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Abstract: With the rapid development of electric vehicles (EVs) in Chinese cities, accurately fore-
casting the number of EVs used by urban residents in the next five years and more long term is
beneficial for the government to adjust industrial policies of EVs, guide the rational planning of
urban charging facilities and supporting distribution network, and achieve the rational and orderly
development of the EV industry. The paper considers the advantages of using the grey GM(1,1)
prediction model to predict the short-term ownership of EVs by urban residents. Then, by forecasting
the number of EV users in a certain city in the future and predicting the number of private vehicles in
the future, the boundary conditions for long-term year ownership of EVs by residents are determined.
Combined with historical data and short-term forecast data generated by the grey prediction model,
the model parameters that include the innovation coefficient and imitation coefficient of the Bass
model are trained using a genetic algorithm. Finally, the Bass model is used for medium- to long-term
ownership forecasting from 2023 to 2040. The prediction error for the target year is provided. The
simulation results indicate that the ownership of resident EVs in this city will experience rapid growth
in the next five years.

Keywords: ownership forecasting; EV; grey GM(1,1) prediction model; Bass model; prediction error

1. Introduction

With the challenges of global warming, serious environmental pollution, and depletion
of traditional fossil energy, countries are actively promoting the development of renewable
energy. As an environmentally friendly means of transportation, EVs have significant
advantages such as low cost and zero pollution and are being widely promoted and
adopted [1–3]. By the end of 2023, the number of new energy vehicles in China reached
20.41 million, of which pure EVs reached 15.52 million, accounting for the main part [4].
In addition, the rapid development of EVs not only helps balance the peak and valley
load of the power grid but also promotes the economic development of the upstream
and downstream of the EV industry chain and increases the employment rate, which
has a positive role in promoting [5]. Therefore, a convenient and accurate forecast of EV
ownership is of great practical significance for the orderly development of EVs, the rational
layout of charging facilities, and the planning of urban distribution network.

The forecast of EV ownership mainly adopts the methods based on the time series
model, regression model, and diffusion model [6]. Li et al. [7] established a prediction
model of EV ownership based on comprehensive prediction, applied three prediction
models of grey prediction, back propagation (BP) neural network, and long-term memory
(LSTM) network to predict EV ownership, obtained the prediction results of the single
prediction model, and used the entropy weight method to assign weights to the prediction
results of the single prediction model. Finally, it is pointed out that the comprehensive
prediction model can provide higher prediction accuracy than the single prediction model,
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but the model is sensitive to data distribution, needs to determine the weight range,
requires high data quality, has high computational complexity, and lacks theoretical support.
Li et al. [8] used the long short-term memory networks (LSTM) model and the system
dynamics (SD) model, respectively, to predict EV ownerships. Based on the errors of these
two models, the LSTM-SD combined prediction model for EV ownership is proposed,
which improves the accuracy of prediction results. However, although the (LSTM-SD)
model improves some prediction accuracy, it is not conducive to popularization due to its
complex construction, high data requirements, high computing resource requirements, and
difficult parameter optimization. Messianic et al. [9–11] predicted the number of EVs by
analyzing the influence of imitation coefficient, innovation coefficient, and market potential
on prediction accuracy in the Bass model. Although the Bass model provides a simple and
intuitive method to analyze and predict market performance and can accurately predict the
growth trend of product sales, the model does not consider the complexity and individual
differences of consumer behavior, thus affecting the accuracy of the model’s prediction.
Guo et al. [12–14] proposed an improved Bass model to predict EV ownership. Compared
with the traditional Bass model, the improved Bass model adjusted the relevant parameters
in the model, making the predicted EV ownership more consistent with the actual situation.
Wang et al. [15–17] analyzed that, due to the short popularization time of EVs, there are less
data, while GM(1,1) grey prediction model is suitable for a small amount of data and has
good prediction accuracy in the short term. Therefore, the GM(1,1) grey prediction model is
adopted to make short-term prediction of EV ownership. Wang et al. [18] elastic coefficient
method and thousand-people ownership method were used to establish a prediction model
and forecast EV ownership in Shanxi Province, China. Due to the short time for the large-
scale application of EVs, the predicted results of EV ownership differ greatly from the
actual results. Therefore, the error of EV ownership predicted by the elastic coefficient
method and thousand-people ownership method is large.

