
Citation: Chen, S.; Hu, X.; Zhao, J.;

Wang, R.; Qiao, M. A Review of

Decision-Making and Planning for

Autonomous Vehicles in Intersection

Environments. World Electr. Veh. J.

2024, 15, 99. https://doi.org/

10.3390/wevj15030099

Academic Editor: Joeri Van Mierlo

Received: 23 December 2023

Revised: 26 February 2024

Accepted: 4 March 2024

Published: 6 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

A Review of Decision-Making and Planning for Autonomous
Vehicles in Intersection Environments
Shanzhi Chen 1, Xinghua Hu 1,* , Jiahao Zhao 1 , Ran Wang 2 and Min Qiao 3

1 School of Traffic &Transportation, Chongqing Jiaotong University, Chongqing 400074, China;
622210950059@mails.cqjtu.edu.cn (S.C.); jhzhao@cqjtu.edu.cn (J.Z.)

2 Chongqing YouLiang Science & Technology Co., Ltd., Chongqing 401336, China; wran0611@163.com
3 Chongqing Zongheng Engineering Design Co., Ltd., Chongqing 401124, China; qmmyway@163.com
* Correspondence: xhhoo@cqjtu.edu.cn; Tel.: +86-139-8345-1569

Abstract: Decision-making and planning are the core aspects of autonomous driving systems. These
factors are crucial for improving the safety, driving experience, and travel efficiency of autonomous
vehicles. Intersections are crucial nodes in urban road traffic networks. The objective of this study is
to comprehensively review the latest issues and research progress in decision-making and planning
for autonomous vehicles in intersection environments. This paper reviews the research progress in the
behavioral prediction of traffic participants in terms of machine learning-based behavioral prediction,
probabilistic model behavioral prediction, and mixed-method behavioral prediction. Then, behavioral
decision-making is divided into reactive decision-making, learning decision-making, and interactive
decision-making, each of which is analyzed. Finally, a comparative analysis of motion planning and
its applications is performed from a methodological viewpoint, including search, sampling, and
numerical methods. First, key issues and major research progress related to end-to-end decision-
making and path planning are summarized and analyzed. Second, the impact of decision-making
and path planning on the intelligence level of autonomous vehicles in intersecting environments is
discussed. Finally, future development trends and technical challenges are outlined.

Keywords: intersection environment; autonomous vehicles; behavioral prediction; decision-making;
path planning; end-to-end decision-making

1. Introduction

With social and economic development, as well as technological progress, the number
of vehicles on the road is increasing exponentially. While people enjoy the convenience,
speed, and comfort of travel, they face increasingly serious problems, such as traffic conges-
tion [1], accidents [2], and environmental pollution [3]. Autonomous driving technologies
have emerged to improve traffic safety and traffic flow while providing economic benefits,
environmental protection, and social inclusion [4]. Urban intersections significantly affect
the safe and efficient operation of urban traffic. In the case of conventional manual driv-
ing traffic flows, intersections are the sites of most urban traffic accidents [5]. Therefore,
decision-making and planning of autonomous vehicles (AVs) at intersections are important.

Decision-making and planning for autonomous driving at intersections constitute a
complex problem involving multiple factors, such as traffic signals, the positions and speeds
of other vehicles and pedestrians, road signs and markings, and the vehicle’s sensors and
computational capabilities. This problem can be divided into three layers: environmental
perception, decision planning, and control execution, as shown in Figure 1.

An automatic driving system consists of three layers: environmental awareness,
decision-making, and control execution [6]. The environmental-sensing layer is responsible
for sensing rich information and providing control instructions to the control–execution
layer based on driving tasks and control objectives. The decision-making layer can be of
two types: hierarchical and end-to-end. Hierarchical tasks are divided into precise and clear
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orders and have a good stepwise reasoning ability. The end-to-end approach employs a
straightforward architecture that effectively addresses the challenges of presenting intricate
scene features [7].
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The purpose of this paper is to provide an overview of research progress in the area of
decision-making and planning for self-driving vehicles at intersections, as well as future
trends and technical challenges. Specific research goals include:

1. Behavior Prediction: It explores how environmental awareness techniques and
machine learning algorithms can be used to accurately predict the behavior of other ve-
hicles and pedestrians at intersections. This includes identifying and tracking road users
and predicting their intentions and behaviors so that self-driving vehicles can make deci-
sions accordingly.

