel cell to 
respond to dynamic loading instances is critical to 
the overall driver experience and life expectancy of 

the fuel cell stack. If the fuel cell is unable to respond 
adequately to large load variations, the continued 
voltage and power output drops associated to current 
inrushes of motors, results in momentary cell stress 
and drying of the membrane. Continued exposure 
weakens a cell, resulting in a low voltage output, which 
in turn increases the stresses on neighbouring cells in 
the stack, leading to a cascade failure and loss of the 
system.

The complex, nonlinear dynamics of the fuel cell have 
been traditionally modelled using their approximated 
principles of electrochemistry, fluid dynamics, 
thermodynamics and heat transfer, in terms of the 
physical and material properties; along with universal 
constants under various assumptions and constraints. 
Earlier research work was focused on achieving 
steady state models of PEM fuel cells, describing 
the physical variables through Nernst equation, gas 
diffusion equation, and voltage drop and concentration 
equations. Recently there has been a noticeable 
increase in volume of dynamic subsystem research 
modelling of the transient response of PEM fuel cells. 
Pukrushpan et al. [1] is a noticeable contributor in 
this field, where he described the dynamics by a set 
of first order equations governing the air compressor, 
mass transportation and energy conservation of the 
reactant flows, and pressure across the anode and 
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Figure 1: Fuel cell overview
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cathode. Cerola et al. [2] follows on providing more 
accurate partial differential equations to describe both 
the static and dynamic behaviours. Golbert and Lewin 
[3] constructed a spatial, time dependant fuel cell 
model covering the dynamics of water condensation 
on the electrodes, evaporation and generation. They 
also included a quasi steady state temperature profile. 
Pathapati et al [4] derived a dynamic model of the 
effects of the charge double layer capacitance and flow 
pressure dynamics, to allow predictions of the transient 
response of cell voltage temperature and gas flow rates 
under dynamically changing loads.

It is important to realise that no matter how complex 
the dynamic model, it never fully describes the fuel cell, 
and therefore system response, precisely in terms of 
system parameters. A fuel cell’s inherent nonlinearities 
and time varying characteristics inevitably pose difficult 
problems for system identification and control, making 
either linear or more complex nonlinear models, only 
valid over an operating range which exhibits linearity. 
Such models are typically used to investigate system 
stability, sensitivity, observability and controllability to 
allow controller designs. However if investigated in real 
time, these parameters with varying time operating 
states can be more closely identified to the system 
response with minimal error. 

Therefore, adaptive controllers can serve as a 
feedback law to achieve the control objectives with 
the time varying nonlinear properties, as well as 
external disturbances which is represented by factors 
such as loading of an electric vehicle motor. Previously 
referenced Pukrushpan et al. [1] implemented an 
observer based feedback controller to protect the stack 
from the previously described oxygen starvation effects 
during loading. This uses a linear quadratic technique 
based on a linearised state-space model. Other 
authors using such techniques to accommodate the 
nonlinearities include Paradkar et al. [5] who integrated 
a linearised PEM fuel cell model into a power plant, 
and simulated a load frequency controller. An optimal 
controller then accommodates the control application 
based on the disturbances. Schumacher et al. [6] 
deploy a fuzzy controller for the humidity management 
subsystem which adjusts the fan according to the 
requirement. Revenkar [7] highlights the requirement 
for further research into system models and controllers 
for multiple input, multiple output (MIMO) systems 
covering the whole operating range, a problem which is 
in part addressed within the proceeding sections.

2.  FUEL CELL MODELLING

The referenced publications describe the fuel cell from 
its basic structure of a proton exchange membrane 

electrolyte, sandwiched between the anode and cathode 
electrodes. Each electrode then consists of a catalyst 
and gas diffusion layer to support the reaction which 
produces power and removes generated water. Figure 1 
presents the structure of a PEM Fuel Cell.

