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Abstract: Digital Twin (DT) is widely regarded as a highly promising technology with the potential to
revolutionize various industries, making it a key trend in the Industry 4.0 era. In a cost-effective and
risk-free setting, digital twins facilitate the interaction and merging of the physical and informational
realms. The application of digital twins spans across different sectors, including aerospace, healthcare,
smart manufacturing, and smart cities. As electric vehicles have experienced rapid growth, there is a
growing demand for the development of innovative technologies. One potential area for digital twins
application is within the automotive sector. The powertrain system of electric vehicles (EVs) consists
of three parts, power source, power electronic system, and electric motor, which are considered as
the core components of electric vehicles. The focus of this paper is to conduct a methodical review
regarding the use of digital twins in the powertrain of electric vehicles (EVs). While reviewing the
development of digital twin technology, its main application scenarios and its use in electric vehicle
powertrains are analysed. Finally, the digital twins currently encounter several challenges that need to
be addressed, and so the future development of their application to electric vehicles are summarized.
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1. Introduction

In the past few years, the growing economy and population mobility have led to an
increased demand for automobiles. However, the automotive industry is encountering
significant obstacles in its development. This is attributed to the rising environmental
pollution and the anticipated depletion of fossil fuels, posing considerable challenges,
there is an urgent need for new strategies in the development of automobiles in order to
obtain more efficient, cleaner and safer vehicles. Electric vehicles, as well as clean energy
vehicles, have gained widespread attention and development in recent years due to their
environmental and efficiency benefits. The powertrain of an electric vehicle is seen as the
fundamental element of the vehicle, requiring efficiency, reliability, and cost-effectiveness
to ensure satisfactory operational performance [1]. Digital twins may provide a new way
of thinking to address these issues. Digital twins were first created in aerospace and then
gradually applied to other fields [2]. Advancements in sensor technology and the Internet
of Things (IoT) have propelled the expansion of smart manufacturing. The integration
of sensor technology and the Internet of Things has resulted in vehicles becoming the
third most connected device, following mobile phones and computers. This has led to the
involvement of substantial amounts of data throughout the entire process of designing,
manufacturing, maintaining, and utilizing automobiles for transportation [3], in turn, this
data is the basis for vehicle design, manufacturing, maintenance and applications. Big
data have enormous economic potential if it is fully utilized in the right way [4]. Using
big data analytics enables the data generated to be accessed via intelligent analytical
tools, facilitating the efficient and informed decision-making process. This allows for the
quick and accurate selection of the most suitable course of action [5]. To maximize the
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utilization of data, utilizing an appropriate data model is crucial [6], like virtual high-
fidelity models that are digitally generated to replicate the actions of physical entities. This
enables the simulation of real-world scenarios with accuracy and precision [7]. By utilizing
these technologies, real-time monitoring of real-life scenarios can be synchronized with
virtual environments. This allows for swift analysis and calculations to be conducted,
enabling prompt decision-making and response, which provides for the emergence of
digital twins [8]. The automotive sector is demonstrating significant potential in the
exploration and utilization of digital twin technology. Currently, digital twin technology
is increasingly becoming essential in various areas of the automotive industry, and its
application scope will be further expanded in the future. The advancement of automotive
powertrain is notably prominent as a key area of application for digital twins. In Section 2
of this paper, the development of Industry 4.0 is outlined, while Section 3 delves into
the various applications of digital twin technology across different fields. In particular,
Section 4 focuses on how digital twin technology is applied in the context of electric
vehicles. The powertrain configuration of electric vehicles is presented, with a focus
on the implementation of digital twin technology across diverse electric vehicle types.
Additionally, an overview of potential challenges and future developments in digital twin
technology is provided.

