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Abstract

The permanent magnet synchronous motor (PMSM) is the core of new energy vehicle drive
systems, and its temperature status is directly related to the safety of the entire vehicle.
However, the temperature of rotor permanent magnets is difficult to measure directly,
and traditional sensor schemes are costly and complex to deploy. With the development
of Artificial Intelligence (AI) technology, deep learning (DL) provides a feasible path for
sensorless modeling. This paper proposes a prediction model that integrates a Temporal
Convolutional Network (TCN), Bidirectional Long Short-Term Memory Network (BiLSTM),
and multi-head attention mechanism (MHA) and introduces a Hybrid Grey Wolf Optimizer
(H-GWO) for hyperparameter optimization, which is applied to PMSM temperature predic-
tion. A public dataset from Paderborn University is used for training and testing. The test
set verification results show that the H-GWO-optimized TCN-BiLSTM-MHA model has a
mean absolute error (MAE) of 0.3821 °C, a root mean square error (RMSE) of 0.4857 °C, and
an R2 of 0.9985. Compared with the CNN-BiLSTM-Attention model, the MAE and RMSE
are reduced by approximately 11.8% and 19.3%, respectively.

Keywords: PMSM; rotor temperature; TCN; BiLSTM; hybrid grey wolf optimizer

1. Introduction
The permanent magnet synchronous motor (PMSM) is widely used in industrial,

transportation, and new energy fields due to its high efficiency, high torque density, and
excellent control performance. Since its internal permanent magnets are highly sensitive
to temperature, excessive temperature may lead to insulation failure and magnetic per-
formance degradation, affecting operating efficiency and service life. Therefore, accurate
prediction of rotor temperature is of great significance for improving system performance
and reducing energy consumption and risks. However, due to the high-speed rotation of
the rotor permanent magnets inside the motor and the complexity of the rotor structure, it
is difficult to arrange sensors, which also increases costs and potential safety hazards [1,2].

Traditional temperature prediction methods mainly include three types: Computa-
tional Fluid Dynamics (CFD), Finite Element Analysis (FEA), and Lumped-Parameter
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Thermal Network (LPTN) [3,4]. Dong et al. used CFD modeling to evaluate the temper-
ature distribution of high-speed permanent magnet motors [5]. Sun et al. applied 2-D
finite element analysis to estimate the temperature rise in motor rotors [6]. However,
CFD and FEA are constrained by the ideal conditions of modeling and the accuracy of
models. Moreover, they involve complex calculations and consume substantial comput-
ing resources, thus making them generally unsuitable for temperature monitoring with
real-time requirements [7]. The LPTN method is an approach used to build an equivalent
network model based on thermodynamics theory [8,9]; it has a faster calculation speed
than CFD and FEA, but due to the complexity of the PMSM’s structure and materials, the
LPTN model may fail to capture the detailed distribution of the thermal field.

In recent years, Physics-Informed Neural Networks (PINNs), as hybrid methods in-
tegrating deep learning and physical principles, have begun to be applied in the field of
real-time thermal prediction [10]. However, in the scenario of motor rotor temperature
prediction, PINNs have two key limitations. First, they rely heavily on accurate prior
physical equations and precise quantification of physical parameters. During the actual
operation of the motor, variable operating conditions, such as sudden load changes and
transient speed changes, will cause physical parameters to vary with time, resulting in
a mismatch between the fixed physical constraints in PINNs and the actual operating
conditions [11]. Second, the embedding of physical constraints increases the model com-
plexity of the PINN [12]. When processing the same motor temperature dataset, PINNs
require more training time than data-driven deep learning models, which weakens their
real-time advantage in on-board applications.

Classic deterministic methods for time series have long been applied in the field of
temperature prediction. The Autoregressive Integrated Moving Average (ARIMA) model
captures linear temporal dependencies by combining Autoregressive (AR) and Moving
Average (MA) components, but it is unable to handle nonlinear relationships in motor
rotor temperature [13]. Exponential smoothing models (such as the Holt–Winters model)
predict future values by assigning exponentially decreasing weights to historical data;
however, they are sensitive to outliers in temperature data and cannot capture long-term
temporal correlations [14]. These limitations have prompted researchers to adopt deep
learning techniques—which offer greater advantages in nonlinear feature extraction and
long-sequence modeling—for motor rotor temperature prediction.

By contrast, deep learning (DL), leveraging its robust nonlinear modeling capability
and data-driven nature, has demonstrated significant advantages in temperature prediction.
Typical DL networks, represented by DNNs, LSTM, and CNNs, do not rely on explicit physical
equation constraints, thus avoiding errors caused by incomplete physical assumptions. They
can achieve efficient and accurate temperature estimation solely based on operating data such
as current, voltage, and rotational speed. Meanwhile, they possess characteristics including
excellent real-time performance, high cost-effectiveness, and strong adaptability, making them
more aligned with the practical requirements of motor rotor temperature monitoring [1,15–20].