In the research on the forecast of EV ownership, many scholars believe that the grey
prediction model has good forecast accuracy in the short term and the Bass model has
the advantage of comprehensively considering internal and external influencing factors.
Under the condition of reasonable model parameters, it has good forecast accuracy for
medium- and long-term EV ownership. Therefore, this paper considers the advantages of
the grey GM(1,1) prediction model to forecast EV ownership in the short term, combines
the historical EV ownership data with the grey model short-term forecast data, and uses
Bass model parameters to accurately forecast EV ownership in cities in the recent five years
and long-term years.

2. EV Ownership Forecasting Framework

Aiming at the three main problems of insufficient historical data on EV ownership,
inaccurate forecasting trend and growth rate of EV ownership, and low forecasting accuracy
of target year and long-term year ownership, this paper first makes use of the advantages
of the grey GM(1,1) prediction model, such as the small sample required, the model’s
data, and the high short-term forecast accuracy, to forecast the EV ownership in large
communities in the past three years and uses the forecast data to expand the historical
data of EV ownership. Then, by forecasting the growth of the population between 20
and 60 years old in the city, forecasting the number of fuel vehicles and the proportion
of new energy vehicles that fuel vehicles withdraw from the market, we determine the
long-term year and forecast the number of EVs in the long-term year more accurately.
Finally, combining the historical data and the data forecasted by the grey prediction model,
the genetic algorithm is used to train the innovation coefficient and imitation coefficient
of the Bass model first, and the Bass model is used to forecast the EV ownership from the
target year to the prospective year. The forecasting framework of EV ownership is shown
in Figure 1.
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3. Short-Term EV Ownership Forecast Based on Grey GM(1,1) Model

The research object of grey system theory is the small data uncertainty system with
incomplete data or poor information. The theory mainly extracts valuable information
by mining part of the known information to correctly describe and effectively monitor
the operation behavior and evolution law of the system. The grey prediction model is a
method used to describe the development trend of things and make short-term forecasts,
and its forecast accuracy is relatively high. However, when making a long-term forecast,
the model does not take into account factors such as internal development law and external
changes of things, so the data of a long-term forecast are susceptible to other factors, which
easily lead to distortion [19].

Since there is little historical data on urban EV ownership, the functional relationship
between the data is unknown, and urban EV ownership is only forecasted in the short
term, the grey prediction model is selected for forecast. In the short term, the forecast
difference between the GM(1,1) model and GM(1,N) model in the grey prediction model is
very small [20], so this paper uses the grey GM(1,1) prediction model to make a short-term
forecast of EV ownership, and the specific thinking framework is shown in Figure 2.
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First of all, the historical data of urban EVs are tested by level ratio and calculation
parameter λk. If λk is in the interval (e−

2
n+1 , e

2
n+2 ), it means that the GM(1,1) model can be

used; otherwise, it is necessary to add the passable grade-ratio test constant c to the annual
holding data, and then the holding forecast result needs to subtract this constant [21].

λk =
x(0)(k − 1)

x(0)(k)
k = 2, 3, · · ·, n (1)

where x(0)(k) is the historical ownership data of EVs in year k and n is the historical number
of ownership data in years.

Secondly, the grey GM(1,1) prediction model is established by constructing a cumula-
tive generation sequence.

The cumulatively generated sequence is:

x(1)(k) =
n

∑
k=1

x(0)(k) k = 2, 3, · · ·, n (2)

The grey GM(1,1) predict model is:

x(0)(k) + ax(1)(k) = b (3)

where a is the development coefficient, reflecting the speed of data development; b is the gray
action, reflecting the degree of influence of influencing factors on the development trend.

To solve the GM(1,1) model, it is necessary to construct a first-order differential
equation that accumulates the generated sequence and year and solve it by the least square
method. The differential equation is:

dx(1)

dt
+ ax(1) = b (4)

The time response sequence is obtained as follows:

x̂(1)(k) =

(
x(0)(1)− b̂

â

)
e−â(k−1) +

b̂
â

k = 2, 3, · · ·, n (5)

where â is the development coefficient estimated by the least square method; b̂ is the grey
action estimated by the least square method.

The forecasted value of EV ownership is:

x̂(0)(k) = x̂(1)(k)− x̂(1)(k − 1) k = 2, 3, · · ·, n (6)

where x̂(0)(k) is the forecasted value of EV ownership by the GM(1,1) model.
Finally, the forecast accuracy of the GM(1,1) model is tested by residual test and

relative error test.
Residual test:

ε(0)(k) = x(0)(k)− x̂(0)(k) k = 2, 3, · · ·, n (7)

Relative error test:

e(k) = ε(0)(k)/x(0)(k) k = 2, 3, · · ·, n (8)

The relative error test value is compared to Table 1 and the accuracy level must meet
the second level or above to pass the test.
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Table 1. Relative error test grade reference.