2. Definition and Evolution of Industry 4.0

The concept of Industry 4.0, also known as the fourth industrial revolution, embodies
a significant transformation [9]. It is the application of information-physical systems to all
aspects of industrial production and manufacturing, and is a comprehensive enhancement
of industrial production and manufacturing technology. The amalgamation of different
technologies, including the Internet of Things (IoT), Artificial Intelligence (AI), Cloud
Computing, big data analytics, and digital twins is essential in Industry 4.0. One impor-
tant component in this combination is the digital twin, a virtual model that simulates the
functionality of tangible systems in an actual environment. By utilizing data from sensors
and information systems in real time, the model effectively depicts the present condition
of the system and predicts as well as improves its performance. Coined in 2011 as part of
the German government’s High Tech Strategy initiative, the term “Industry 4.0” describes
the continuous evolution in manufacturing, marked by the fusion of digital, physical, and
biological systems [10]. The evolution of Industry 4.0 has been influenced by several factors.
The swift advancement and development of manufacturing technologies have played a
crucial role in driving the progression of Industry 4.0. Furthermore, the swift expansion
of interconnected devices and sensors, along with enhanced computing capabilities, has
significantly eased the real-time collection and analysis of data. This, in turn, is crucial for
predictive maintenance, optimizing production processes, and improving manufacturing
decision-making [11]. Industry 1.0 to 4.0 represent four stages of industrial development.
In the 1.0 era, mechanical production methods, represented by the steam engine, replaced
manual work. In the 2.0 era electrified production methods gradually dominated, further
increasing productivity. From the 1970s through the early 21st century, a period referred to
as the era of Industry 3.0, witnessed the fast-paced advancement of electronic and computer
technologies, the production method is gradually moving towards information technol-
ogy. Automated production and digital management have greatly improved production
efficiency and product quality. In the present day, the most recent iteration of informa-
tion technology encompasses a wide range of advancements, including the Internet of
Things, artificial intelligence, cloud computing, big data analysis, and digital twins, as
the representative of the intelligent mode of production, which is a disruptive shift in the
manufacturing landscape. It emphasizes the development of digitalization, intelligence,
automation and informatization, and promotes the rapid development and improvement
in intelligent manufacturing systems, leading a new round of industrial revolution [12].
Table 1 shows the evolution from Industry 1.0 to 4.0.
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Table 1. History of industrial development.

Industry X Year Evolution

Industry 1.0 1784 automated weaving looms powered by steam technology
Industry 2.0 1870 large-scale manufacturing, assembly line production and the utilization of electrical energy
Industry 3.0 1969 the automation of tasks using computers and electronic systems
Industry 4.0 present a system that integrates cyber-physical components with an Internet of Things (IoT) framework

3. The Evolution of Digital Twins and Application Scenarios
3.1. The Development of Digital Twins

As early as the 2000s, the formal introduction of the concept of the digital twin occurred;
then, in 2003, Professor Grieves presented the idea of the digital twin during a course on
Total Product Lifecycle Management at the University of Michigan in the USA [13]. He
suggested tangible items, intangible items, and their interrelation. Nevertheless, the theory
did not attract much attention and there was scarce research related to it, mainly because
of the constraints imposed by time and technology. In 2011, the initial publication on
digital twins discussed their ability to predict the remaining operational lifespan of an
aircraft [13]. In the beginning of 2012, the first paper that defined the digital twin model
was published by the National Aeronautics and Space Administration (NASA). The digital
twin was defined as a comprehensive simulation of a system that includes various physical
fields, scales, and probabilities. Employing the most accurate physical models, sensors,
historical data, and other variables, this simulation replicates the physical behaviour,
current state, and developmental patterns of its corresponding physical counterpart in
real time [7]. Chen [14] defines a digital twin as a computerized model that responds to
the functional characteristics of a physical system. Zheng et al. [15] consider digital twins
as virtual information sets describing actual physical assets. According to Mandi [16], a
digital twin is a virtual model of a physical system that consistently refreshes data on the
performance, maintenance, and overall condition of the physical system throughout its
entire lifespan. As stated by Rios et al. [17], the digital twin consists of a comprehensive
“product”, combing various aspects of the physical system enabling its application to
domains beyond just aircraft. In 2017, Michael Grieves [18] provided a new definition of
the digital twin, describing it as “a comprehensive set of virtual information constructs
that depict a potential or existing physical manufactured product.” Digital twins are highly
praised by Gartner, which includes them in the list of promising technology trends for
2019 [19]. In 2021, a modelling approach called ECoM4DT for digital twins was introduced
by Zhang et al. [20]; in addition to embracing the principles of the conventional M&S
(Modelling and Simulation) method, it also emphasizes the distinguishing features of
digital twins in comparison to traditional models. This systematic approach guides the
modelling process of digital twins. In 2022, the virtual model composition was expanded
by Tao et al. [21]. Following this, in 2023, an updated methodology for multidimensional
digital twin models was suggested by Zhang et al. [22]. Table 2 shows the evolution of
digital twins. Due to technological limitations in the early stages, the history of digital
twins is relatively short [19]. The research and application of digital twins have expanded
significantly in recent years. This indicates that digital twins are currently experiencing a
period of rapid growth and development.

Table 2. History of digital twin technology.

Ref. Year Evolution 1

[13] 2003 Formation stage, Professor Grieves first proposed the concept of digital twins
[23] 2004–2010 The rapid development of communication technology promotes the formation of digital twins
[13] 2011 The first paper on digital twins was published
[7] 2012 NASA published a paper defining digital twins model
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Table 2. Cont.