In the field of time-series modeling, various deep learning techniques exhibit different
modeling advantages based on their unique network structure designs, providing diverse
technical pathways for motor temperature prediction. Long Short-Term Memory (LSTM)
networks address the gradient vanishing problem of the traditional recurrent neural network
(RNN) through a gating mechanism. They can effectively capture the long-term temporal
dependencies of dynamic systems, making them particularly suitable for temperature se-
quence prediction involving complex transient features. Temporal Convolutional Networks
(TCNs) adopt a dilated convolution structure, which can flexibly expand the receptive
field by adjusting the dilation coefficient. While maintaining computational efficiency,
TCNs capture multi-scale local temporal features, and their parallel computing capability
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is significantly superior to that of recurrent neural networks. Differential Feedforward
Neural Networks (DFNNs) enhance the ability to model the rate of change in input features
by introducing differential operators, demonstrating unique advantages in handling the
nonlinear mapping relationship between motor operating parameters and temperature.
Convolutional Neural Networks (CNNs) leverage the local receptive field and weight shar-
ing mechanism to efficiently extract spatial correlation features from temperature sequences.
Bidirectional Long Short-Term Memory (BiLSTM) networks utilize hidden layer structures
in both forward and backward directions, enabling them to simultaneously capture the
impact of future states on current temperatures. This makes BiLSTM more suitable for
modeling bidirectional temporal processes such as motor start-up and shutdown.

The aforementioned technologies have been validated in the field of PMSM tem-
perature prediction, and the relevant research findings provide important references for
subsequent technical optimization. Oliver Wallscheid et al. [17] were the first to apply
LSTM to PMSM temperature time-series prediction, using a particle swarm optimization
algorithm to search for the optimal hyperparameters of the model. However, this opti-
mization method evaluates each candidate solution in the search space only once, making
it difficult to fully traverse the global optimal domain, which limits the hyperparame-
ter optimization accuracy to a certain extent. The TCN model constructed by Wilhelm
Kirchgässner et al. [1] achieved a mean squared error (MSE) of 3.04. Compared with the
traditional RNN, this validates its efficiency in motor temperature series modeling. The
Deep Feedforward Neural Network-Nonlinear AutoRegressive with eXogenous inputs
(DFNN-NARX) model proposed by Jun Lee et al. [18] demonstrates significantly better
performance than traditional feedforward neural networks in the temperature estimation
of stator windings and permanent magnets. Hosseini et al. [19] compared the prediction
effects of CNNs and LSTM and found that CNNs are more effective in predicting the
temperatures of stators and rotor permanent magnets, achieving an MSE of 2.64 and an
average coefficient of determination (R2) of 0.9924. Mohammed Bouziane et al. [20] used a
recurrent neural network with BiLSTM units to model the complex relationships of motor
parameters; the R2 score of temperature prediction on the test set reached 0.99, confirming
its modeling accuracy for nonlinear correlations.

Numerous studies have confirmed the effectiveness of the attention mechanism in
time-series forecasting. Wang and Zhang [21] proposed a multi-stage attention network:
they leveraged the attention mechanism to capture the differential impacts of non-forecast
sequences on target sequences, incorporated a score adjustment module to avoid the
omission of key information, and combined a gated recurrent unit (GRU)-based LSTM
network to enhance the capture of abrupt change information, with convergence optimized
via the AdaHMG algorithm. When tested on the Nasdaq100 and PM2.5 datasets, the
mean absolute error (MAE) and root mean square error (RMSE) of this network were
reduced by 10.16–33.01% and 12.81–37.55%, respectively, compared with those of the
dual-stage attention-based recurrent neural network (DA-RNN). Notably, the more non-
forecast sequences there were, the more significant this advantage became. To address
the high-dimensionality and nonlinearity issues of multivariate time-series data, Cheng
et al. proposed the dual attention-based bidirectional long short-term memory (DABi-
LSTM). This model uses input attention to screen key driving sequences, employs BiLSTM
to bidirectionally extract temporal features, and integrates LSTM to optimize long-term
dependency learning, thereby forming a collaborative architecture [22]. In convolutional-
based temporal modeling, Wang and Zhang [21] adapted the temporal attention mechanism
to the time dimension: they convolved the output of each layer of the TCN, generated
dynamic weights through sigmoid mapping, and achieved performance improvements.
Compared with LSTM and GRU, the RMSE and MAE of this modified model were reduced
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by an average of 10–37%; compared with the basic TCN, these metrics were further reduced
by 0.8–10%, breaking the limitation of the “fixed receptive field” in traditional convolution.

Studies by Oliver Wallscheid [17], Wilhelm Kirchgässner [1], Mohammed Bouziane [20],
and others have shown that TCNs and BiLSTM exhibit excellent performance in time-series
modeling. However, existing research also indicates that single deep learning methods
have limited performance under complex operating conditions [23,24], and there is an
urgent need to further improve model performance.

To solve the above problems, this paper proposes a TCN-BiLSTM-MHA prediction
model based on a Hybrid Grey Wolf Optimization (H-GWO) algorithm. The model com-
prehensively utilizes the TCN to extract local time-series features, BiLSTM to capture
bidirectional dependencies in sequences, and multi-head attention (MHA) to model the
importance of different time steps of multi-dimensional information, thereby realizing
in-depth mining of the relationship between rotor temperature and other features. At the
same time, the H-GWO algorithm is introduced to optimize the model hyperparameters to
improve the overall prediction accuracy and generalization ability.