2. Behavioral Decision-Making: It investigates how to develop behavioral decision-
making strategies for self-driving vehicles at intersections based on perception results and
traffic rules, considering factors such as traffic flow, safety, and efficiency. This includes
selecting appropriate traffic signal control methods in different traffic scenarios, merging
and separating traffic flows, and coordinating with other road users.

3. Path Planning: It investigates how to achieve the safe, efficient, and smooth
movement of self-driving vehicles through intersections through path planning and mo-
tion control. This includes optimal path selection, speed control, vehicle maneuvering,
etc., to ensure that the vehicle can safely navigate intersections and adapt to complex
traffic environments.

4. End-to-End Decision-Making and Planning: It analyzes the potential and limitations
of an end-to-end approach to the application of autonomous driving at intersections. This
approach integrates perception, decision-making, and planning into a unified model to
learn driving strategies and behavioral planning directly from raw sensor data using deep
learning techniques.

By summarizing the research progress in the field of decision-making and planning
for self-driving vehicles at intersections, it can provide a reference for related researchers



World Electr. Veh. J. 2024, 15, 99 3 of 35

and practitioners to promote the development of the application of self-driving technology
at intersections and address the challenges faced.

2. Behavioral Prediction of Traffic Participant

The prediction of intersection traffic participant behavior can be categorized into three
research methods: machine learning-based methods, probabilistic model-based methods,
and hybrid method-based methods [8]. This section reviews these three research methods.
Figure 2 provides details on the subclasses included in machine learning, probabilistic
modeling, and hybrid methods.
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2.1. Machine Learning

Machine-learning methods are used to make predictions by learning pedestrian be-
havior patterns from large amounts of data. Common machine-learning methods include
decision trees, random forests, support vector machines, and deep learning. These methods
extract information from features such as movement trajectories, posture, and appearance
of traffic participants and use supervised or reinforcement learning algorithms for training
and prediction. However, the quality of data parsing and cleaning significantly affects the
prediction accuracy.

A decision tree is a classification and regression model based on a tree structure
that is constructed by recursively partitioning the input dataset, where each internal
node represents a feature or attribute, and each leaf node represents a category or value.
Wang et al. [9] proposed a stochastic decision tree-based method for predicting lane-change
driving angles. The method was validated by constructing a random decision tree to predict
the driving angle with input variables of relative speed, relative acceleration, and potential.
The validation was performed using the NGSIM dataset.

The decision tree has the following advantages and disadvantages. The advantages
are the following: (1) Interpretability: decision trees have a clear structure that can visually
represent the importance of features and the decision-making process, which is easy to
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understand and interpret. (2) Non-parametric: Decision trees do not make assumptions
about the distribution of data in the modeling process and do not require prior normal-
ization or standardization of data. (3) Robustness: Decision trees are robust to outliers
and missing data and can handle data sets with noise or missing values. The disadvan-
tages are the following: (1) Easily overfitted: Decision trees are prone to overcomplicated
fitting of training data, resulting in the poor generalization of new data. (2) Local opti-
mization problem: the decision tree construction process is based on the local optimal
division strategy, which may lead to the obtained decision tree not being the global optimal.
(3) Sensitivity to changes in input data: small changes in the decision tree to the input
data may lead to significant changes in the tree structure, making it unstable. (4) Diffi-
culty in dealing with high-dimensional data: when the number of features is large, the
construction of the decision tree and the search space will become very large, requiring
high computational resources.

Support vector machine (SVM) is a common supervised learning algorithm mainly
used for classification and regression problems. The basic idea of SVM is to divide or regress
data by finding an optimal hyperplane in the feature space. Li et al. [10] selected vehicle
speed, acceleration, and distance from red light start time to stop line as classification
attributes and used unweighted and weighted least squares support vector machine (LS-
SVM) to solve the red-light running prediction problem. Rahman et al. [11] used linear
support vector machines and polynomial support vector machines to process vehicle
attribute data (e.g., speed, location, and arrival time) collected at the onset of the yellow
indication and ultimately predicted the driver’s stop-and-go decision based on the data.