Ref. Year Evolution 1

[13] 2014 Whitepaper of digital twins was published
[19] 2016 Siemens applied digital twin technology in the context of Industry 4.0
[24] 2017 Digital twins was proposed by Beihang University
[25] 2019 Professor Tao Fei of Beihang University proposed the five-dimensional digital twin model
[26] 2021 Ehab analyses the potential of city digital twin
[27] 2023 Tran discussed the role of BIM in the integration of digital twins in building construction

1 Data were obtained from Scopus and Web of Science.

3.2. Digital Twins and Digital Shadows

The idea of a digital shadow is rooted in the concept of a digital twin, which is
essentially a virtual representation that accurately reflects the physical system. The digital
shadow is essential for monitoring, analysing, and improving the performance of the
physical system. It serves a critical role in ensuring the efficient operation and maintenance
of the system [28]. The definitions of digital twins and digital shadows are closely connected,
and they have overlapping roles [29]. The proposal by AboElHassan et al. [30] suggests a
role-based separation of digital shadow and digital twin. According to their proposal, a
digital shadow is a digital replica of a physical system that matches the real-time state of
the physical system. On the other hand, a digital twin is described as a real-time decision
support sandbox. The digital twin relies on the digital shadow as its central component, as
it offers a live depiction of the physical system to the digital twin. In real-time, the digital
twin uses a digital copy of the digital shadow to optimize the performance of the physical
system. This process enhances the efficiency and effectiveness of the system by leveraging
the digital replica [31]. A digital shadow is a representation in the digital realm of an
object, with information flowing unidirectionally between the physical and digital entities.
This indicates that the digital shadow precisely mirrors the up-to-date state or data of the
physical object in real-time, but any modifications made to the digital representation do not
impact the physical object. The digital shadow essentially acts as a reflection or snapshot of
the physical object’s status, enabling monitoring, analysis, and decision-making based on
the information it provides [32].

By incorporating information from physical models, sensor updates, and operational
history, the digital twin concept brings together a range of disciplines, physical parameters,
sizes, and likelihoods in a simulation process. This process creates a complete mapping in
virtual space to accurately mirror the full life cycle of corresponding physical equipment.
The digital twin transcends reality by acting as a digital mapping system for crucial and
interdependent equipment systems. Figure 1 shows how digital shadows differ from
digital twins.
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3.3. The Application of Digital Twins in Smart Cities

Leveraging digital twins is advantageous for both the design of new intelligent urban
centre and the continuous improvement in established smart city infrastructure [33]. Smart
city refers to the improvement in urban governance and service quality through information
technology and intelligent equipment to achieve sustainable urban development. Digital
twin technology can provide important technical support for smart city construction.
Digital twin technology enables the creation of a comprehensive digital model of a city,
facilitating the integration of digitalization and intelligence throughout all stages of urban
planning, construction, management, and operation [34]. Through digital twin technology,
it can simulate and predict the spatial layout, traffic planning, environmental protection and
other aspects of the city, and improve the scientific and forward-looking urban planning.
Digital twin technology can improve the intelligence level of public services and enhance
the quality of citizens.

3.4. Digital Twins in Healthcare

Healthcare professionals, hospitals, and researchers have the ability to utilize digital
twin technology to create customized environments that can be used in real time or to
prepare for future advancements and applications. This technology allows for tailored
simulations to meet specific needs in the healthcare industry [35]. Doctors can be built
with digital twin technology to simulate and plan surgeries on the 3D models of patients’
bodies. This can help doctors better understand the patient’s body structure and condition,
develop more accurate surgical plans, and improve the accuracy and success rate of surgery
while reducing surgical risks and errors [36]. Digital twin technology can be applied in
the creation and assessment of medical devices. This technology is useful for developing
and evaluating medical equipment, such as artificial joints and prosthetics. Through the
simulation in a digital twin model, it is possible to enhance the assessment of the device’s
performance and effectiveness. This, in turn, can lead to improved efficiency in the design
and manufacturing of medical equipment. The application of digital twin technology
extends to the development and testing of medical equipment, including artificial joints,
prosthetics, and other devices. This technology allows for virtual simulations and analysis,
contributing to the enhancement of medical device design and performance. Digital twins
in medical environments, like artificial intelligence (AI), have the ability to make life-saving
decisions based on real-time and historical data [37].

3.5. Digital Twins in the Ocean

The advancement of ocean observation through the implementation of a digital twin is
significant. This involves the integration of diverse data sources, along with modelling, simu-
lation, and specialized tools, including artificial intelligence algorithms and best practices.
This innovation represents a major step forward in understanding and monitoring the ocean.
It serves as an approach to ocean management that leverages digital twin technology to
create interactive and dynamic virtual representations of the ocean, subsurface, and marine
assets. This is achieved by integrating and analysing large volumes of historical and real-time
marine scientific data [38]. Ocean digital twins can simulate and replicate marine ecosystems,
providing knowledge and insights to enhance our understanding of the ocean, future risks
and how to mitigate them. Furthermore, digital twin technology can predict and analyse
ocean scenarios by simulating the operational parameters of wind turbine equipment in
various ocean environments and operating conditions. This predictive analysis enables the
technology to anticipate and assess the impact of different ocean scenarios on the perfor-
mance of the wind turbines, providing valuable insights for optimizing their operation and
maintenance. The European Union (EU) is the first organization to take this action [39].