The main contributions of this paper are as follows:

• A hybrid prediction model integrating a TCN, BiLSTM and MHA is proposed, which
achieves good experimental results in motor rotor temperature prediction.

• A Hybrid Grey Wolf Optimization algorithm combining Tent chaotic mapping and
differential evolution is used to optimize the key parameters of the prediction model,
including the number of TCN channels, the number of neurons in BiLSTM hidden layers,
and the learning rate, effectively improving the prediction performance of the model.

• Ablation experiments and comparative experiments are carried out on public datasets,
verifying the feasibility of the proposed model for rotor temperature prediction and
providing a new idea for non-contact prediction of motor rotor temperature.

The overall framework of the paper is shown in Figure 1. The paper uses a public
motor dataset, selects appropriate input features, and divides the training set and test set
in proportion. Then, the training set is input into the constructed temperature prediction
model for training, and the model parameters are optimized by H-GWO. After that, the test
set is fed into the trained model to finally obtain the prediction results for temperature data.
Finally, the model is compared and analyzed with the DFNN, BiLSTM-Attention, and CNN-
BiLSTM-Attention models to prove the advantages of the H-GWO-TCN-BiLSTM-MHA model.
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Figure 1. Flowchart of the paper.
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2. TCN-BiLSTM-MHA Rotor Temperature Prediction Model
To address the issues of insufficient prediction accuracy and generalization ability

of the standalone TCN or BiLSTM model, this paper constructs a composite model inte-
grating time-series modeling, feature extraction, and a multi-head attention mechanism,
namely, TCN-BiLSTM-MHA, from three aspects: input feature selection, model structure
design, and parameter optimization strategies. Its structure is shown in Figure 2. Firstly,
through normalization and feature correlation analysis, the model inputs are ensured to be
representative and stable, improving the modeling quality from the source. Secondly, by
combining the TCN with BiLSTM, the TCN uses a one-dimensional convolutional structure
to effectively extract important features within local time windows while maintaining
good parallelism. This enhances the ability to model long-term dependent information
and avoids the gradient vanishing problem in traditional recurrent neural networks. On
this basis, the bidirectional recurrent structure of BiLSTM is introduced to fully explore
the correlation of temperature changes in the time series, improving the model’s ability to
perceive global dynamic features. Finally, since the TCN and BiLSTM have a limited ability
to model the importance of different time steps and feature dimensions, which may lead to
insufficient information utilization, MHA is introduced to weight the high-dimensional
sequence representations extracted by BiLSTM, thereby highlighting the time points and
feature channels that are more critical to the prediction task.

The combination of the TCN, BiLSTM, and MHA achieves hierarchical optimization
from local feature extraction to temporal dependency modeling and then to key feature
attention, significantly enhancing the model’s ability to predict rotor temperature under
multi-variable and complex operating conditions. This effectively overcomes the shortcom-
ings of single models in temporal modeling and feature weight allocation.
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Figure 2. TCN-BiLSTM-MHA structure chart.

2.1. Temporal Convolutional Network

TCNs have shown certain advantages in multiple sequence data modeling tasks [25],
and their advantages stem from causal convolution operations. The causal convolution
of the TCN appropriately pads the input data on the basis of one-dimensional convolu-
tion operations so that the input sequence x0, . . . , xt corresponds to the output sequence
u0, . . . , ut, and the predicted value at time t can only be related to the input values at time t
and before t. In addition, the TCN incorporates dilated convolution, where the convolution
kernel performs jump sampling on the input sequence, expanding the receptive field in
a hierarchical manner and covering longer dependencies with fewer layers. The causal
convolution structure of the TCN is illustrated in Figure 3a. Moreover, residual connection
is an effective approach for the TCN to transmit information across layers. By leveraging the
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connectivity of residual blocks, connecting multiple residual blocks can effectively mitigate
the gradient explosion issue and expand the model’s receptive field [26]; the structure of
the residual block is presented in Figure 3b. The operation of the dilated causal convolution
of the TCN on the convolution kernel f = { f (0), . . . , f (i), . . . , f (k − 1)} is shown in the
following equation:

ut =
k−1

∑
i

f (i) · xt−d·i (1)

where t − d · i guides the past direction, and xt−d·i is the input time series; d is the dilation
factor; k is the size of the filter; and f (i) represents the i − th convolution weight.

The input layer feeds time-series data into the TCN layers through sliding windows.
Each TCN layer includes convolution, normalization, and ReLU activation operations.
The four TCN layers are connected via residual links, each employing one-dimensional
convolution with a kernel size of 5 and different dilation rates (1, 2, 4, 8). This allows the
TCN layers to model the historical accumulation of rotor temperature rise and the changing
trends of operating conditions, achieving multi-dimensional local feature extraction.

Causal Dilated 

ReLU

Dropout

Conv1D

Causal Dilated 

ReLU

Dropout

WeightNorm

WeightNorm

(a)
0
x

1
x tx1tx −t 2

x
−· · ·

· · ·

Output

Hidden

Hidden

Input

1d �

2d �

4d �

0 0

tu1tu −2tu −1u0u

(b)

Figure 3. (a) Dilated causal convolution structure. (b) Residual block structure.