Accuracy Level Level 1 Level 2 Level 3 Level 4

Mean relative error 0.01 0.05 0.10 0.20

4. Long-Term EV Ownership Forecast

Long-term EV ownership is determined by forecasting the proportion of long-term EV
users and the proportion of long-term EV ownership in private vehicle ownership.

From the perspective of EV users, the 30–50-year-old group is the main group of new
energy vehicle consumption, accounting for more than 60%. For people between 20 and
60 years old, new energy vehicles account for 99%, and the number of people between
20 and 60 years old can be set as the upper limit of EV ownership in the future year.
According to the statistical yearbook data of the selected target city statistics bureau, the
historical population data of the city between 20 and 60 years old and the proportion of the
population are found and the long-term forecast is made.

From the perspective of the forecast of the proportion of EV ownership in private
vehicle ownership in the future year, the proportion of EV ownership in private vehicle
ownership in the future year is taken as the upper limit of EV ownership. According to the
“Research on the Withdrawal Schedule of China’s Traditional Fuel Vehicles” released by the
Energy and Transportation Innovation Center, China’s fuel vehicles will withdraw from the
market in 2040 at the earliest. It is generally believed that China will not be able to replace
fuel vehicles with new energy vehicles until 2050, as shown in Table 2. Internationally, the
current proposed time frame for the ban is between 2025 and 2040. Private fuel vehicles
in Tier I and II cities will gradually withdraw from the market in 2030, and Tier III and IV
cities are expected to withdraw from the market in 2035 and 2040, respectively, and EVs are
expected to account for 75% of private vehicles in 2040 [22].

Table 2. Traditional fuel vehicles exit regional hierarchy and representative regions.

Hierarchy The Main Basis and Representative Region

I • large cities (such as Beijing, Shanghai, etc.);
• Functional demonstration areas (such as Hainan, Xiongan, etc.).

II

• First cities of traditional automobile purchase restriction (such as Tianjin,
Hangzhou, etc.);

• Provincial capitals of key regions (such as Shijiazhuang, Taiyuan,
Zhengzhou, Jinan, Xi’an, etc.);

• Leading cities of new-energy vehicle promotion, core cities of industrial
clusters, and coastal cities with economic development (such as Chongqing,
Qingdao, Chengdu, Changsha, etc.).

III

• Key areas of the Blue Sky Defense War, such as North China (Hebei, Henan,
and Shandong), Yangtze River Delta (Jiangsu, Zhejiang, and Anhui), and
Fen-Wei Plain region (Shanxi);

• New energy automobile industry cluster regions, such as the pan-Pearl
River Delta (Guangzhou, Fujian), Central (Hunan, Hubei, Jiangxi);

• Other new energy vehicle promotion or low-carbon development
demonstration cities such as Guiyang.

5. Medium- and Long-Term Vehicle Ownership Forecast of EVs Based on the Bass Model

Bass model, as a diffusion model, is a model that dynamically evolves the market size
of new products from a macro perspective. It regards the diffusion process of new products
as the process of potential groups gradually transforming into consumer groups and has the
advantage of comprehensively considering internal and external factors [23,24]. When the
EV market is in its infancy, EVs can be considered as a new durable product and introduced
into the automotive market through penetration strategies. The Bass model can feedback
well on the development and diffusion process of new products, and the characteristics of
the model are in line with the current development status of EVs [25]. However, the model
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has high requirements on the original historical data. If the original data are insufficient,
the fitting effect of the model will be poor, which will affect the subsequent forecast results.

The Bass model in the discrete-time domain can be expressed as [26]:

f (t) = Mp[1 − F(t)
M

] + qF(t)[1 − F(t)
M

] (9)

where F(t) is the total amount of new products accumulated up to time t; f (t) refers
to the number of new products added during the t period; M is the maximum market
potential, indicating the number of new durable products that grow to saturation; p is the
innovation coefficient, indicating the degree of influence of external media publicity on the
diffusion of emerging durable products; and q is the imitation coefficient, indicating the
degree of influence of internal word-of-mouth communication on the spread of emerging
durable products.