3.6. Digital Twin Technology in Smart Buildings

With the advancement of science and technology, the evolution of smart buildings is
rapidly progressing. Property companies are leveraging their intelligence to anticipate the
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needs of customers and emerging technologies. Digitization plays a key role in achieving
this goal by reducing time and costs. This technology-driven approach offers significant
strategic value to the real estate sector. By utilizing digital twins, operations can be opti-
mized, resulting in enhanced customer experiences and overall benefits throughout the
entire lifespan of a building. This is achieved by simulating complex scenarios [40]. The
digital twin for smart buildings is a technology based on a digital model that enables
digital copies of real-world physical systems through virtual simulation and real-time
data monitoring. It provides support for managing the complete life cycle of building
design, construction, operation, and maintenance. This enables buildings to be digitally
simulated from the design phase, offering data and information for subsequent operational
management and maintenance [41].

The application of digital twin technology in the automotive industry is also pertinent
to the aforementioned areas. For instance, the integration of digital twins in the auto-
motive industry with intelligent transport systems in smart cities can facilitate real-time
communication between vehicles and city infrastructure. This integration can enhance
traffic efficiency and safety. Similarly, the use of remote diagnostics in healthcare can also
be applied in the automotive industry. It allows for real-time monitoring of vehicle health
and early detection of potential issues through digital twins.

Digital twins are being employed in a growing range of industries. This trend is
becoming more prevalent with time, but digital twins are still new to many fields and have
yet to be fully utilized. The future potential of digital twins is virtually unlimited, with the
ability to continually acquire and assimilate new skills and capabilities that can continue to
make application objects better and processes more efficient [5].

4. Digital Twins in Electric Vehicles

The number of electric vehicles (EVs), encompassing both all-electric and hybrid
vehicles, is on the rise. According to Markit, a company specializing in information
processing services, EVs are projected to represent 45% of new car sales in 2040 and nearly
80% by 2050. This growth can be attributed to significant technological advancements,
reduced manufacturing costs, and global initiatives promoting the adoption of EVs [42].
Figure 2 shows the comparison between power battery (BEV), plug-in hybrid (HEV), fuel
cell (FCV), and conventional internal combustion engine (ICE) vehicles.
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4.1. Electric Vehicle Powertrain Architecture

The powertrain of an electric vehicle comprises three main components: the power
source, the power electronics system, and the motor drive system.

Many studies consider power cells and fuel cells as power sources for electric ve-
hicle drive systems, including their additional hydrothermal and energy management
systems [43]. The driving range of an electric vehicle depends primarily on the power
cell’s capacity, with greater capacity resulting in longer driving distances. In the EV bat-
tery industry, lithium-ion batteries (LIBs), nickel–manganese–cobalt (NMC) lithium oxide,
and nickel–cobalt–aluminium (NCA) lithium oxide are the dominant technologies [44].
Inverters design and operation are directly impacted by EV batteries. The utilization of
digital twin technology is being explored for monitoring the health, detecting faults, and
predicting the lifespan of EV batteries.

Within the powertrain, the inverter and converter serve as the power electronic com-
ponents. These components are comprised of three main subcomponents: the DC-DC
converter, the inverter, and the motor control unit (MCU). The primary function of the
DC-DC converter is to convert high-voltage DC from the power cell into low-voltage DC.
The low-voltage DC is used to operate a variety of systems, including headlights, interior
lighting, wiper and window motors, fans, and water pumps [45].

Electric vehicles use electric motors instead of engines, which make less noise and
vibration and is smaller, providing extra space and making the vehicle design more efficient.
Electric motors also convert kinetic energy into electrical energy, which is stored in batteries.
Manufacturers of electric vehicles utilize a variety of motors, including permanent magnet
synchronous motors, brushless DC motors, three-phase induction motors, permanent
magnet-assisted synchronous resistance motors, and switched reluctance motors, each
with unique strengths [42]. Figure 3 shows the powertrain components of a battery electric
vehicle (BEV).
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The plug-in hybrid electric vehicle falls between battery electric vehicles and tradi-
tional fuel vehicles, serving as a new energy vehicle option. It has the traditional vehicle
engine, transmission system, etc., but also the battery, electric motor, control circuit and so
on [46]. This hybrid electric vehicle greatly increases the driving range of the vehicle, and
can also have the advantages of environmental protection and pollution-free pure electric
vehicles. Figure 4 shows the powertrain composition of a plug-in hybrid electric vehicle.
Dižo [47] introduced the composition and charging methods of BEVs and PHEVs, and
listed the charging infrastructure of BEVs and PHEVs in a particular European region. The
increasing number of charging stations being built and the growing utilization of electric
vehicles indicate that the advancement of electric vehicles is essential and inevitable. In
addition to traditional charging post charging, using solar charging shed charging is also
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an extremely environmentally friendly charging method. Małek [48] implemented a shed
equipped with a photovoltaic system on the roof to generate power and provide shading.
He utilized the Metalog probability distribution family to assess the power supply options
for electric vehicles at the shed.
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The fuel cell is an effective power generation device that transforms the chemical
energy of fuel into electrical energy through an electrochemical reaction, and the vehicle
equipped with electricity generated by the fuel cell device as a power source is called a fuel
cell vehicle [49]. The fuel used by the fuel cell is high-purity hydrogen, which goes through
a REDOX reaction with oxygen in the atmosphere to generate water and a small amount of
nitrogen oxides, so the fuel cell is also known as a green new environmentally friendly car.
Fuel cell vehicles offer numerous advantages over traditional internal combustion engine
vehicles, including zero emissions, superior fuel efficiency, high combustion efficiency, and
stable, and noise-free operation. Figure 5 shows the composition of the powertrain of a fuel
cell vehicle.
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BEVs, PHEVs and FCVs are three different types of electric vehicles, but they have
all been developed to reduce reliance on conventional fuels and reduce tailpipe emissions.
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While they differ in their power composition, all three types of vehicles require advanced
battery technology to store and deliver electricity.