In order to develop a control strategy for a fuel 
cell’s flow, a model of the dynamic process is adopted 
from previous studies and described by its Nernst 
equation, anode and cathode gas diffusion, kinetics 
and proton concentration dynamics. From a system 
viewpoint, hydrogen is an input variable and is fed at 
an adjustable flow rate NH. Oxygen is also an input 
and can be represented by NA where a fuel cell uses the 
oxygen content of air. In the case of this publication, 
a compressed air cylinder fed via a regulated value 
is utilised for controllability. Voltage and Current are 
then considered the system outputs. Franklin et al 
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Figure 2: Fuel cell block diagram
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[8] represents this as a standardised MIMO system 
represented by Figure 2.

From Figure 2, a standardised representation of the 
relationship can be formulated as shown in Figure 3, 
with blocks ,4,3,2,1,=iG  describing the relationship 
between the outputs cI and ,cV and inputs AN and 

,HN where R represents the internal cell resistance.

Theoretically each block can then be linearised as its 
own transfer function describing its relationship. For 
example 1G  represents the relationship between cI
and AN . However, in practice this would be impossible 
to determine as blocks 432 ,, GGG  would need to be 
eliminated to achieve a true representation, and the 
fuel cell cannot be sustained with only one reactant 
input. The overall stack model can be expressed as 
Equations (1) and (2).

(1)

(2)

Equations (1) and (2) will now form the basis for the 
proceeding system identification methodology and 
design of a novel self-tuning PID controller programme 
and its application. 
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Figure 3: Approximated MIMO representation

2.1  Linear ARMAX Model

Since the model of the fuel cell is very complicated, 
this paper focuses on the relationship between the 
oxygen flow and the voltage of the fuel cell. So hydrogen 
flow ,HN  is constant. The following ARMAX (auto-
regressive moving average with exogenous input) model 
in Equations (3), (4) and (5) is considered to describe 
the dynamics between the oxygen flow AN and voltage 

.cV

(3)

(4)
				          

(5)

where y  denotes the system output, u  represents the 
system input, k  denotes the time instant of sampling, 
and r  and β are the order of A and B, respectively. w
represents the constant disturbance of AN . Therefore 
without loss of generality 10 =a . In descending order 
( ) ( )kyzA 1− defines the auto regression part where 1−z  

is the backward shift operator and )(kuz h−  represents 
the past output. ( ) ( ) ( )kuzBrhhky 1;,...2,1; −=−  
denotes the moving average of past inputs, where 

)()( hkukuz h −=− . Finally the corresponding transfer 
function between outputs and inputs in discrete form 
can be found as Equation (6).

(6)

where )1( −zA  and )( 1−zB  are the polynomials given 
in Equations (4) and (5), respectively. 

Using linear theory all system modes can be excited 
using the ARXMAX approach by an impulse input 
signal of white noise. This has a frequency content 
entirely of sinusoidal waves of the same amplitude and 
strength, and can be generated with a pseudo random 
binary sequence (PRBS). However, in practice such an 
excitation signal could cause damage to the fuel cell 
in real time operation. The unit would not be able to 
respond to a PRBS large harmonic content, so instead a 
square wave excitation process would be implemented.
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2.2  On-Line Parameter Estimation

Expanding the ARXMAX identification methodology 
to include the recursive least squares algorithm (RLS), 
allows the identification process to predict the system 
output according to the past information. This allows 
for non-linear and time varying dynamics identification 
of the fuel cell. From Equations (3)-(5), the estimation 
of )(ky is expressed as Equation (7)

(7)

where

(8)

(9)

After step k  the new output is measured and a new 
set of parameters are obtained by Equations (10-12).

(10)

(11)

(12)

where )(kK is the estimation gain which brings the 
relative information of new measurements to update 
the parameter estimation. )(kP  is the covariance 
matrix which characterises the difference between the 
estimated and actual values where initially )0(P  is 
chosen to be a large value. The coefficient l  is called 
the forgetting factor which changes the importance of 
new information to old and has a range of .10 << l

3.  CONTROLLER DESIGN

Self-tuning controllers belong by their characteristics 
to the family of adaptive controllers. The aim of adaptive 
controllers is to solve control problems in cases where 

the characteristics of the system are unknown or time 
varying, as with fuel cells. The principle of adaptive 
control is to change the controller characteristics on 
the basis of the process change. Typically as with the 
self-tuning method utilised in this paper, the recursive 
identification processes is utilised.

