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Abstract: The estimation of the state of charge (SOC) in lithium-ion batteries is a crucial aspect of
battery management systems, serving as a key indicator of the remaining available capacity. However,
the inherent process and measurement noises created during battery operation pose significant
challenges to the accuracy of SOC estimation. These noises can lead to inaccuracies and uncertainties
in assessing the battery’s condition, potentially affecting its overall performance and lifespan. To
address this problem, we propose a second-order central difference particle filter (SCDPF) method.
This method leverages the latest observation data to enhance the accuracy and noise adaptability of
SOC estimation. By employing an improved importance density function, we generate optimized
particles that better represent the battery’s dynamic behavior. To validate the effectiveness of our
proposed algorithm, we conducted comprehensive comparisons at both 25 ◦C and 0 ◦C under the
new European driving cycle condition. The results demonstrate that the SCDPF algorithm exhibits
a high accuracy and rapid convergence speed, with a maximum error which never exceeds 1.30%.
Additionally, we compared the SOC estimations with both Gaussian and non-Gaussian noise to
assess the robustness of our proposed algorithm. Overall, this study presents a novel approach to
enhancing SOC estimation in lithium-ion batteries, addressing the challenges posed by the process
itself and measurement noises.

Keywords: state of charge; battery management system; second-order central difference particle
filter; importance density function

1. Introduction

Lithium-ion batteries are rapidly becoming the first choice for pure electric or hybrid
electric vehicles, satellites, and aircraft because of their advantages of high energy density
and power endurance, high nominal voltage, low self-discharge rate, long cycle, and no
memory effect [1,2]. Nickel–manganese–cobalt oxide batteries, which have a high energy
density and can provide a large amount of energy in a short time, have become a major
development trend for lithium-ion batteries.

Accurate state of charge (SOC) estimation can improve the mileage per charge of
electric vehicles and help users to formulate reasonable travel plans to ensure the normal
operation of their electric vehicles [3]. However, it cannot be directly measured in practical
situations and needs to be calculated using battery voltage, current, and temperature [4].
Accurately tracking the trajectory of the actual battery SOC is an unsolved problem due to
the time-varying and nonlinear characteristics of the battery SOC. Various SOC estimation
methods exist including the open circuit voltage [5], ampere-hour integral [6], Kalman filter
(KF) [7–10], and particle filter (PF) [11–14]. In recent years, data-driven estimation methods
such as artificial neural networks [15–17] and support vector machines [18,19] have also
been applied to the research of SOC estimation. Model-based filter methods are promising
for real SOC estimation applications due to their high accuracy and robustness. In recent
years, electrochemical model-based techniques have been widely investigated because they
can provide more valuable and essential information [20,21]. However, the electrochemical
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model is complex and requires a large number of calculations, which is unsuitable for
online real-time applications. The most commonly used models are equivalent circuit
models [22,23]. A second-order RC network model is the most common one which shows
good balance between accuracy and complexity. Battery model accuracy is also affected by
the model parameter identification algorithm. The identification algorithms include the
pulse current [24], recursive least square (RLS) [25–27], particle swarm optimization [28,29],
and so on [30–32]. The most commonly used method is the RLS and its subsequent
improvement, and the forgetting factor RLS (FFRLS) is an ideal identification algorithm for
second-order RC models because of its comprehensive performance [33].