4.2. Digital Twins for EV Powertrains

Digital twins are frequently employed for electric vehicle powertrain applications to
conduct system health monitoring, diagnosis, prediction, optimization, as well as scenario
and risk assessment [32]. Digital twins can be developed for a range of assets, including
the system level, subsystem level, individual component level, and various other levels
within the electric vehicle powertrain [50].

Wunderlich and Santi [51] proposed a real-time digital twin modelling approach for
power electronic converters at the subsystem level. This approach utilized a dynamic
NARX-ANN (nonlinear autoregressive exogenous artificial neural network) to combine
time-domain, switch-averaged, large-signal, real-time, and embedded models. Their phys-
ical model is based on a boost converter with a current source. The proposed digital
twin model of the converter can be implemented on various platforms, including being
executed locally on the converter’s digital controller. These models are primarily utilized
for detecting faults, making predictions, managing health, as well as assessing scenarios
and risks.

In their work [52] Rjabtsikov et al. introduced a digital twin model designed for
detecting faults in AC three-phase induction machines. This digital twin of the motor is
specifically used to identify short circuit faults. The simulation is created using historical
data and the motor’s mathematical model. Integrated with ROS services, the motor employs
Unity 3D for real-time condition monitoring. Furthermore, the virtual sensor in the digital
twin model functions as a representation of the physical motor model.

In their study [53], Venkatesan and colleagues presented a digital twin system de-
signed for monitoring and predicting the health of the EV-PMSM power system. This
system focuses on monitoring variables such as housing temperature, winding tempera-
ture, bearing oil fill time, and flux deterioration to estimate the remaining useful life (RUL)
of the permanent magnet (PM). Two different methods are suggested by the authors for
the implementation of health monitoring. The first approach involves developing internal
health monitoring and prognostics to assess the performance of internal motors. The
second approach, known as remote monitoring, allows electric vehicle service providers to
remotely monitor motor performance through cloud-based communication channels.

The application of digital twin technology in battery storage systems (BESS) is a crucial
area of research that plays a significant role in promoting sustainable development and
mitigating climate change. This technology not only helps in reducing CO2 emissions but
also facilitates the implementation of eco-friendly strategies for clean energy production. At
the heart of a battery, the battery management system (BMS) is responsible for monitoring,
protecting, and ensuring the reliability, safety, and efficiency of the battery. Numerous
scientific studies have been conducted to explore the various important applications of
digital twins in battery systems. In the year 2020, Wu and colleagues [54] utilized Python
Battery Mathematical Modelling (PyBaMM) and MATLAB to present a combined model
that incorporates a physics-based model along with a data-driven approach. The aim is
to address the increasing availability of substantial data resulting from the widespread
deployment of low-cost sensing and IoT devices in numerous applications. These appli-
cations are focused on developing cyber-physical systems by combining remote sensing
of operational physical devices with cloud-based models. These models are responsible
for monitoring and optimizing devices within a networked system, thereby generating a
virtual representation of the physical system. This concept is further illustrated in Figure 6.
The potential of this approach is based on the close interaction between a physical object,
its digital counterparts, and a collection of proxy data operating under diverse conditions.
Although the data collected by these agents alone may not be sufficient to provide statistical
significance for a data-driven RUL model, when aggregated, the underlying ML (machine
learning) model can be enhanced and then integrated with a closed-loop optimizer to