2.2. Bidirectional Long Short-Term Memory

BiLSTM is an improved recurrent neural network based on LSTM. By introducing
input gates, forget gates, and output gates, it overcomes the problems of gradient vanishing
and gradient explosion in RNNs [27]. It can regulate the information flow by retaining
important information and deleting irrelevant information, thus realizing the extraction of
long-time-series information [27]. The calculation equations for the input gate, forget gate,
and output gate that constitute the LSTM unit are shown in (2):

ft = σ(W f · [ht−1, ut] + b f )

gt = σ(Wg · [ht−1, ut] + bg)

mt = tanh(Wm · [ht−1, ut] + bm)

Ct = ft ∗ Ct−1 + gt ∗ mt

nt = σ(Wn · [ht−1, ut] + bn)

ht = nt ∗ tanh(Ct)

(2)
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where {u0, u1, . . . , ut} represent the input sequence from the LSTM layer; σ represents the
sigmoid activation function; ft is the output vector of the forget gate at time t; W f and
b f are the weight matrix and bias vector of the forget gate; gt is the output vector of the
input gate at time t; Wg and bg are the weight matrix and bias vector of the input gate; Ct

represents the information stored in the state unit at time t; nt is the output value of the
output gate; ht represents the output value of the state unit at time t; and Wn and bn are the
weight matrix and bias vector of the output gate.

BiLSTM integrates two complementary LSTM structures: one advances along the time
axis in the forward direction, simulating the information flow from the past to the present;
the other proceeds in the reverse direction, from the future to the past, capturing the
impact of future information on the current moment. For the input sequence {u0, . . . , ut},
where ut ∈ Rbatch_size×128, BiLSTM captures bidirectional dependencies in the sequence and
obtains a forward sequence h′ = {h′0, h′1, . . . , h′t} and reverse sequence h′′ = {h′′0 , h′′1 , . . . , h′′t }.
The final output sequence H = {H0, H1, . . . , Ht}, H ∈ Rbatch_size×seq_length×128, is obtained
by the following equation:

Ht = w′
th

′
t + w′′

t h′′t + bt (3)

where w′
t and w′′

t are weights, and bt is bias.

2.3. Multi-Head Attention Mechanism

The attention mechanism is a computational model that simulates human visual and
cognitive processes. It was initially introduced in machine translation tasks to address the
problem of long-distance dependencies. In recent years, the attention mechanism has been
extensively researched and applied in the field of deep learning, and it has been applied to
various domains, such as natural language processing, computer vision, audio and video
processing, etc. [28]. Whether in sequence data or spatial data, the attention mechanism
can effectively capture key information, quickly extract more effective information from a
large amount of information, and reduce the impact of invalid information on the model
training effect [29].

MHA is a combination of multiple self-attention structures [30], as shown in Figure 4.
Compared with the single-head attention mechanism, different heads can focus on different
patterns and extract more abundant information. In this paper, MHA is set with eight
attention heads, which divide the original features into eight subspaces. First, three groups
of linear transformations are performed on the input sequence in the feature dimension,
with each head processing 16-dimensional data, as shown in Equation (4), to obtain the
corresponding Query (Q), Key (K), and Value (V) vectors. Then, after the input features
are projected into low-dimensional subspaces, the attention distributions are calculated in
parallel within different subspaces, as shown in Equation (5). Subsequently, the attention
outputs of all heads are concatenated in the feature dimension and fused through a linear
transformation to generate the final multi-head attention output sequence, as shown in
Equation (6), resulting in the final output M ∈ Rbatch_size×seqlength×128.

Qi = HiW
Q
i , Ki = HiWK

i , Vi = HiWV
i (4)

Attentioni(Qi, Ki, Vi) = so f tmax

(
QiKT

i√
dk

)
Vi (5)

M = Concat(Attention1, Attention2, . . . , Attention8)WC (6)

i = {1, 2, . . . , 8} represents the i-th attention head; the input sequence of the i-th head is
Hi ∈ Rbatch_size×seq_length×d, where d = 16 denotes the dimension of the input vector for

each head. WQ
i , WK

i , WV
i ∈ Rd×dk

are three weight matrices, and dk = 16 indicates the size
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of the feature dimension for each head. WC ∈ Rh×d×dk
represents the weight matrix, and

h = 8 denotes the number of heads.

Multi-Head Attention

Linear

Concat

ConcatConcatConcat
ConcatConcatConcat

ConcatConcatConcat

Scaled Dot-Product AttentionScaled Dot-Product AttentionScaled Dot-Product Attention h

V K Q

MatMul

SoftMax

Mask(opt.)

Scale

MatMul

VKQ

Scaled Dot-Product Attention

Figure 4. Multi-head attention mechanism structure.

2.4. Output Module

To convert the temporal features from the multi-head attention mechanism into the
final temperature prediction values, an output module consisting of an adaptive average
pooling layer, a Dropout layer, and a fully connected layer is designed at the end of
the model.

First, an average pooling operation is used to compress the sequence data
M = {m0, m1, . . . , mt}, mt ∈ Rbatch_size×128 output by the attention mechanism in the tem-
poral dimension, averaging the features of different time steps to obtain a fixed-length
sequence representation:

Mavg =
1

t + 1

t

∑
i=0

mi (7)

To enhance the generalization ability of the model and prevent overfitting, a Dropout
operation is employed to randomly discard some neurons from the pooled feature vector:

Mdrop = Dropout(Mavg) (8)

Finally, a linear fully connected layer is used to map the processed features to the final
temperature prediction value:

y = W · Mdrop + b (9)

where W represents the weight matrix, and b represents the bias vector.