KF is an optimized processing method applied to discrete random systems, and it
was proposed by the famous scholar Kalman in 1960 [34]. Improved KF methods such
as extended KF (EKF) [35] and sigma point KF [36] have good dynamic characteristics, a
high estimation accuracy, and require a moderate number of calculations because they can
solve the problems caused by nonlinear systems and first-order Taylor expansion. Wang
et al. [37] emphasized the limitations of the EKF caused by battery parameter variations.
They proposed a second-order RC model calibrated through offline testing. The impact of
open circuit voltage (OCV) deviation on EKF-estimated SOC accuracy was quantified, and
a Dynamic Matrix Control-based model parameter-updating method was introduced to
enhance parameter accuracy, thereby improving SOC precision. Zhou et al. [38] proposed a
novel variational EKF technique to enhance SOC estimation accuracy for batteries. They
utilized a second-order equivalent circuit model and incorporated a least square error
method. By addressing resistance polarization during SOC decrease, they dynamically ad-
justed system parameters online. Introducing the variation theorem facilitated the real-time
tracking of system parameters. Experimental comparisons demonstrated the superiority
of the variational EKF over traditional EKF methods in terms of accuracy and robustness,
validating the efficacy of the proposed approach. Maheshwari et al. [39] employed the EKF
for real-time SOC estimation. However, the sensitivity of this model to noise covariance
matrices was observed. To address this issue, they applied the Sunflower Optimization
algorithm (SFO) to optimize these matrices prior to EKF implementation, ensuring accuracy
and mitigating divergence. An evaluation covering various methodologies showcased its
superior accuracy and convergence, even under conditions of an initially inaccurate SOC.
Wang et al. [40] proposed an adaptive robust unscented Kalman filter (ARUKF) for accurate
and adaptable SOC estimation. The approach integrates a DP battery model for dynamic
behavior emulation, employing online parameter identification via the improved forgetting
factor recursive least squares (IFFRLS) method. Additionally, the Institute of Geodesy
and Geophysics’ (IGGIII) weight function enhances the robustness of UKF, adjusting the
observation residuals’ weights. Receding horizon-based adaptive filter tuning refines
time-varying noise covariance. Joint estimation of the battery’s model parameters and SOC
with capacity updating mitigates system disturbances, which has been verified through
cycle and aging tests showcasing its superior accuracy and convergence. Traditional UKF
struggles with unknown or inaccurate noise statistics, resulting in suboptimal SOC es-
timation due to non-positive error covariance. Xing et al. [41] introduced an Improved
Adaptive Unscented Kalman Filter (IAUKF) comprising an Improved UKF (IUKF) and a
Sage–Husa adaptive filter to address this issue by stabilizing estimation and adapting noise
statistics. Experimental validation against the federal urban driving schedule demonstrates
IAUKF’s superior accuracy and stability compared to IUKF and UKF, affirming its effec-
tiveness. However, the system process and measurement noise within the methods should
be independent Gaussian white noise; otherwise, the filtering may diverge.

The PF algorithm, as a statistical filtering method, can overcome the shortcomings
of the KF methods with non-Gaussian noise and has a higher estimation accuracy and
more flexibility and applicability. Chen et al. [42] proposed a universal battery model
based on differential voltage analysis with EKF and PF methods for SOC estimation. The
results show that a higher estimation accuracy can be achieved. In Monte Carlo sampling,
an error exists in the method of approximately selecting a prior probability density as an
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important density function. The particles will degenerate with the increase in the number of
iterations. Choosing a reasonable importance density function and carrying out resampling
can address the particle degeneracy phenomenon [43,44]. Xu et al. [45] proposed a new
method to solve the particle shortage by using the UKF to generate the importance density
function and the PSO to improve the resampling process. A weight-selection PF algorithm
is proposed in [46] for SOC estimation to solve the particle degradation problem within PF.
The algorithm had a high estimation accuracy and good robustness under hybrid pulse
power characteristic (HPPC) test and DST experiment verification. Hao et al. [47] enhanced
the accuracy of the FFRLS method by employing a particle swarm optimization algorithm
to select the parameter’s optimal initial values and forgetting factor values. They further
integrated the UKF into the PF as the density function, forming the Unscented Particle
Filter (UPF) algorithm. Computational results that were gathered under various conditions
demonstrated the algorithm’s strong convergence and high system robustness. Wang
et al. [48] proposed a SOC estimation method called the Grey Wolf Optimization Particle
Filter (GWO-PF). The GWO-PF method integrates particle distribution mechanisms with
Grey Wolf Optimization, utilizing a second-order battery equivalent circuit model and
recursive least squares with a forgetting factor to achieve an accurate SOC estimation.