World Electr. Veh. J. 2024, 15, 208 10 of 19

continually update vehicle control. Battery electric vehicles (BEVs) already have a Battery
Management System (BMS) capable of recording sensor data and performing onboard
processing. Within the digital twin framework, researchers have also been investigating
the utilization of low-order models and a degree of offline processing to fully leverage the
robust pseudo-2D (P2D) framework [55]. Typically, BMS data are saved on local systems,
but there is a growing trend among researchers to suggest cloud-based systems as a way
to reduce on-site computing needs. This approach also allows for the consolidation of
extensive datasets to enhance the effectiveness of machine learning algorithms [56]. Fur-
thermore, the researchers suggest implementing a holistic approach that monitors essential
information throughout the entire process, starting from material synthesis and continuing
through to vehicle utilization. For example, Yang et al. [57] introduced the CHAIN frame-
work, which establishes a network hierarchy and interactive system for the management
of battery systems. They proposed that critical physical and electrochemical parameters
of the battery should be transmitted to a cloud server during the manufacturing stage,
enabling closed-loop optimization and facilitating comprehensive life cycle management.
The CHAIN framework is designed to dissect complex systems into interconnected layers,
each with distinct functions.
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Over time, the approach to battery control and lifetime estimation has transitioned
from predominantly empirical methods to a greater emphasis on model-driven techniques.
As computational processing power continues to grow, there is a resurgence in the use of
data-driven and machine learning (ML) methods. However, their practical applicability in
real-world scenarios remains a challenge. Figure 7 highlights this evolution and hints at a
proposed hybrid model/data approach that leverages real-time data collection from IoT
systems to enable battery digital twinning.

Special DT platforms have also been implemented to evaluate performance degrada-
tion of lithium-ion batteries. Peng et al. [58] developed a low-cost digital twin based on
LabView 2018 using an equivalent circuit model (ECM) to achieve battery pack degradation
assessment for lithium-ion battery packs. One of their major contributions was the devel-
opment of a digital twin platform for testing different battery types and load algorithms
to estimate state of charge (SOC). The findings demonstrate that their platform presents
a precise novel approach for monitoring real-time battery degradation. However, further
enhancements are required for compatibility with various algorithms and the integration
of additional features like virtual reality and augmented reality.
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Wang et al. [59] conducted a study in which they gathered field data from 60 electric
vehicles that had been in operation for over four years. They have created a strong statistical
method using data analysis to forecast the ageing of lithium-ion batteries. Their proposed
method includes data preprocessing, which involves integrating data cleaning, transformation,
and reconstruction. The researchers used multilevel screening techniques to extract statistical
characteristics from past usage behaviour. Furthermore, they employed machine learning to
forecast ageing trajectories accurately and identify batteries with the lowest lifespan, all while
quantifying prediction uncertainties. Figure 8 shows the framework of this model.

The use of proton exchange membrane fuel cell (PEMFC) in automotive powertrain
systems is well-known for its environmental friendliness, as well as its high efficiency and
significant commercial prospects [60,61]. Just like lithium-ion batteries, proton exchange
membrane fuel cells also face challenging concerns regarding their cost, performance, and
longevity [62]. The issue could potentially be reversed by the rapid emergence of digital
twins. Creating a digital twin model for PEMFC holds great importance in the realm of
battery design and operational control [63]. Nevertheless, the establishment of a digital twin
model for PEMFC still faces several challenges. One major obstacle lies in the complexity
of obtaining the necessary data, which poses a significant challenge in the development of
digital twins [64]. The performance of a PEMFC, a system with multiple physical fields, is
influenced by various parameters including gas reactant concentration, water content, and
temperature. However, accurately measuring the spatial distribution of these parameters
is challenging, especially in real-time on a PEMFC vehicle, due to limitations of field
methods [65]. Figure 9 shows the structure of a proton exchange membrane fuel cell.

An innovative and clever method, known as the data-driven proxy model, can be em-
ployed to create digital replicas of PEMFCs. By integrating physical system modelling with
common machine learning methods, this approach offers a promising solution to the chal-
lenges mentioned above [66]. The agent model framework, proposed by Wang et al. [67]
integrates the precision of PEMFC and physical models with the efficiency of data-driven
models to establish a digital twin model of PEMFC. The utilization of advanced 3D mod-
elling has significantly advanced PEMFC technology, allowing for the simulation of various
scenarios for PEMFC stacks, including complex flow field designs for vehicles. The sim-
ulation results of PEMFC model are in good agreement with the experimental results.
However, this process requires a lot of time and computing costs, which seriously limits its
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application in PEMFC. Wang et al. [67] obtained the simulation result of PEMFC through
the simulation of PEMFC. By utilizing the generated data as a dataset, the state-of-the-art
and validated PEMFC 3D multi-physics model was simulated under 100 randomly varying
working conditions. Subsequently, the dataset was randomly split into training and test
sets, and machine learning algorithms were employed to create the model. Concurrently,
the numerical model predicted the parameter distribution of PEMFC. This approach to
developing digital twins has proven highly successful, leading to significant reductions in
computational costs and time. Figure 10 simulates the principle of PEMFC.
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Figure 10. (a) Schematic diagram simulating PEMFC. (b) Schematic diagram of the cathode serpentine
flow field and the anode parallel flow field, as well as node division for generating multi-physical
field data. Reprinted from Ref. [67]. Purple shows the serpentine flow field of the cathode and the
parallel flow field of the anode, respectively.