2.5. Module Integration

In this study, the TCN, BiLSTM, and MHA models are integrated in a sequential and
complementary manner to process the temperature time series of the motor rotor. During
model operation, 64 windowed data samples are input per batch (batch_size), with each
window having a data length (seq_length) of 64 and a feature dimension of 7; the time step
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of the sliding window is set to 1. The model starts with four cascaded TCN modules, each
using a convolution kernel of size 5, with dilation factors of 1, 2, 4, and 8, respectively. The
input data is fed through these four TCN modules sequentially, and the feature dimension
of the output data from the last TCN module is mapped to 128, resulting in a sequence
data output with the shape Rbatch_size×seq_length×128 . Subsequently, the local feature map
extracted by the TCN is input into the BiLSTM module. Each of the two LSTM layers in the
BiLSTM is configured with 64 neurons, which process the 64-time-step data from the TCN
in both forward and backward directions. This processing by BiLSTM yields a sequence
data output maintaining the shape Rbatch_size×seq_length×128. Finally, the data is input into
the MHA module. The MHA layer assigns weights to the correlations between the current
time step and other time steps, and its output is a weighted key feature sequence with the
shape Rbatch_size×seq_length×128—this sequence highlights information critical to temperature
prediction. Eventually, the average pooling layer compresses the time dimension to 1,
and the fully connected layer compresses the feature dimension to 1, generating 1 final
predicted value for each time window.

3. Parameter Optimization Algorithm H-GWO Based on Chaos Map and
Differential Evolution

In the task of motor rotor temperature prediction, model parameters directly affect
the model’s ability to extract time-series features and the final prediction accuracy, such
as sequence length, batch size, and number of convolution channels. Traditional methods
such as manual empirical parameter tuning or grid search have problems such as low
efficiency, difficulty in dimension expansion, and ease in trapping in local optima, which
make it difficult to meet the optimization needs of complex model structures in practical
engineering. To this end, this paper introduces the Grey Wolf Optimizer (GWO) to auto-
matically search for and optimize the key hyperparameters of the model. The GWO is a
swarm intelligence optimization algorithm that simulates the hunting behavior of grey
wolf populations. Compared with other optimization algorithms [31,32], it has a stronger
global search ability in dealing with problems with less gradient information, nonlinearity,
and non-convex optimization. It is particularly suitable for deep learning models with
complex parameter spaces and large computational overhead, such as TCN-BiLSTM-MHA.

This algorithm simulates the wolf pack in nature and sets up a four-level pyramid
hierarchical structure consisting of α, β, δ, and ω (current optimal solution, suboptimal
solution, third optimal solution, and the remaining individuals), including three hunting
behaviors: tracking, encircling, and attacking prey [33,34]. The application of the GWO
algorithm in many fields has proven to have great advantages, but it still has drawbacks,
such as being prone to falling into local optima and having slow convergence speed and
low precision. To address this, Yukun Zheng et al. [35] proposed an improved hybrid
GWO (H-GWO) algorithm, which introduces the mutation and crossover strategies of the
differential evolution (DE) algorithm and further combines the opposition-based learning
technology to overcome the problems of the standard GWO, such as being prone to falling
into local optima and insufficient population diversity. The block diagram of the H-GWO
algorithm is shown in Figure 5.
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Figure 5. Block diagram of H-GWO algorithm.

3.1. Population Initialization Based on Tent Map and Opposition-Based Learning

According to the set random value θ0,j, a chaotic sequence {θi,j} is recursively gener-
ated using the Tent chaotic mapping method:

θi,j =

θi−1,j/φ, i f 0 < θi−1,j < φ

(1 − θi−1,j)/(1 − φ), i f φ < θi−1,j < 1
(10)

where φ ∈ rand(0, 1); i = 1, 2, . . . , N represents the number of individuals in the population,
set to 20; and j = 1, 2, . . . , n represents the parameter to be optimized.

The obtained chaotic sequence is mapped to the search space to get the initial popula-
tion X′ = {X′

1, X′
2, . . . , X′

i , . . . , X′
N}, the individual X′

i = {x′i,1, x′i,2, . . . , x′i,j, . . . , x′i,n}, and

x′i,j = aj + θi,j · (bj − aj) (11)

Meanwhile, Opposition-Based Learning (OBL) is introduced to generate the op-
posite individual X̂i = {x̂i,1, x̂i,2, · · · , x̂i,j, · · · , x̂i,n} of X′

i and form the population
X̂ = {X̂1, X̂2, · · · , X̂i, · · · , X̂N}. For the opposite individual,

x̂′i,j = aj + bj − x′i,j (12)

where aj and bj represent the lower boundary and upper boundary of the j-th parameter,
respectively.
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Finally, the mean squared error generated by the model (with individuals substituted
in) when making predictions from the validation set is used as the fitness function. From
the union set of populations X′ and X̂, the top N individuals with the optimal fitness are
selected to form the optimized initial population X = {X1, X2, · · · , Xi, · · · , XN}.