In this study, a new second-order central difference PF (SCDPF) algorithm is applied
for accurate SOC estimation. First, a second-order central difference KF (SCDKF) is used
as an important density function to generate optimized particles to overcome the particle
degeneracy problem of the PF. Then, an error comparison and convergence analysis are
conducted for different battery SOC estimation algorithms under the new European driving
cycle (NEDC) conditions at different temperatures to verify the accuracy and real-time
performance of the proposed algorithm. Finally, Gaussian and non-Gaussian noises are
added to battery current and voltage to analyze the robustness of the proposed algorithm.

This paper exhibits several innovative and advantageous aspects, including
the following:

1. An Innovative Algorithm: We apply the SCDPF algorithm to lithium battery SOC esti-
mation for the first time. In contrast to traditional particle filtering (PF) methods, the
SCDPF algorithm utilizes Second-order Central Difference Kalman Filtering (SCDKF)
as the importance density function to generate optimized particles, effectively ad-
dressing the particle degeneracy issue inherent in traditional PF approaches.

2. Accuracy Enhancement: By employing improved importance density functions
and central difference methods, the SCDPF algorithm significantly enhances SOC
estimation accuracy.

3. Robustness Enhancement: We incorporate the handling of Gaussian and non-Gaussian
noise within the algorithm, verifying its robustness by introducing noise into the bat-
tery current and voltage signals. The results indicate that the SCDPF algorithm main-
tains a high estimation accuracy under the influence of noise, particularly demonstrat-
ing a better robustness than existing methods under non-Gaussian noise conditions.

4. Experimental Validation: Experimental validation is conducted under different tem-
perature conditions, including 25 ◦C and 0 ◦C, demonstrating not only the effective-
ness of the algorithm but also its applicability and stability under various
temperature conditions.

The remainder of the paper is organized as follows. Section 2 describes the establish-
ment of the battery model and the parameter identification. Section 3 introduces the PF
and SCDPF algorithms. Section 4 conducts the experiment and simulation analysis. Our
conclusions are summarized in Section 5.

2. Battery Model and Parameter Identification
2.1. Equivalent Circuit Model of Second-Order RC

Figure 1 shows the second-order RC equivalent circuit.
Rac is the Ohmic resistance, Rct is the charge transfer resistance which represents the

electrochemical polarization effect, and Rwb is the diffusion resistance which represents the
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concentration polarization effect. Cct and Cwb represent the charge transfer capacitance and
diffusion capacitance, respectively. Uocv and Ut represent the open circuit voltage and the
output voltage, respectively.
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where
.

Uct is the derivative of Uct,
.

Uwb is the derivative of Uwb, Uct is the terminal voltage
of Rct, and Uwb is the terminal voltage of Rwb.

By discretizing Equation (1), the state-space equation of the battery can be obtained as

xk = f (xk−1) = Ak−1 · xk−1 + Bk−1 · Ik−1 + ωk−1 (2)

where Ak−1 =

1 0 0

0 e−
∆t
τct 0

0 0 e−
∆t

τwb

, Bk−1 =


− ∆t

C

Rct ·
(

1 − e−
∆t
τct

)
Rwb ·

(
1 − e−

∆t
τwb

)
, xk = [SOC(k); Uct(k);

Uwb(k)]. ∆t is the sampling interval, and k is the sampling moment. ωk is the process’
Gaussian white noise, which is mainly caused by system noise and model error. τct
is the time constant of RctCct, and τwb is the time constant of RwbCwb. τct = Rct × Cct,
τwb = Rwb × Cwb.

The terminal voltage prediction equation for the battery model is given as follows:

yk = h(xk) = Ck · xk + Dk · Ik + vk (3)

where Ck = [ ∂Uocv
∂SOC −1 −1], Dk = −Rac, and vk is the Gaussian white noise, which is mainly

caused by experimental measurement equipment. yk is the terminal voltage of battery
model at k.