The task of on-line adaptive control is to maintain the 
optimal parameters of a difficulty to control process 
with time varying characteristics. This presents a 
complex process concisely explained in the following 3 
step cyclic repetition.

1.  The process parameters are assumed to be 
known for current control loop and equal to their 
current estimation.

2.  The control strategy is designed based on the 
previous assumption and controller output is 
calculated.

3.  The following identification step is performed 
after obtaining new controlled process variables. 
The parameters of the controlled process are 
recalculated using RLSM in this case (other 
Recursive methods can of course be utilised).

3.1  Digital PID Controllers

Digital proportional integral derivative (PID) 
controllers remain widely accepted by industry due to 
their simplicity, convenience, and well known structures. 
Digital PID controllers use in fuel cell applications is 
extensively tried and accepted to give performance 
enhancements for an estimated model. However the 
non-linear and time varying characteristics of fuel cells 
mean the parameters are far from optimal, and require 
retuning over periods of operation. The adaptation of 
this well-known structure to a real time, self-tuning 
LabVIEW application is presented in proceeding 
sections, illustrating new methodology and material 
to this well understood controller. A generalised 
digital PID controller can therefore be derived from its 
continuous form given as Equation (13).

(13)

where )(sU is the process input, )(sY is the process 
output and )()()( sYsWsE −= is the error where )(sW
is the reference signal. pK  is the proportional gain, iT  
is the integral and dT  is the derivative action.

The integral and derivative actions from Equation 
(13) are now discretised using the forward rectangular 
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critical gain KPU, and ultimate period TU, using the 
work of Bobal et al and his book, “Digital Self Tuning 
Controllers” [9]. An overview of a generalised self-
tuning PID controller structure is presented in Figure 
4.

Bobal proposed the use of a discrete self-tuning 
method by considering a standardised single input, 
single output (SISO) system model in Equation (16).

(16)

where )(zU  and )(zY  are the z-transforms of the 
controller and process output, respectively. d denotes 
the time delay as integer 0T and A and B are the 
n - degree polynomials defined by Equation (4) 
and (5), respectively. So, let the process (17) 
be controlled by the proportional controller

(17)

where )()()( zYzWzE −=  is the transform of the 
control error, )(zW  is the z-transform of the reference 
signal. 
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method (FRM). In addition for on-line identification, the 
recursive control algorithm is incorporated to compute 
the actual controller value )(ku  from the previous 
value )1( −ku  and the compensation increment as 
Equation (14).

(14)
where the controller parameters are now Equation 
(15).

(15)

and 0T is the sampling period.

3.2  Design of Self-Tuning PID Control

The Ziegler–Nichols methodology has been utilised 
throughout industry to determine both continuous and 
digital PID controller parameters. Similarly as with 
the generalised PID structure illustrated previously, its 
use in research does not present new material. However 
the following adaptation of the Ziegler–Nichols process 
of obtaining the proportional, integral, and derivative 
values does present new material and methodology. 
The process utilises a real time LabVIEW programme 
which identifies the ultimate parameters, known as 
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Figure 4: Overview of self-tuning PID structure
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(25)

Bobal’s approach was now modified to be included 
within a LabVIEW programme developed for such 2nd 
order systems. The programme operates by automatically 
identifying the orders within the characteristic equation 
of the system in question. The LabVIEW MathScript 
function is then utilised to implement equations (20)-
(25) for identification of the critical values KPU and TU. 
The identified system parameters are then passed to 
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Figure 5: Overview of identification steps
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When solving (3) and (4) the following transfer function 
is obtained as Equation (20). 

(18)

where the denominator is termed as the characteristic 
equation for a closed loop.

(19)

Equation (19) can now be equated using the Unified 
Approach as utilised by Bobal for a 2nd order process as 
Equation (20).

(20)

The approach presents two cases for identification of   
KPU and TU. 

1.  The critical poles lie on the real axis therefore 
the following equations (21) and (22) are valid for 
calculation of the critical values KPU and TU.