SVM has the following advantages and disadvantages. The advantages are the
following: (1) Effective in high-dimensional spaces: by using kernel functions, SVM
can perform nonlinear classification and regression in high-dimensional feature spaces.
(2) Good generalization ability: SVM finds the optimal hyperplane by maximizing the
interval, which helps reduce the risk of overfitting and has good generalization ability.
(3) Good performance for datasets with small feature dimensions: SVM can provide good
performance when the feature dimensions are small. (4) Better robustness to outliers: since
SVM mainly focuses on the support vectors on the boundary, it has less effect on outliers.
The disadvantages are the following: (1) Longer training time for large-scale datasets:
the training time of SVM increases with the size of the dataset, especially when using
nonlinear kernel functions. (2) Need to choose appropriate kernel functions and hyperpa-
rameters: choosing the appropriate kernel functions and hyperparameters is critical to the
performance of SVMs.

RNN stands for Recurrent Neural Network. Unlike traditional feed-forward neural
networks, RNNs have temporal recurrent connectivity, enabling them to process sequential
data and tasks with temporal dependencies. RNN models include several common variants
and extensions of the following: Long Short-Term Memory (LSTM) network, Gated Recur-
rent Unit (GRU), Bidirectional RNN, Multi-layer RNN, and Attention Mechanism [12].

Zhou et al. [13] combined the historical trajectories of pedestrians, signalized intersec-
tion phase data, and risk factors to predict pedestrian trajectories at signalized intersections.
Intersection phase data and risk factors were used as inputs for the LSTM model to predict
future trajectories of pedestrians. Li et al. [14] established a bidirectional LSTM (BiLSTM)
and GRU to solve the long-distance dependence and reduce overfitting to improve the
prediction accuracy of electric vehicle speed. Cao et al. [15] developed a multi-layer LSTM
model to predict the trajectories of target vehicles at intersections with straight, left, and
right turns. Lian et al. [16] developed an attention-based LSTM (CA-LSTM) model and
combined it with the dynamic features of pedestrians to predict whether they would cross
a road with 89.68% accuracy. Alghodhaifi et al. [17] proposed a graph-based trajectory
prediction model for pedestrian–vehicle interactions called holistic spatio-temporal graph
attention (HSTGA), which accurately predicts pedestrian trajectories at unsignalized inter-
sections. Ji [18] extracted spatio-temporal features using an LSTM network and a graph
attention network (GAT) for the prediction of vehicle trajectory states at intersections. Yao
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et al. [19] used GAT-LSTM to study the interaction between motorized vehicles and mo-
torcycles, as well as the predicted trajectories and head-on orientations of vehicles during
left-turning vehicle–motorcycle encounters.

The LSTM network has the following advantages and disadvantages. The advantages
are the following: (1) Long-term memory capability: LSTM effectively solves the long-term
dependency problem through the gating mechanism and can memorize and process long-
term sequence information. (2) Anti-gradient vanishing: LSTM uses the gating mechanism,
which can effectively mitigate the gradient vanishing problem, enabling the network to
better train and learn long sequences. (3) Flexibility: the structure of LSTM can be flexibly
designed and extended according to the task requirements, such as stacking multiple
LSTM layers or combining them with other types of layers. The disadvantages are the
following: (1) Computational complexity: the LSTM is more computationally intensive
compared with the traditional RNN model and requires more computational resources.
(2) Larger number of parameters: LSTM introduces additional gating mechanisms and
state variables, which increases the number of parameters in the model and requires more
storage space for training and inference. (3) Hyperparameter adjustment: LSTM has
multiple hyperparameters, such as the number of hidden units, learning rate, etc., and
adjusting these hyperparameters takes time and computational resources.

The GRU has the following advantages and disadvantages. The advantages are the
following: (1) Simplified structure: GRU simplifies the structure of the gating unit and
reduces the number of parameters compared with LSTM, which makes the training and
inference of the network faster. (2) Fewer gating units: GRU has only two gating units, an
update gate and a reset gate, which is more concise compared with the three gating units
of LSTM. (3) Good performance: GRU performs similarly to LSTM on some tasks and even
better sometimes. The disadvantages are the following: (1) Larger number of parameters:
The number of parameters of the GRU model is relatively large, resulting in more storage
space required for training and inference. (2) Difficult to interpret: the internal operation
mechanism of GRU is relatively complex, and it is not easy to understand the specific
process and decision logic.