In this paper, the medium- and long-term forecast of urban EV ownership is made
based on the Bass model, in which the maximum value M of the model is determined
according to the number of EV users in the future year or the proportion of EVs in private
vehicles in the future year. Combining the historical data of urban EV ownership and the
data forecasted by the grey prediction model, the innovation coefficient p and imitation
coefficient q are determined by the historical data of genetic algorithm training. The
parameter flow of the genetic algorithm training model is shown in Figure 3. Finally, the
number of EVs in the city from the base year to the prospect year is forecasted year by year.
The specific idea framework is shown in Figure 4.
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6. Example Analysis

Taking Tianjin City of China as an example, the medium- and long-term predicted
model of urban EV ownership constructed in this paper is analyzed. The population of the
city in 2022 was 13.63 million and the number of private vehicles was 2.242 million [27].
Therefore, it is calculated that the number of private vehicles in the city is 165. At the same
time, the city’s EV ownership in 2022 was 375,000, accounting for 16.72%.

6.1. Grey Prediction Model Forecast of EV Ownership

With 2022 as the base year and the next fifth year as the target year (2027), the grey
prediction model is combined to forecast the ownership of EVs in the next two years. The
historical data on EV ownership are shown in Table 3.

Table 3. Historical year EV ownership data.

Year 2018 2019 2020 2021 2022

Ownership/vehicle 117,600 147,000 189,000 278,000 374,700

Combined with the grey prediction model, EV ownership in Tianjin from 2018 to 2024
is predicted and the prediction results are shown in Figure 5. In the short term, the grey
prediction model has a good forecasting effect of EV ownership.
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As can be seen from Tables 1 and 4, the average relative error is 0.029, and the average
relative error test method is used to test it. When the accuracy level of the relative error
reaches the first or second level, the forecast can be made, and the origin error is 0 less than
0.02, it can be concluded that the research forecast results meet the accuracy requirements.
From the forecast results, the city’s EVs will continue to develop rapidly in the next
two years, reaching 507,900 and 699,300 in 2023 and 2024, respectively.

Table 4. Comparison between actual data and forecasted data of the grey prediction model.

Year The Number of
EVs/Vehicle Forecast Data Residual Error Relative Error/%

2018 117,600 117,600 0 0
2019 147,000 141,400 0.56 3.83
2020 189,000 194,600 −0.56 −2.97
2021 278,000 267,900 1.00 3.61
2022 374,700 368,900 0.58 1.54

6.2. The Largest Market Potential for EVs

The ownership and growth rate of private vehicles in Tianjin are shown in Table 5.
Based on the 6-year historical data, the fact that the population between 20 and 60 years
old will not grow rapidly after 2025, and the “carbon peaking and carbon neutrality” target
of carbon emission reaching its peak in 2030, Tianjin, as a new first-tier city, will reach its
peak carbon emission faster than other cities in China and set 2025 as the turning point for
the growth rate of private vehicles. The growth rate curve of private vehicle ownership in
this city is fitted by using the fitting tool in MATLAB, as shown in Figure 6.

Table 5. Private vehicle ownership and growth rate in target cities.

Year 2017 2018 2019 2020 2021 2022

Forecast vehicle
ownership/vehicle 1,703,600 1,738,800 1,768,900 1,885,800 2,061,600 2,242,300

Private vehicle growth rate/% 2.90 2.07 2.07 6.61 9.32 8.77

Based on the data in Table 5, the function of the fitting curve of the growth rate of
private vehicle ownership in the city can be expressed as:

fgrowth(t) = ae−( t−b
c )

2
(10)

where a, b, and c are the fitting curve parameters, a = 0.114, b = 2025, and c = 6.12.
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As can be seen from Figure 6, if the target city’s private vehicle ownership in 2022
is used as the base value to forecast private vehicle ownership, urban private vehicle
ownership will grow rapidly in the next five years, and the growth rate of private vehicle
ownership will approach 0 in 2040 and private vehicle ownership will reach saturation.
Therefore, 2040 is set as the vision year for the forecast of urban private vehicle ownership.
The growth rate of private vehicle ownership is calculated according to Equation (10), and
the forecasted results of private vehicle ownership are shown in Table 6.

Table 6. Forecast of private vehicle ownership in Tianjin.

Year Forecast Vehicle Ownership

2023 2,472,000
2024 2,746,400
2025 3,055,000
2030 4,642,900
2035 5,204,400
2040 5,251,600

According to this paper’s method for determining the maximum market potential of
EVs in the future year and the forecast data in Table 6, since Tianjin is a Tier II city, it is
expected that EVs will account for 75% of private vehicles in 2040, that is, 3,938,700 vehicles.