(21)

(22)

2.  The critical poles are with the imaginary parts 
so Equation (23) is valid.

(23)

To allow KPU and TU to be calculated in both cases, 
equations (24)-(25) are required. Full details of the 
identification process can be obtained from Bobal’s 
book, “Digital Self Tuning Controllers” [7]. However to 
illustrate the steps, a diagrammatic overview is given 
as Figure 5.
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a

p
arccos

2
)( 0

0
T

TTU =
π

α

2

12112

2b
bbaba −−

=aα

ISSN 2032-6653
Page 0247



© 2008 WEV Journal

13

The World Electric Vehicle Journal, Vol 2, Issue 4

Design and Implementation of On-Line Self-Tuning Control for PEM Fuel Cells

further mathematical functions which execute the 
Ziegler–Nichols PID parameter determination process 
represented as Equations (26)-(28) referenced from 
“Advanced PID Control” Astrom, K et al [10].

(26)

(27)

(28)

The control actions are then adjusted each execution 
loop of the LabVIEW programme, continuously 
updating the identified model and in turn the controller 
parameters. A full description of the software and 
hardware is given in the proceeding section.

4.  IMPLEMENTATION

System identification is performed on a single cell 
membrane electrode assembly (MEA). The system 
setup and operational parameters are monitored via 
the University’s fuel cell test station (FCTS), designed 
to our research requirements. A block diagram 
representation of the setup is given in Figure 6 with a 
photographic representation given in Figure 7.

The test station consists of five subsystems. The 
gas delivery subsystem, stack (single cell presently) 
subsystem, humidification subsystem, control 
subsystem and load subsystem. Clearly the gas delivery 
subsystem delivers the reactants (gases) of hydrogen 
to the anode and air (oxygen) to the cathode with a 
nitrogen flush as an option. The stack or single cell 
subsystem represents the heart of the fuel cell.

The flow rate of air and hydrogen can be precisely 
controlled via each solenoid valve. Either cell voltage 
or current can be set at a specific value via the load 
bank to control power output. For demonstration of 
the fuel cell’s response to a drive cycle, the following 
power set point changes were made (29) at 5 seconds 
intervals and the recorded response given as Figure 
8.  This illustrates the existing implemented controller 
strategy which controls the required flow rate based on 
the stoichemetric reactant flow request for a set point. 
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Figure 6: FCTS block diagram overview

Figure 7: Photographic view of FCTS
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and

(32)

An identification match of 59%, a substantial 
improvement over Figure 9 is achieved. However the 
implementation of higher order identification processes 
highlights the floored technique of using a linear 
modelling process to identify a non-linear system.

4.2  On-Line Identification

It is therefore reasonable to investigate the history 
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(29)

Highlighted in Figure 8 at point of interest (a) and 
(b), are the instantaneous power (watt) losses between 
large loading points. These power loses are caused by 
the starvation of reactants AN and ,HN  as the flow 
controller adjusts to the new set point determined 
by the stoichemetric request value. Clearly these 
performance issues in a real world application would 
present unwanted diver sensations and stressing of the 
fuel cell, which as previously detailed must be avoided 
to prolong cell life.

4.1  Off-Line Identification

The response of AN  and ,HN  against cI and ,cV  
is now recorded for off-line system identification 
purposes. AN  is varied as a square wave signal, while 

HN   remained constant. The results are collected via 
a data acquisition (DAQ) card and LabVIEW program. 
The data is then processed by the MATLAB system 
identification toolbox using ARX to calculate the 
coefficients of the transfer function .iG  From this the 
identification match is shown as Figure 9 for a second 
order model, with the identified transfer function given 
as Equation (30).

(30) 

The second order system obtained provides significant 
information to the system’s dynamic properties and 
allows for basic simulations of controller designs. 
It also shows the possibility of reducing the fuel cell 
model complexity to a 2 input 2 output configuration. 
However issues with these assumptions are evident. 

Firstly there is a considerable mismatch, highlighting 
the linear modelling approach is not suitable for non 
linear systems. Secondly the identified model only 
represents the system over the period of the exercise. 
Therefore does not representing the fuel cell’s time 
varying dynamic characteristics.