The Bidirectional RNN has the following advantages and disadvantages. The advan-
tages are the following: (1) Contextual information enrichment: the Bidirectional RNN
considers both past and future contextual information and can better capture relevant
features in the sequence. (2) Better representation: the Bidirectional RNN provides a more
comprehensive and richer representation of features by combining forward and reverse
information. The disadvantages are the following: (1) Computational complexity: the Bidi-
rectional RNN needs to run two RNNs in both forward and reverse directions, increasing
the amount of computation and training time. (2) Context symmetry: the Bidirectional RNN
assumes symmetry of the forward and reverse contexts, but in some tasks, the contexts
may be asymmetric, which may lead to an impact on the model performance.

The Multi-layer RNN has the following advantages and disadvantages. The advan-
tages are the following: (1) Stronger representation ability: by increasing the number of
layers of RNN, the nonlinear modeling ability of the network can be improved to better
capture features in complex sequences. (2) Rich representation hierarchy: each RNN layer
can extract features at different levels and gradually build a more abstract representation.
The disadvantages are the following: (1) Computational complexity: Multi-layer RNN
models consist of multiple RNN layers stacked together, which increases the computation
and training time. (2) Gradient vanishing and explosion: in deep RNNs, the problems of
gradient vanishing and gradient explosion may be more significant, and some techniques
are needed to mitigate these problems.

The Attention Mechanism has the following advantages and disadvantages. The
advantages are the following: (1) Contextual attention: the Attention Mechanism can
pay dynamic attention to different positions in the input sequence, thus better capturing
contextual information when processing sequence tasks. (2) Long-term dependency: the
Attention Mechanism can help the model to process long sequences efficiently, which en-
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ables the model to better remember and use the relevant information from a long distance.
(3) Interpretability: the Attention Mechanism can provide an explanation of the model’s
decisions, and by visualizing the attention weights, it can understand how much attention
the model pays to different parts of the model, which increases the interpretability and
credibility of the model. The disadvantages are the following: (1) Computational complex-
ity: the Attention mechanisms need to compute the attention weights, as well as weighted
aggregation of features, which increases the amount of computation. (2) Context length
limitation: the Attention Mechanism usually considers all the context information when
computing the attention weights, which may lead to computational and storage difficulties
when dealing with very long sequences.

CNN stands for Convolutional Neural Network. CNN has good feature extraction
capability and can effectively capture local and global features in data such as images and
text. Liang et al. [20] were able to correctly predict the intentions of pedestrians and cyclists
by building a CNN prediction model with an average accuracy of 84.96% and an absence
trigger rate of 0.037%. Sun et al. [21] proposed a Conv-LSTM model for predicting the
position of a left-turning vehicle at an intersection during a turn, which employs CNNs to
extract behavioral features at different times.

CNN has the following advantages and disadvantages. The advantages are the fol-
lowing: (1) Local feature extraction: CNN can effectively extract local features in images or
videos and has a good ability to model the local behavioral patterns of vehicles, pedestrians,
and other participants in traffic scenes. Through the filter operation of the convolutional
layer, CNN can capture visually important spatial features. (2) Spatial invariance: the CNN
has some translational invariance through the convolution and pooling operations, which is
robust to the positional changes, scale changes, and translational changes of the participants
in the traffic scene. Such a property allows CNN to handle image data from different cam-
era viewpoints. (3) Modeling on time: by taking multiple image frames as inputs, CNNs
can model the behavior of participants through the time dimension. By stacking multiple
convolutional and recurrent layers, CNNs can capture certain temporal information to
help predict the dynamics of participant behavior. (4) Parameter sharing and reduction of
overfitting: CNN can reduce the number of parameters of the model and the risk of overfit-
ting through parameter sharing and pooling operations and improve the generalization
ability of the model. The disadvantages are the following: (1) Large data demand: CNN
models usually require a large amount of annotated data for training, especially when
dealing with complex tasks or large-scale data sets. If the available data are limited, it may
cause the performance of the model to degrade. (2) Large number of parameters: With
the increase in the number of network layers and the number of convolutional nuclei, the
number of parameters in the CNN model will also increase. This results in models requiring
more computational resources for training and reasoning, which can be challenging for
resource-constrained devices. (3) Poor interpretability: Due to the complexity of CNN
models, they are often difficult to explain and understand. This can be a limiting factor in
some scenarios where the model needs to be explained. (4) Difficulty in hyperparameter
adjustment: the CNN-LSTM model involves more hyperparameters, such as convolution
kernel size and LSTM hidden unit number. Adjusting these hyperparameters may require
more trial and tuning, increasing the difficulty of tuning parameters.