2.2. Parameter Identification of Battery Model

In this study, the FFRLS algorithm is employed for parameter identification. The model
is written in least square form as follows, as has been elaborated upon in the literature:

y(k) = ϕ(k)θT + e(k) (4)

where φ(k) = [yk−1, yk−2, Ik, Ik−1, Ik−2], e(k) is the sensor sampling error at k, and the
parameter matrix θ = [θ1, θ2, θ3, θ4, θ5].

The formulas for the FFRLS algorithm are described as follows:

θ̂(k) = θ̂(k − 1) + K(k)[y(k)− ϕT(k)θ̂(k − 1)]{
K(k) = P(k − 1)ϕ(k)[λ + ϕT(k)P(k − 1)ϕ(k)]−1

P(k) = 1
λ [I − K(k)ϕT(k)]P(k − 1)

(5)
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where θ(k − 1) is the estimated values of parameters at moment k − 1, φT(k)θ(k − 1) is
the observations made in the current moment, and λ is the forgetting factor with a value
of 0.98.

3. SOC Estimation Algorithm Based on Improved PF

The SCDPF is an optimized PF method for SOC estimation which has a higher pre-
cision than the PF and the UPF methods [49]. It uses an SCDKF as an important density
function to generate optimized particles to reduce the deviation between the sample and
the actual sample. The Stirling interpolation formula is used for nonlinear approximation in
the form of central difference, which leads to higher accuracy than that of the second-order
Taylor expansion. The computational complexity is low because the Jacobian matrix of the
system’s function does not need to be calculated. The square root form of the covariance
matrix is used to ensure the positive definiteness of the covariance matrix, and the filtering
performance is better than that of the UKF algorithm.

The Stirling interpolation formula is shown below.

y ≈ f (x) + D∇x f (x)(x − x) +
1
2!

D2
∇x f (x)(x − x)2 (6)

where D∇x is the first-order central difference operator, D∇x f (x) = 1
λ [ f (x + λ)− f (x)].

D2
∇x is the second-order central difference, D2

∇x f (x) = 1
λ2 [ f (x + λ) + f (x − λ)− 2 f (x)]. λ

is the given step size with a value of λ2 = 3.
The procedures of SCDKF are elaborated as follows:

1. Initialization: By using Cholesky decomposition, some operators are calculated using
the following equation:

Ppc = Sxp × ST
xp, Pec = Sxe × ST

xe, Q = Sv × ST
v , R = Sw × ST

w (7)

where Ppc and Pec represent the prediction and estimated covariance, respectively, which are
constantly updating. Q represents the process noise covariance matrix, and R represents the
measuring noise covariance matrix. Sxp represents the square root decomposition operator
of Ppc, and Sxe represents the square root decomposition operator of Pec. Sv represents the
square root decomposition operator of Q. Sw represents the square root decomposition
operator of R.

The matrix that is required can be obtained from Equations (8) and (9).

(Sxx
(1)(i))

(k)
= α( f (xi−1

(k) + λSxe,l , ωi−1)− f (xi−1
(k) − λSxe,l , ωi−1)); l = 1 : mx

(Sxv
(1)(i))

(k)
= α( f (xi−1

(k), ωi−1 + λSv,l)− f (xi−1
(k), ωi−1 − λSv,l)); l = 1 : mx

(Sypx
(1)(i))

(k)
= α(h(xpi

(k) + λSxp,l , vi)− h(xpi
(k) − λSxp,l , vi)); l = 1 : mx

(Syw
(1)(i))

(k)
= α(h(xpi

(k), vi + λSw,l)− h(xpk
(k), vi − λSw,l)); l = 1 : mv

(8)

(Sxx
(2)(i))

(k)
= β( f (xi−1

(k) + λSxe,l , ωi−1) + f (xi−1
(k) − λSxe,l , ωi−1)− 2 f (xi−1

(k), ωi−1));

(Sxv
(2)(i))

(k)
= β( f (xi−1

(k), ωi−1 + λSv,l) + f (xi−1
(k), ωi−1 − λSv,l)− 2 f (xi−1

(k), ωi−1));

(Sypx
(2)(i))

(k)
= β(h(xpi

(k) + λSxp,l , vi) + h(xpi
(k), vi − λSw,l)− 2h(xpi

(k), vi));