3.2. Position Update

According to the fitness function of each individual in the population X, the α, β, δ,
and ω wolves are distinguished. All ω wolves update their positions to track the prey
based on the α, β, and δ wolves, as the following Equations (13) and (14) show:

Dα
i (t) =

∣∣Cα
i (t) · Xα(t)− Xi(t)

∣∣
Dβ

i (t) =
∣∣∣Cβ

i (t) · Xβ(t)− Xi(t)
∣∣∣

Dδ
i (t) =

∣∣Cδ
i (t) · Xδ(t)− Xi(t)

∣∣ (13)

Xi(t + 1) =
(Xα(t)− Eα

i (t) · Dα
i (t)) + (Xβ(t)− Eβ

i (t) · Dβ
i (t)) + (Xδ(t)− Eδ

i (t) · Dδ
i (t))

3
(14)

where t represents the current iteration; Xi(t) denotes the current position of the i-th
individual; Xα(t), Xβ(t), and Xδ(t) represent the current positions of the α, β, and δ wolves,

respectively; Dα
i (t), Dβ

i (t), and Dδ
i (t) represent the distances between the current α, β,

and δ wolves and the i-th individual; Eα
i (t), Eβ

i (t), Eδ
i (t), Cα

i (t), Cβ
i (t), and Cδ

i (t) are the
coefficient vectors by the i-th individual for α, β, and δ. Ei(t) = {ei,1(t), ei,2(t), . . . , ei,j(t)},
Ci(t) = {ci,1(t), ci,2(t), . . . , ci,j(t)}, and

ei,j(t) = 2d(t) · r′i,j(t)− d(t) (15)

ci,j = 2 · r′′i,j(t) (16)

During the iteration process, d(t) linearly decreases from 2 to 0, and r′i,j(t), r′′i,j(t) ∈
[0, 1] represent random vectors.

The ω wolves in the population X(t) are updated, and then a new population is
formed, together with the α, β, and δ wolves, as X(t+ 1) = {X1(t+ 1), X2(t+ 1), . . . , Xi(t+
1), . . . , XN(t + 1)}.

3.3. Population Optimization Based on Differential Evolution Algorithm

According to the updated population X(t + 1), the classic “DE/best/1” strategy
in DE is used to generate N mutant individuals Vi(t + 1) = {vi,1(t + 1), . . . , vi,j(t +
1), . . . , vi,n(t + 1)}. These N mutant individuals form a mutant population V(t + 1) =

{V1(t + 1), . . . , Vi(t + 1), . . . , VN(t + 1)}. For each mutant individual,

Vi(t + 1) = λXα(t + 1) + F(Xq1(t + 1)− Xq2(t + 1)) (17)

where Xq1(t+ 1) and Xq2(t+ 1) are randomly selected individuals from Xi(t+ 1); Xα(t+ 1)
represents the α wolf at this time. λ ∈ (0, 1] is a scaling factor, which is a fixed constant
used to increase the diversity of the search; F ∈ [0.4, 1] represents the differential weight
or scaling factor. A larger F value will lead to a population with higher diversity, while a
smaller value will result in faster convergence.

Next, a crossover operation is performed between Xi(t + 1) and Vi(t + 1) to gen-
erate experimental individuals Ui(t + 1) = {ui,1(t + 1), . . . , ui,j(t + 1), . . . , ui,n(t + 1)},
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forming a population U(t + 1) = {U1(t + 1), . . . , Ui(t + 1), . . . , UN(t + 1)}. For each
experimental individual,

ui,j(t + 1) =

vi,j(t + 1), rand() ≤ Cr or j = R

xi,j(t + 1), rand() > Cr and j ̸= R
(18)

where Cr represents the crossover rate within the range of [0, 1], set to 0.8 here; rand() ∈
[0, 1] refers to a uniformly distributed random number; and R ∈ {1, . . . , N} represents the
randomly selected index.

To prevent individuals from going out of bounds, the following boundary constraint
strategies are adopted for Ui(t + 1) and Xi(t + 1):ui,j(t + 1) = min(bj, max(ui,j(t + 1), aj))

xi,j(t + 1) = min(bj, max(xi,j(t + 1), aj))
(19)

Then, the greedy selection strategy is used to retain the N best individuals from
Ui(t + 1) and Xi(t + 1):Ui(t + 1), f (Ui(t + 1)) ≤ f (Xi(t + 1))

Xi(t + 1), f (Ui(t + 1)) > f (Xi(t + 1))
(20)

where f (·) represents the fitness function.
Finally, a judgment is made as to whether the maximum number of iterations has been

reached. If so, the optimal individual and its fitness are output; otherwise, the position up-
date and the population optimization process are repeated based on differential evolution.

3.4. Parameter Optimization

To evaluate the effectiveness of H-GWO in hyperparameter search, the convergence
curve of fitness values during the optimization process was plotted, as shown in Figure 6.
It can be observed that the fitness value decreases rapidly in the early stage, suggesting
that the algorithm is able to quickly locate promising solutions in the search space. As
the number of iterations increases, the curve gradually stabilizes, indicating that H-GWO
has essentially converged and identified an optimal set of hyperparameters at the global
level. This result demonstrates the strong global search ability and stability of the proposed
method in the optimization process.