To investigate the inadequacy of the second order 
identification, higher order model parameters were 
identified and compared against the second order 
parameters. Figure 10 shows the response for orders

(31)
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of the parameters during the identification process to 
account for the nonlinear, time varying parameters 
over the identification period.

The previous system identification data for AN
and ,HN  is now repeated over a wider operating 
range. This is to provide evidence to the reader that 
the collected results were obtained over a sufficient 
range, to introduce significant non linearity’s. The 
new data is then manipulated via a MATLAB m file 
using the recursive least square method (RLSM), to 
obtain the coefficients of the overall system transfer 
function, iG . The RLSM m file originally identified 
the system as a 2nd order representation which was 
found to provide significant information to the system 
dynamic response. However later higher orders were 
included to show further unidentified characteristics. 
The obtained results can be found in Figure 11 for the 
4th order voltage response prediction. Figure 12 details 
the combined voltage-current responses to obtain the 
power output identification match. 

Clearly a significant improvement in the identification 
match is achieved. This provides evidence to the 
argument of using a non linear identification process. 

However the operation of the fuel cell over a finite 
period to obtain a set of convergent parameters that 
are used to describe the system dynamics, only offers a 
small history of the time variant characteristics. To fully 
account for the fuel cell time varying characteristics, 
the implementation is now adapted to an on-line 
identification process. To achieve this, the ARX model 
describing the system using RLSM to include the 
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Figure 11: RLSM voltage identification match
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past information, is integrated within a real time 
LabVIEW program environment. National Instruments 
LabVIEW is an ideal choice for this process due to its 
data acquisition abilities and increasing control theory 
toolsets. A generalised system structure is given as 
Figure 13.

The LabVIEW program now implements in real 
time the ARX identification process with RSLM 
continuously. 

4.3  Self-Tuning PID Control

This time to represent real world conditions, the 
identification technique of varying flow rates is changed 
to the introduction of a drive cycle via a series of voltage 
load set point changes via a DC load bank. This can 
be regarded as the disturbance a motor would place on 
a real world vehicle application. The response results 
seen in Figures 14 is for the following set point changes 
(33).

(33)

5.  CONCLUSIONS

The LabVIEW drive cycle and data collection program 
performed well, collecting all required data. This 
allowed for an accurate identification match to be 
obtained in real time. In turn allowing the self tuning 
PID algorithm based on the modification of Bodal’s 
work to obtain accurate ultimate values of  KPU and 
TU. The second element of the LabVIEW program then 
calculated the final proportional, integral and derivative 
action values based on Ziegler–Nichols methodology. 

A substantially improved response is then achieved 
when compared to the existing controller method, 
which calculates the flow requirement based on the 
stoichemetric value. Analysis of the results in Figure 14 
shows several performance enhancements as compared 
to the existing controller. Firstly it can be seen that at 
point of interest (a), where a step increment in load 
requirement is implemented by a voltage set point 
decrease, both controllers reach a steady state value. 
However the stoichiometry based control method 
experiences the previously detailed momentary 
voltage loss, which is a direct result of the load bank 
demanding a load change. During this transition 
process, the reactants of hydrogen and oxygen are 
depleted, resulting in a momentary cell voltage drop. 
The self tuning PID controller is able to control this 
transition process with no momentary voltage drop. 
The self tuning PID controller is also able to settle 
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Figure 14: Real time implementation results

at the steady state value of 0.4V during the 5 second 
step period, whereas the existing controller cannot. 
The same voltage lose situation is repeated at point of 
interest (b), where again the self tuning PID controller 
outperforms the stoichiometry model controller. 
Interestingly it should also be noted that for smaller 
positive step increment changes, and step decreases, 
both controllers provide good control capabilities. The 
results also provide evidence that self tuning PID 
controllers would also be suited to large fuel cell stacks 
as used in vehicle applications due to the pronounced 
improvements on the single cell presented here.

Future work is now proceeding to expand this 
controller strategy to further account for the time 
varying characteristics of the fuel cell, by utilising a 
self tuning Fuzzy-PID hybrid strategy.  This will be 
followed by extending the work to include additional 
subsystems.
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