(Syw
(2)(i))

(k)
= β(h(xpi

(k), vi + λSw,l) + h(xpi
(k), vi − λSw,l)− 2h(xpi

(k), vi));

(9)

where Sxe,l, Sxp,l, Sv,l, and Sw,l represent column j of Sxe, Sxp, Sv, and Sw, respectively. xi−1 is
the estimation system state, and xpi is the prediction system state at i. mx represents the
dimension of the state vector. mv represents the dimension of the measurement noise vector.
λ represents the given step size, λ2 = 3. A = /(2λ). B = (λ2 − 1)0.5/(2λ2).

2. Forecast: The one-step predictions xpi(k) can be calculated using the following formula:
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xpi(k) = β
mx
∑

p=1
[ fk(xi−1, ωi−1 + λSv,l) + fk(xi−1, ωi−1 − λSv,l)]

+β
mw
∑

p=1
[ fk(xi−1 + λSse,l , ωi−1) + fk(xi−1 − λSse,l , ωi−1)] + ((λ2 − mx − mv)/λ2) fk(xi−1, ωi−1)

(10)

The compound matrix Sxp
(k)(i) is obtained using QR decomposition.

Sxp
(k)(i) = [(Sxx

(1)(i) )(k) ( Sxv
(1)(i))

(k)
(Sxx

(2)(i) ) (k) ( Sxv
(2)(i))

(k)
],

[Q, R] = qr(Sxp
(k)(i)T), Sxp

(k)(i) = R.
(11)

The covariance matrix Ppc
(k) can be updated using Equation (12).

Ppc
(k) = Sxp

(k)(i)Sxp
(k)(i)T (12)

Similar to Sxp
(k)(i), the matrix Syp

(k)(i) is

Syp
(k)(i) = [(Sypx

(1)(i) ) (k) ( Syw
(1)(i))

(k)
(Sypx

(2)(i) ) (k) ( Syw
(2)(i))

(k)
],

[Q, R] = qr(Syp
(k)(i)T), Syp

(k)(i) = R.
(13)

Step 3: Update: The predictive capacity ypi is calculated using the following formula:

ypi
(k) = β

mx
∑

p=1
[hk(xpi + λSxp,l , vi) + hk(xpi − λSxp,l , vi)]

+β
mv
∑

p=1
[hk(xpi, vi + λSw,l)− hk(xpi, vi − λSw,l)] + ((λ2 − mx − mv)/λ2)hk(xpi, vi)

(14)

The matrix Pxy(i) and the gain Ki can be obtained:

Pxy
(k)(i) = Sxp

(k)(i)[(Sypx
(1)(i))

(k)
]
T

Ki
(k) = Pxy

(k)(i)[Syp
(k)(i)Syp

(k)(i)T ]
−1 (15)

The state estimation xi
(k) is updated:

xi
(k) = xpi

(k) + Ki
(k)(yi − ypi

(k)) (16)

where yi is the terminal voltage of the battery model at i.
The Cholesky factor Sxe

(k)(i) is obtained in the same way as Sxp
(k)(i) and Syp

(k)(i):

Sxe
(k)(i) = [Sxp

(k)(i)− Ki
(k)(Sypx

(1)(i))
(k)

Ki
(k)(Syv

(1)(i))
(k)

Ki
(k)(Sypx

(2)(i))
(k)

Ki
(k)(Syw

(2)(i) )
(k)

], [Q, R] = qr(S(k)
xe (i)

T); Sxe
(k)(i) = R

(17)

The covariance estimation Pec
(k) is updated using Equation (18):

Pec
(k) = Sxe

(k)(i)Sxe
(k)(i)T (18)

The state estimation xi
(k) used in importance sampling can be obtained from Equation (19).

x(k)i ∼ N(x(k)i ; P(k)
ec ) (19)

Figure 2 shows a flowchart of the proposed method.
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4. Experiment and Simulation Analysis