In summary, the prediction of traffic participant behavior using machine-learning
methods has the advantages of being efficient, accurate, real-time, and adaptive, but there
are also challenges and limitations in terms of data requirements, data quality, model
complexity, and interpretability. These factors need to be weighed in the application, and
appropriate measures need to be taken to solve the related problems.

2.2. Probabilistic Model

The probabilistic modeling of driving behavior prediction refers to the estimation
of the corresponding probabilities for all possible future outcomes of a random variable,
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which allows behavior prediction [22]. Probabilistic modeling methods include Monte
Carlo simulation, the Kalman filter, the HMM, and dynamic Bayesian network.

Monte Carlo simulation is a simulation method based on probability and stochasticity
for solving complex problems or assessing uncertainty. It typically simulates the behavior
of a system by generating random samples and performs statistical analysis based on these
samples. Jeong [23] predicted the future behavior of vehicles approaching an intersection
using a sensor-based Monte Carlo simulation prediction module.

Monte Carlo simulation has the following advantages and disadvantages. The ad-
vantages are the following: (1) Dealing with complex problems: Monte Carlo simulation
can be used to solve complex problems or assess the behavior of complex systems, even
if these problems or systems do not have explicit analytical solutions. (2) Unrestricted
distributional assumptions: Monte Carlo simulation does not require specific distributional
assumptions about the data or the behavior of the system and can, therefore, be applied to a
wide variety of types of problems and data. (3) Consideration of uncertainty: Monte Carlo
simulation can consider uncertainty and variability in a problem by generating random
samples, thus providing probabilistic information about the outcome. (4) Flexibility: Monte
Carlo simulations can improve the accuracy of the results by increasing the number of
samples, so the accuracy of the calculations can be adjusted as needed. The disadvantages
are the following: (1) High computational cost: Monte Carlo simulation usually requires
many random samples to obtain accurate results, so the computational cost is relatively
high. (2) Possible sampling error: the results of Monte Carlo simulation are limited by the
number of samples, and the sampling error of the samples may lead to a bias in the results.
(3) Dimensionality catastrophe: in high-dimensional problems, many samples are required
to adequately cover the parameter space, leading to a sharp increase in computational
complexity. (4) The effect of randomness: the results of Monte Carlo simulation are affected
by random samples, and different random samples may lead to slightly different results,
which requires adequate sample size and statistical analysis.

The Kalman filter (KF) is an optimization filter for estimating and predicting the
state of a system. It is based on a linear system model and Gaussian noise assumptions
and provides an optimal estimate of the system state by recursively fusing the measured
data with the predictions of the system model. Chen et al. [24] developed an adaptive
KF-based model for vehicle following and merging behaviors. Qian et al. [25] proposed a
two-stage quantitative adaptive KF algorithm based on an autoregressive moving average
(MA) model to predict the vehicle state (including the direction of travel, lane of travel,
vehicle speed, and acceleration). Tan et al. [26] used an adaptive KF and integrated K-
nearest neighbor models for real-time vehicle trajectory prediction during predictive signal
phase transitions.

The KF has the following advantages and disadvantages. The advantages are the
following: (1) Optimality: The Kalman filter provides optimal estimates based on a linear
system model and Gaussian noise assumptions. Under these assumptions, the Kalman
filter obtains the minimum mean square error estimate of the system state. (2) Recursive:
the Kalman filter has a recursive structure that allows real-time state estimation based on
previous state estimates and measurements without the need to store large amounts of
historical data. (3) Efficient: since the Kalman filter is based on a linear system model, it
has relatively low computational complexity and is suitable for real-time applications and
environments with limited computational resources. The disadvantages are the following:
(1) Accuracy of the system model: the Kalman filter is sensitive to the accuracy of the
system model, and if the model is inaccurate or the parameters are incorrectly estimated,
it may lead to bias in the estimation results. (2) Dependence of initial conditions: the
Kalman filter is sensitive to the choice of initial state estimation and initial covariance, and
inaccurate initial conditions may affect the stability and accuracy of the estimation results.

The hidden Markov model (HMM) is a statistical model for modeling sequential data
with potentially unobserved states. It is an extension of the Markov chain that models
and analyzes sequential data by describing the probabilistic relationship between state
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sequences and observed sequences. Mao et al. [27] proposed a method for predicting
pedestrian crossing violations using logistic regression and Markov chain models. Naserne-
jad [28] modeled and investigated the collision avoidance mechanism between pedestrians
and vehicles in conflict situations using a Markov decision process (MDP) framework.
Zhang et al. [29] used a Kalman filter to update the kinematic parameters of the attitude of
the target vehicle. The turning behavior of the vehicle was then identified using the heading
angle and acceleration components in combination with an HMM and Bayesian filtering.