Utilizing high-precision physical models in simulations can compensate for data limi-
tations. Conversely, when data are more abundant, digital twins can be created directly
through machine learning techniques. In the context of fuel cells, an experimental-based
digital twin model can be constructed to forecast and identify issues with battery per-
formance [68]. Safa et al. [69] introduced a digital twin approach for studying PEMFC
degradation, demonstrating that accurate prediction of Remaining Useful Life (RUL) is
possible even when using a limited amount of measurement data. The digital twin model
is established by utilizing a stacked denoising autoencoder (SDA) to model stack voltage,
which is a readily measurable parameter. The operational results indicate an error within
an acceptable range, thus enabling effective and accurate analysis of PEMFC RUL. Unlike
static models, the digital twin is adaptable and can self-update based on new measurement
data. Following data preprocessing, the measured superimposed voltage is employed to
train the SDA model, and the pre-processed SDA model is used to analyse the RUL of
PEMFC. Online acquired data are utilized for model updating, thus making the digital
twin more closely aligned with real PEMFC and enhancing the accuracy of decisions.

The applications of digital twin technology in electric vehicle powertrains are extensive,
encompassing the design of all aspects of the system, including the system level, subsystem
level, and individual component level. This technology can be utilized throughout the
entire spectrum of the powertrain system.

5. The Challenge of Digital Twins

Although digital twins have many advantages, such as improving decision-making
efficiency, optimizing processes, product innovation, reducing risks, and intelligent manage-
ment. But the development of the system is equally challenging due to its rich prerequisites
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in engineering, marketing, technology, and data [70]. Here are some of the challenges of
digital twin technology.

5.1. Accurate Model Building

It is easy to build accurate models for simple objects. However, in many cases, the
structure, process flow and operating environment of the processing equipment can be
very complex, which presents a modelling challenge [71]. The model construction of digital
twins depends on complete and accurate data input. However, in practical applications,
the data may be incomplete due to various reason, which will make model construction
difficult. In addition, in a digital twin system, it is often necessary to integrate data from
multiple sources. These data may come from different sensors, systems, or human input,
so their accuracy needs to be verified to ensure the reliability of the model construction. On
the other hand, in order to make the digital twin model accurately predict and simulate the
dynamic changes in the real world, it is necessary to fine-tune the model parameters. This
process can be very complex, especially for highly nonlinear and complex systems.

5.2. Data

All tasks related to data, such as collecting, transmitting, storing, and processing it,
pose significant challenges. While there are diverse methods for data acquisition, challenges
are often encountered in the actual collection process. These challenges may include the
lack of open data acquisition interfaces in some devices, the inability to install sensors,
and high functional requirements for sensors in complex conditions. As data continue to
exponentially grow, the speed of data transmission is also increasing. However, this rapid
transmission brings with it the risk of data leakage and tampering. Thus, enhancing data
security has become a crucial challenge in today’s context. The increasing volume of data
has intensified the strain on data storage systems. Conventional hardware-based storage
methods are encountering limitations. Consequently, software-defined storage, which
involves the control of storage resources through software, and innovative optical storage
are emerging as potential alternatives for data storage [72]. Efficient and sophisticated
algorithms are crucial for data processing. It is important to enhance the interpretability,
resilience, and equity of the algorithms.

5.3. Privacy and Security

Protecting the privacy and security of digital twins presents a significant challenge.
The complexity of building models and processing data in digital twins makes digital assets
a crucial element of the technology’s value. This is particularly evident in the case of smart
cars, where the integration of the Internet of Things has introduced numerous issues related
to data and system security. Given the close connection between smart cars and human
users, data security risks can have severe consequences. Without effective resolutions to
these security challenges, effective collaboration across industrial chains becomes difficult.

5.4. Sensors

Sensors are crucial elements in linking the real world to the virtual realm. The data
collected by sensors form the foundation for creating digital twins, and any inaccuracies
or omissions in the data will impact the accuracy of the digital twin. Furthermore, the
real-time changes in the state and behaviour of the physical entity being monitored may
necessitate the use of various types of sensors, such as those for temperature, humidity,
pressure, and light, among others. Different sensors can produce inconsistent data, which
also poses challenges for data integration and processing. Finally, the cost and power
consumption of sensors directly affect the sustainability and affordability of digital twin
systems, and how to achieve low-cost, high-efficiency sensor applications is also one of the
challenges that needs to be addressed today.
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5.5. Agile Development