The ternary 21700 from Lishen battery Co., Ltd., Suzhou, China, with a rated capacity
of 4.8 Ah and a rated voltage of 3.6 V, was applied for model parameterization and SOC
estimation. This kind of battery has been widely used in many fields such as new energy
vehicles, power tools, and so on because it has a high energy density, low cost, and is
lightweight. As shown in Figure 3, the experimental platform consisted of a lithium-ion
battery charge and discharge test system, a constant temperature chamber, an upper com-
puter, and lithium-ion batteries. The temperature range of the high and low temperature
test box was −40 ◦C~150 ◦C. The current acquisition accuracy was 0.001 A, and the voltage
acquisition accuracy was 1 mV. The highest frequency of data acquisition was 50 Hz, the
interval of data acquisition was 1 s; it supports CAN bus communication, and has many
controllable modes, including constant voltage charging, constant current charging, con-
stant current constant voltage charging, pulse charging and discharging, programmable
power control, and dynamic condition simulation.
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The capacity and open circuit voltage (OCV) test, HPPC test, and NEDC test were
conducted at 25 and 0 ◦C on the battery experiment platform to collect data about the
battery’s voltage, current, and temperature.
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Fitting the relationship between Uocv and SOC with fifth-order polynomial function
can be expressed as follows:

U25 = 3.7 × SOC5−12.5 × SOC4 + 16.0 × SOC3 − 9.6 × SOC2 + 3.7 × SOC + 3.0
U0 = 0.6 × SOC5 − 3.9 × SOC4 + 7.0 × SOC3 − 5.3 × SOC2 + 2.7 × SOC + 3.1

(20)

Figure 4 shows the fitting curve.
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The HPPC and NEDC tests for identifying the battery model parameters and estimat-
ing the SOC of the battery are shown in Figure 5.
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To demonstrate the accuracy and stability of the SOC estimation method, three evalu-
ation criteria were utilized: mean absolute error (MAE), root mean square error (RMSE),
and mean absolute percentage error (MAPE).
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MAE = 1
M

M
∑

n=1
|y∗n − yn|

RMSE =

√
1
M

M
∑

n=1
(y∗n − yn)

2

MAPE = 1
M

M
∑

n=1

∣∣∣ y∗n−yn
yn

∣∣∣× 100%

(21)

4.1. Parameter Identification

The parameters of the battery model can be identified using the voltage and current
data obtained from the HPPC test. The parameter identification method used was FFRLS,
as described in Section 2.2. The model parameters are shown in Table 1. The unit of
resistance is mΩ, and the unit of capacitance is F.

Table 1. Battery model parameter identification results.

SOC Rac (0 ◦C/5 ◦C) Rct (0 ◦C/5 ◦C) Rwb (0 ◦C/5 ◦C) Cct (0 ◦C/5 ◦C) Cwb (0 ◦C/5 ◦C)

0.1 (55.3/30.2) (4/1) (18.3/12.1) (109.1/594.8) (4989.2/1824.9)

0.2 (51.4/26.9) (3.69/0.77) (11.9/8.6) (188.6/796.2) (6232.4/2185.2)

0.3 (47.8/25.9) (3.71/1.2) (9.2/3.9) (175.3/465.7) (9358.4/3040.5)

0.4 (46.9/26.2) (3.75/0.87) (9.5/3.9) (160.5/711) (7201.9/2385.3)

0.5 (45.6/26.5) (5.21/0.76) (9.7/4) (98.1/818.4) (6340.5/2042.7)

0.6 (46.3/26.1) (3.78/0.84) (11.1/4.5) (181.3/719.6) (6430.2/2677.3)

0.7 (49.6/25.1) (3.8/1.2) (8.8/39.5) (190.4/489.1) (8000/4551.5)

0.8 (42.7/24.6) (6.1/2.4) (11.6/15.3) (61.2/219) (3580.2/6131.2)

0.9 (47.8/25.7) (3.2/2.1) (9.1/2.9) (185.3/286.1) (5980/12045)