H-GWO optimizes the convolution kernel size of the TCN layers, the number of
BiLSTM neurons, the dropout rate, the learning rate, and the batch size for the prediction
model. For the output data dimension of the TCN layer and the activation function of the
BiLSTM layer, manual comparison and selection are carried out. After optimization, the
optimal parameter combination of the TCN-BiLSTM-MHA model is shown in Table 1.

Table 1. Parameters of TCN-BiLSTM-MHA model optimized by H-GWO.

Parameter Name Search Domain Optimal Value of Objective
Function

Tcn_kernel_size [2–10] 5
tcn_out_channels [16, 32, 64, 128, 256] 32, 64, 128, 128

BILSTM hidden_size [16–256] 64
BiLSTM activation function [RELU, sigmoid, tanh] RELU

Dropout_rate [0–0.5] 0.3
learning_rate [0.001–0.01] 0.005

Batch_size [16–256] 64
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Figure 6. Convergence curve during hyperparameter optimization of TCN-BiLSTM-MHA model.

4. Experimental Verification and Discussion
4.1. Data Preprocessing
4.1.1. Dataset

The dataset used in this paper is an open-source dataset from the LEA Department at
Paderborn University [36], and it contains more than 180 h of PMSM data, with a sampling
frequency of 2 Hz. It includes 13 features, such as d/q-axis current and voltage components,
coolant temperature, stator and rotor temperatures, etc. The data collection process adopts
a “speed–torque” plane random walk method to accurately simulate real driving scenarios.

To prevent the model from being biased towards high-value features due to large
discrepancies in feature values, and considering that the TCN and BiLSTM are sensitive
to feature scales, this paper performs normalization processing on the data, as shown in
Equation (21).

x′ = a +
(x − min(x))× (b − a)

max(x)− min(x)
(21)

where a and b are the lower and upper bounds of the target range.

4.1.2. Correlation Analysis

To reduce the computational cost, improve the model prediction speed, and mitigate
the risk of overfitting, we conducted a feature importance analysis based on the original
data. First, the Pearson correlation coefficient was calculated to evaluate linear correlations;
second, mutual information (MI) was used to capture nonlinear dependencies.

Figure 7 presents the results of the input feature correlation analysis. The results show
that stator temperature-related variables (stator_tooth, stator_winding, stator_yoke) are
highly linearly correlated with rotor temperature (correlation coefficient > 0.75, MI > 3.4)
and serve as the primary predictors. For u_q, u_d, and torque, the Pearson correlation is
weak, but MI indicates the presence of nonlinear dependencies with the target variable,
so these features were still retained. In contrast, the MI values of coolant temperature and
profile_id are significantly lower (<1), providing essentially no valid information, so they
were excluded. Finally, we selected {stator_tooth, stator_winding, stator_yoke, u_q, u_d,
torque} as the main inputs for the model.
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Based on the complete operating cycle of the motor, the dataset is divided into a
training set, validation set, and test set at a ratio of 6:2:2, with the aim of avoiding splitting
continuous data under the same operating condition into different subsets.

(a) (b)

Figure 7. (a) Pearson feature correlation. (b) MI feature correlation.

4.2. Experimental Setup and Evaluation Metrics

All models in this experiment were implemented using the PyTorch 2.1 framework,
with the operating environment being Windows 10, an Intel Core i7-9750H CPU (2.6 GHz,
16 G memory) (Intel Corporation, Santa Clara, CA, USA), an NVIDIA GeForce GTX 2060
GPU (6 GB video memory) (Nvidia Corporation, Santa Clara, CA, USA), and CUDA 12.6.

In the experiment, a sliding window was constructed based on the continuous time
series, with a step size of 1 and a window length of 64. For the 7 input features, continuous
sampled data (including historical and current moments) were used to form the input
sequence, and the rotor temperature was derived through changes in input features in
the historical time period. The model continuously predicts the rotor temperature at a
single time step, and prediction results are not fed back as model inputs, thus avoiding
the accumulation of prediction errors. The Adam optimizer is used, and the learning rate
gradient is reduced to achieve gradual convergence, with the MSE as the loss function.

The experiment selects MAE, RMSE, and coefficient of determination (R2) as evalua-
tion metrics. The calculations of each evaluation metric are shown in Equations (22)–(24).

MAE =
1
n

n

∑
i=1

|ŷi − yi| (22)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (23)

R2 = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(ȳi − yi)

2 (24)
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4.3. Model Performance Experiment
4.3.1. Ablation Experiment

Based on the model structure proposed in this paper, three variant models are con-
structed, namely, TCN, TCN-BiLSTM, and TCN-BiLSTM-MHA, to systematically evaluate
the role of each module in the overall model performance. Based on repeated predictions
on the test set, Figure 8 shows the convergence process of the loss function derived from
the mean squared error during training, and Table 2 presents a comparison of performance
metrics among the models on the test set. It can be seen that the H-GWO-TCN-BiLSTM-
MHA model has the fastest convergence speed, the lowest loss value, and the optimal
prediction indicators. A comparison with TCN-BiLSTM-MHA shows that hyperparameter
optimization via H-GWO addresses the inefficiency and instability of manual parameter
tuning. Meanwhile, the convergence curves show that H-GWO-TCN-BiLSTM-MHA and
TCN-BiLSTM-MHA converge more quickly and stably than the other two models, and
the test results are better, indicating that the MHA module can significantly enhance the
model’s ability to extract important features and key trends and can effectively suppress
irrelevant interference information, playing an important role in the model’s prediction
results. The comparison between the TCN and TCN-BiLSTM proves that the combined
structure of the two can capture both local temporal features and long-distance dependent
information, thereby improving the accuracy and robustness of time-series modeling, and
has more advantages than a single model.
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0

10

20

80

 

TCN-BiLSTM
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TCN

 H-GWO-TCN-BiLSTM-MHA

T
ra

in
 l

o
ss
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Figure 8. Training loss.