Iterative and incremental, agile development is an approach to software development
that involves multiple stages. This method aims to deliver high-quality software by break-
ing the project into smaller, manageable segments [73]. Digital twin prototypes can be built
quickly through agile development methods. The iterative approach to development can
also be utilized in creating digital twins, where the system’s functionality and performance
are enhanced through continuous refinement. A well-crafted digital twin empowers users
not only to contribute input and feedback for agile development but also to take the lead in
decision-making processes [74]. Agile development includes a variety of methods, such as
Scrum, Kanban, Extreme Programming (XP), and Dynamic Systems Development Methods
(DSDM). Table 3 lists the differences between these development methods and the possible
ways in which digital twins can be combined with them. The automotive industry has been
challenged by dynamic market growth, shorter product lifecycles and increased customer
individualization. Agile development is a promising solution to the current challenges [75].
Whilst the agile development methodology is an effective guide to the digital twin devel-
opment process, many people in many development teams will be designed in large scale
agile development. How to address the lack of consistency between teams and customer
collaboration among the many stakeholders in a team becomes a challenge that needs to be
solved nowadays [76].

Table 3. Possible applications of digital twin technology in different agile development methods.

Ref. Methods Features Applications of Digital Twins

[74] Scrum Iterative, teamwork, self-organization and
rapid response.

Create a virtual Scrum board to track the status
of tasks in real time.

[77] Kanban
Visualization, limiting WIP (work in progress)

quantities, process transparency,
continuous improvement.

Create a virtual Kanban board for visual
management of work tasks.

[78] XP
Test-driven development, continuous
integration, small-scale feedback and

simple design.

Real-time code integration and rapid delivery
through automated build, automated test and

continuous integration tools.

[79] DSDM Iterative and incremental, accelerate software
delivery and reduce risk

Modelling the behaviour, interaction and
performance of software systems.

6. The Future of The Electric Vehicles Digital Twin

In the future, digital twins may have a broader role, extending beyond automotive
technology innovation to become a tool for promoting smart electric vehicle sales. Through
interactive VR or AR technology, digital twin simulations of smart cars could be visualized
to engage potential users with customized utilities and virtual driving experiences. Once
the initial architecture is set up, the digital twin framework can be customized for any
model and optimized for future development. It has the ability to simulate hundreds of EV
models within seconds. Additionally, digital twin technology can streamline research and
testing for self-driving cars and other forms of autonomous mobility, acting as a catalyst
for the mainstream realization of self-driving car technology [80]. Real-time monitoring
and fault diagnosis are key aspects of digital twin technology. This enables electric vehicles
to be continuously monitored and potential issues to be identified and flagged, ultimately
enhancing vehicle safety and reliability. The advancement of digital twin technology may
also lead to the creation of innovative business models, such as pay-as-you-go energy
services and personalized vehicle customization, which can bring about new business
opportunities and drive innovation. Achieving the longevity of digital twin technology
requires collaborative efforts from all stakeholders. These potential opportunities are
summarized in Table 4.
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Table 4. Future opportunities for digital twins in electric vehicles.

Opportunity Implementation Method

Vehicle sales tool Visualization of the digital twin model for electric vehicles and virtual driving experience.

Customized vehicle Utilize the advanced digital twin platform to customize the vehicle according to
user preferences.

Automatic drive Optimize the development and testing of autonomous driving algorithms and driving tools.

Improve security and reliability Real-time Monitoring and fault diagnosis continuously monitor the vehicle to
determine risks.

7. Conclusions

The comprehensive overview in this article examines the digital twin technology in
detail, which is already widely utilized in various industries such as aerospace, healthcare,
buildings, smart cities, and automotive. Digital twins have the capability to process exten-
sive and diverse datasets, enabling their application in creating models for components,
assets, or entire drive systems. Depending on the foundational model and the nature
of data exchanged with the physical counterpart, digital twins can serve multiple pur-
poses including predictive maintenance, fault detection, health monitoring, and lifetime
prediction [50].

While digital twins have been widely used in the traditional automotive industry, there
are still areas within the field that have not been fully explored. Research in traditional
automotive applications has predominantly focused on the design and production of
vehicle bodies and electronic systems. Furthermore, enhancing simulation methods is
essential for improving real-time performance and accuracy.

Challenges related to data present a significant obstacle in the advancement of digital
twins. Future efforts are expected to concentrate on the development of a comprehensive
digital twin for vehicles, incorporating enhanced sensor and subsystem support. The auto-
motive industry is in dire need of digital twins to propel its progress. Therefore, innovative
research is essential to address these challenges and refine digital twin technology for wider
application across various aspects of vehicle design and development.

The advancement of relevant technologies will provide more systematic solutions for
the development of digital twins, expanding their application in the automotive industry,
particularly in transportation and battery technology. The increased utilization of digital
twin technology in the automotive sector is poised to lower vehicle costs, enhance longevity,
optimize traffic flow, and promote environmental sustainability. Research on digital twins
for automotive powertrains is still in its nascent stages, requiring significant time and
resources for further exploration and development.
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