4.2. Algorithm Simulation Analysis of Accuracy and Convergence

Figure 6 shows the results of the SOC estimation algorithms at 25 ◦C in comparison
with the EKF [50], the UKF [51], the UPF [52], and the proposed SCDPF algorithm during
NEDC test. The evaluation criteria used in the the SCDPF SOC estimation method are
the smallest error and that the maximum error never exceeds 1.26. Therefore, the SOC
estimation has a stronger tracking ability and higher accuracy.
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Table 2 shows the errors of the SOC estimation algorithms at 25 ◦C. The SCDPF algorithm
achieves a good performance with MAE = 0.0053, RMSE = 0.0061, and MAPE = 0.752%. The
SOC errors of MAE, RMSE, and MAPE obtained by EKF are 0.0152, 0.0169, and 2.614%,
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respectively. The corresponding SOC errors obtained by UKF are 0.0134, 0.0156, and
2.571%. The corresponding SOC errors obtained by UPF are 0.0109, 0.0115, and 1.856%. The
estimation accuracy of the proposed SCDPF algorithm has been significantly improved.

Table 2. SOC estimation errors at 25 ◦C.

Algorithms MAE RMSE MAPE

EKF (50) 0.0152 0.0169 2.614%
UKF (51) 0.0134 0.0156 2.571%
UPF (52) 0.0109 0.0115 1.856%
SCDPF 0.0053 0.0061 0.752%

Four algorithms were used to estimate the battery SOC at 0 ◦C and compare with the
reference value of SOC. The results are shown in Figure 7. Table 3 shows the errors of SOC
estimation algorithms at 0 ◦C.
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Figure 7. SOC estimation at 0 ◦c (a) estimated value; (b) estimated error.

Table 3. SOC estimation errors at 0 ◦C.

Algorithms MAE RMSE MAPE

EKF (50) 0.0157 0.0179 2.939%
UKF (51) 0.0155 0.0170 2.831%
UPF (52) 0.0116 0.0122 1.841%
SCDPF 0.0056 0.0063 0.882%

The figure and table show that the situation at 0 ◦C is similar to that at 25 ◦C. The
SCDPF algorithm achieves a good performance with MAE = 0.0056, RMSE = 0.0063, and
MAPE = 0.782%. The SOC errors of MAE, RMSE, and MAPE obtained by EKF are 0.0157,
0.0179, and 2.939%, respectively. The corresponding SOC errors obtained by UKF are 0.0155,
0.0170, and 2.831%. The corresponding SOC errors obtained by UPF are 0.0116, 0.0122,
and 1.841%. The proposed SCDPF algorithm has the minimum estimation error, and the
accuracy has clearly been improved.

Convergence analyses of the different SOC estimation algorithms were conducted at
the initial SOC values of 0.6 at 25 ◦C. The SOC values estimated by the four algorithms can
quickly converge to the reference, as shown in Figure 8. The convergence rate of the SCDPF
algorithm is faster than the three methods with a convergence time of 2 s. Figure 8b shows
that the contrast of four algorithms is universal at the initial SOC of 0.6. The tracking trend
of the SOC values is the same as that at the initial SOC of 0.8. The SOC estimation error
obtained by the SCDPF algorithm varies slightly compared with that at the initial SOC of
0.8, which proves that the stability of the proposed algorithm is relatively higher.
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Table 4 illustrates the SOC estimation errors using the NEDC driving cycle from other
studies. Due to varying evaluation criteria, only the RMSE is listed here. These studies also
represent improvements to filtering algorithms. In comparison to the method proposed in
this paper, although the computational time of SCDPF did not exhibit a significant decrease,
our approach markedly enhances the accuracy of SOC estimation.

Table 4. The estimation error of SOC using the NEDC driving cycle from other studies.

Algorithms RMSE

[53] 0.94%
[54] 0.79%

4.3. Algorithm Simulation Analysis of Robustness

The voltage and current signals of the battery need to be collected through the sensor
for SOC estimation as they represent the response and excitation. The measurement
deviation caused by the sensor signal is mainly related to the fixed component voltage
and current signal offset and the signal transmission crosstalk noise. Gaussian and non-
Gaussian noise were added to the measured signal at the initial SOC of 0.8 at 25 ◦C to verify
the robustness of the proposed algorithm in practical application.