Table 2. Model performance indicators.

Model MAE RMSE R2

TCN 0.6126 0.7759 0.9482
TCN-BiLSTM 0.4370 0.5706 0.9611

TCN-BiLSTM-MHA 0.4019 0.5314 0.9785
H-GWO-TCN-BiLSTM-MHA 0.3807 0.4839 0.9988

4.3.2. Comparison of Prediction Performance of Different Models

To verify the effectiveness of the proposed model, three comparative models (DFNN,
BiLSTM-Attention, and CNN-BiLSTM-Attention) are proposed based on existing research
on motor temperature prediction [18–20]. To ensure the validity of the comparative experi-
ments, all models were trained under the same experimental environment and training
set conditions.
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Based on repeated predictions on the test set, Table 3 presents the prediction metrics
of each model on the test set. It can be seen that the H-GWO-TCN-BiLSTM-MHA model
proposed in this paper exhibits high prediction accuracy, with MAE and RMSE being
0.3821 and 0.4857, respectively. Compared with the CNN-BiLSTM-Attention (an efficient
prediction model widely used in recent years), the MAE and RMSE are reduced by approx-
imately 11.8% and 19.3%, respectively, and it also achieves an R2 of 0.9985. Four randomly
selected operating conditions in the test set are shown in Figure 9. The statistics of the
absolute prediction errors of the four models on the entire test set are shown in Figure 10,
and Figure 11 displays the comparison between the predicted values and the true values
of the four models on part of the test set. The maximum absolute prediction error of the
H-GWO-TCN-BiLSTM-MHA model on the complete test set does not exceed 1.7 °C, with
an average absolute error of 0.3821 °C.

To further enhance the reliability of the model in safety-critical scenarios, this study
employs the MC-Dropout method during the prediction phase to model predictive uncer-
tainty. By keeping Dropout active at inference and performing multiple forward passes,
the predictive distribution is obtained. The results show that the true temperature has a
mean of 64.998 °C and a variance of 18.762, while the predicted temperature has a mean of
64.601 °C and a variance of 18.525. To evaluate the effectiveness of the prediction intervals,
the Prediction Interval Coverage Probability (PICP) is adopted as the calibration metric.
At the 95% confidence level, the model achieves a PICP of 0.975, which is higher than
the nominal coverage of 0.95. This indicates that the prediction intervals generated by
MC-Dropout are relatively conservative but can effectively cover the true rotor temperature,
thereby ensuring higher reliability in safety-critical thermal monitoring applications.

In addition, Figure 12 shows a residual analysis. The Q-Q plot indicates that the resid-
uals approximately follow a normal distribution. The blue circles represent the quantiles
of the residuals from our model, and the red line is the reference line for the theoretical
normal quantiles. The residual histogram shows that the residuals are centered near zero,
and their frequency rapidly decreases as the deviation from zero increases.

In general, H-GWO-TCN-BiLSTM-MHA shows advantages in multiple evaluation
metrics and has advantages in the task of predicting the rotor temperature of permanent
magnet synchronous motors.
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Figure 9. Comparison of predicted values and actual values under four operating conditions.
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Table 3. Comparison of evaluation metrics of different models.

Model MAE RMSE R2

DFNN 0.6783 0.8229 0.9257
BiLSTM-Attention 0.4711 0.6206 0.9492

CNN-BiLSTM-Attention 0.4330 0.6017 0.9694
H-GWO-TCN-BiLSTM-MHA 0.3821 0.4857 0.9985

5. Conclusions
To address the challenge of rotor temperature prediction in permanent magnet syn-

chronous motors (PMSMs), this paper proposes a hybrid deep learning model integrating
a TCN, BiLSTM, and MHA and introduces an improved Hybrid Grey Wolf Optimization
algorithm to optimize the model parameters. Experiments are conducted using a public
motor dataset. Data standardization and feature analysis are performed first, followed
by constructing the prediction model and evaluating its performance. The experimental
results show that the proposed H-GWO-TCN-BiLSTM-MHA model achieves excellent
prediction accuracy on this dataset, with an MAE of 0.3821 °C and an RMSE of 0.4857 °C.
Its overall performance is superior to that of existing comparative models, verifying its
effectiveness and robustness in motor rotor temperature modeling and prediction tasks.
In future work, the model can be further optimized to be adapted to edge computing or
embedded deployment scenarios, and integrated into intelligent motor monitoring systems
to achieve efficient and real-time prediction of rotor temperature. In addition, it can be
combined with more operating condition data and online learning mechanisms to enhance
the model’s generalization ability and stability under complex operating conditions.
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