According to the growth trend of the permanent resident population from 2001 to 2021
in the Statistical yearbook of the Tianjin Bureau of Statistics, it is found that it reached the
saturation value around 2012 and then fluctuated around 14 million, as shown in Figure 7.
Therefore, according to the analysis, the permanent resident population in the prospective
year is about 14 million.
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Based on the statistical yearbook of Tianjin City, the basic data of the population aged
20–60 from 2017 to 2021 are obtained in Table 7, and the growth rate of the population aged
20–60 from 2022 to 2030 is fitted with the Gaussian function in the Matlab toolkit, as shown
in Figure 8.

Table 7. Basic data of the population aged 20-60, 2017-2021.

Year 2017 2018 2019 2020 2021

Population 5,526,400 5,626,200 5,666,900 5,729,200 5,778,900
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Based on the data in Table 7, the function of the fitting curve of the city’s population
growth rate between 20 and 60 years old is consistent with Formula (11), where a = 2.5776,
b = 2014, and c = 6.1365.

Combined with the growth rate fitting curve, the population growth rate of cities tends
to be zero in 2030, so it can be considered that the population of this age group will not
change significantly from 2030 to 2040. Based on the population growth forecast from 2022
to 2030, the population aged 20 to 60 in 2040 will be about 5,846,500, as shown in Figure 9.
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Considering that 75% of the population aged 20–60 or private vehicle ownership in
the future year is considered as the upper boundary condition of EV ownership, this paper
chooses a smaller number group as the maximum capacity of EVs.

6.3. Bass Model Forecasts EV Ownership

By compiling a genetic algorithm to train p and q influence coefficients in the Bass
model, given the relatively limited historical data of EV ownership and the accuracy of the
grey prediction model in the short-term forecast, this paper combines historical data of EV
ownership with short-term forecast data of the grey prediction model to train innovation
coefficient p and imitation coefficient q. Among them, the population value is 100, the
number of iterations is 1000, the crossover probability is 0.7, the mutation probability is
0.001, and the parameter values in the model are obtained, as shown in Table 8.
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Table 8. Bass model parameter data.

Model Parameter Maximum Market
Potential/Vehicle

Innovation
Coefficient p

Coefficient of
Imitation q

Numerical value 3,938,700 0.0006 0.35

After the influence coefficient of the Bass model is obtained by the genetic algorithm,
the coefficient is brought into the model to calculate EV ownership. The fitting curve of the
Bass model is shown in Figure 10, and the comparison between the predicted data and the
actual data per thousand people is shown in Table 9.
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Table 9. Comparison between actual data and forecasted data of the Bass model.

Year EV Ownership/
Thousand

Forecast
Data/Thousand Residual Error Relative Error/%

2018 9 9 0 0
2019 11 12 −1.28 −8.72
2020 14 16 −2.68 −14.16
2021 20 21 −1.14 −4.09
2022 27 28 −1.07 −2.86
2023 37 37 −0.13 −0.26
2024 51 48 3.28 4.69

As can be seen from Figure 10 and Table 9, the Bass model has a good performance in
forecasting the ownership of EVs. Compared with the real data, it is found that the residual
difference between the forecasted data and the real data is small each year. It leads to a
large relative error. The Bass model was used to forecast the EV ownership in Tianjin from
2023 to 2040 and the iterative process results of EV ownership per 1000 people in the city
were obtained, as shown in Table 10.

Table 10. Iterative process of urban EV per 1000 people ownership.

Year Private Vehicle Ownership/Thousand EV Ownership/Thousand

2023 179 37
2024 199 48
2025 222 62
2027 272 100
2035 377 261
2040 381 282
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7. Conclusions

This paper forecasts the long-term ownership of EVs by urban residents. Firstly, a
grey prediction model is used to forecast the number of EVs owned by residents in the
city for the next two years. Secondly, by forecasting the number of residents using EVs in
the future, the number of private vehicles in the future, and the proportion of EVs in the
private vehicles in the future, the number of EVs in the future can be determined. Then,
using the historical data of urban residents using EVs and the data predicted by the grey
prediction model, the innovation coefficient p and imitation coefficient q in the Bass model
are determined through genetic algorithm training. They use the Bass model to forecast the
long-term ownership of EVs by urban residents.

This paper has two main contributions. Firstly, it proposes a method for predicting the
boundary of EV ownership among urban residents. Secondly, in response to the insufficient
historical data on the number of EVs, a proposed method of supplementing historical data
is provided.

The forecasting of the number of EVs owned by urban residents provides a scientific
basis for the rational layout of charging facilities and the planning and construction of
urban distribution networks. In practical development, the dynamic changes in the number
of EVs are related to policies, urban planning, road construction, and economic growth.
Consideration of these factors is a further research goal.
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