Given the presence Gaussian white noise with a mean value of 0 and a standard
deviation of 0.02, the calculation formula is as follows:

Noise1 = αNoise1 · randn(1, n) (22)

where αNoise1 is the standard deviation coefficient with the value of 0.02, and n is the length
of the predicted data.

Noise2 is a uniformly distributed random noise between [0 and 0.01]. Noise3 is a non-
Gaussian white noise superimposed by Noise1 and Noise2, and the calculation formula is
as follows:

Noise3 = Noise1 + αNoise2 · rand(1, n) (23)

where is αNoise2 is the uniformly distributed noise coefficient with a value of 0.01.
Adding noise to the current is marked as Case1, while adding noise to the voltage is

marked as Case2. Table 5 shows the results of SOC estimation in the case of adding Gaussian
and non-Gaussian noise. As shown in the table, after the two kinds of noise are added to the
measurement signal, the MAEs of the SOC estimations obtained by SCDPF are 0.877% and
0.976% higher than that obtained by EKF algorithm with Noise1 and Noise3, respectively,
under Case1. The MAEs of the SOC estimations obtained by SCDPF are 1.109% and 2.626%
higher than that obtained by EKF algorithm with Noise1 and Noise3, respectively, under
Case2. The comparison indicates that the SOC estimation result obtained using the SCDPF
algorithm is less affected by noise and has a better robustness than that obtained using EKF,
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especially in the case of non-Gaussian noise. Similar conclusions can be obtained from the
SOC estimation results obtained from SCDPF, UKF, and UPF.

Table 5. Results of SOC estimation under different noise conditions.

SOC Estimation Algorithm Error Noise 1 Noise 3

EKF
Case1

MAE (%) 1.5339 1.6817
RMSE (%) 1.6999 1.8448

Case2
MAE (%) 2.1102 3.7297
RMSE (%) 2.615 4.1243

UKF
Case1

MAE (%) 1.4181 1.6922
RMSE (%) 1.6561 1.8434

Case2
MAE (%) 1.7935 2.712
RMSE (%) 1.9762 2.8421

UPF
Case1

MAE (%) 1.2729 1.3698
RMSE (%) 1.3169 1.4349

Case2
MAE (%) 1.6600 2.1154
RMSE (%) 1.7049 2.0803

SCDPF
Case1

MAE (%) 0.65687 0.70558
RMSE (%) 0.74745 0.76395

Case2
MAE (%) 1.0007 1.104
RMSE (%) 1.0489 1.1954

5. Conclusions

This study proposes an SCDPF-based SOC estimation algorithm to improve the accu-
racy and robustness of SOC estimation. The FFRLS algorithm is employed to identify the
parameters of the second-order RC equivalent circuit.

The main contributions are summarized as follows. (1) An SCDKF was used as an
important density function to generate optimized particles to overcome the particle degen-
eracy problem of the PF method. (2) Tests with the proposed algorithm were performed
and compared with other estimation methods under NEDC conditions at 25 and 0 ◦C.
(3) The SOC estimates with Gaussian and non-Gaussian noise were compared to discuss
the robustness of the proposed algorithm.

The comparison shows that the SCDPF algorithm is superior in terms of accuracy. A
comparison of the convergence rate of the SOC estimation at the initial SOC value of 0.6
confirms the stability of the SCDPF algorithm. A comparison of the SOC estimation in
the case of adding Gaussian and non-Gaussian noise verifies that the proposed algorithm
is less affected by noise and has a better robustness. The SCDPF algorithm represents
a novel approach to enhancing SOC estimation in lithium-ion batteries, overcoming the
limitations of traditional methods. Its implementation in battery management systems can
significantly improve the accuracy of assessing the remaining available capacity, thereby
enhancing the overall performance and lifespan of lithium-ion batteries. This advancement
is crucial for various applications, including electric vehicles, energy storage systems, and
portable electronic devices, where accurate SOC estimation is essential for optimal battery
utilization and management.
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