The HMM has the following advantages and disadvantages. The advantages are the
following: (1) Flexibility: the HMM can model sequence data with potentially unobserved
states and is applicable to various types of sequence data, such as natural language, speech,
and time series. It captures temporal dependencies and sequence structure in the data.
(2) Probabilistic modeling: the HMM provides a probabilistic way of modeling the prob-
abilistic relationship between system states and observations. This gives the HMM an
advantage in uncertainty modeling and inference problems by providing information about
the probability distribution of states and observations. (3) Sequence prediction: HMMs can
be used for the prediction of sequences of future observations. By estimating the probability
distribution of a given sequence of observations, the likelihood of the next observation or
a future segment of the observation sequence can be predicted. (4) Interpretability: The
parameters and probability distributions of the HMM can be estimated and interpreted
using statistical methods. This makes the results of the HMM interpretable, revealing
patterns, transitions, and associations in the sequence data. The disadvantages are the
following: (1) Independence assumption: the HMM assumes that the state of the system is
only related to the previous state, i.e., it satisfies the Markov property. This assumption
may not be applicable to some practical situations, such as long-term dependencies or
complex dependencies between states. (2) Computational complexity: In some complex
problems, the computational complexity of the HMM may be high. Especially when the
state space and observation space are large, many computations and storage are required
and may become infeasible. (3) Parameter estimation: parameter estimation of the HMM
usually depends on the quality and quantity of the observed data. When observation data
are scarce or noisy, parameter estimation may become inaccurate, and more data may be
required to improve the accuracy of the estimation.

Dynamic Bayesian network (DBN) is a probabilistic graphical model that extends
the concept of Bayesian Networks to model dynamic systems. It allows for modeling
and reasoning about systems that evolve over time by capturing dependencies between
variables at different time points. Sun et al. [30] proposed a multi-agent hybrid dynamic
Bayesian network (MHDBN) method that can predict the behaviors of multiple vehicles
and pedestrians in various scenarios, and Xu et al. [31] proposed a method for predicting
pedestrian trajectories according to a combination of pedestrian crossing behavior and
intention. Pedestrian behavior was identified using a Bayesian a posteriori model, and
pedestrian intention was identified using a dynamic Bayesian network. Xu [32] used a
dynamic Bayesian network to integrate pedestrian group behavior and signalized crossing
environment information. Subsequently, a crossing decision model and a motion model
were used to predict the group trajectory in the following few seconds.

The DBN has the following advantages and disadvantages. The advantages are the
following: (1) Temporal modeling: DBNs explicitly model the temporal dependencies
between variables, allowing for the representation of dynamic systems and capturing their
time-evolving behavior. (2) Flexibility: DBNs can handle both discrete and continuous
variables, making them applicable to a wide range of domains and problems. (3) Uncer-
tainty modeling: DBNs provide a principled way to represent and reason about uncertainty
in dynamic systems by propagating probabilities through time. (4) Inference capabilities:
DBNs enable various inference tasks, such as filtering, smoothing, and prediction, which
can be used for state estimation and prediction in time-series data. The disadvantages are
the following: (1) Computational complexity: Inference in DBNs can be computationally
demanding, especially for large or complex models. Exact inference is often intractable,
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and approximate methods or sampling techniques may be required. (2) Model specifi-
cation: Specifying the structure and parameters of a DBN can be challenging, especially
for complex systems. Determining the appropriate number of hidden variables and their
dependencies requires domain knowledge and expertise. (3) Data requirements: DBNs
typically require enough training data to estimate the model parameters accurately. Limited
or noisy data may lead to less reliable inference results. (4) Curse of dimensionality: As the
number of variables and time steps increases, the size of the joint probability distribution
grows exponentially, leading to the curse of dimensionality. This can make learning and
inference in DBNs computationally challenging.

In summary, the use of probabilistic modeling methods for predicting traffic partici-
pant behavior has the advantages of uncertainty modeling, flexibility, and interpretability,
but there are also challenges and limitations in terms of data requirements, assumption
limitations, computational complexity, and prediction accuracy. These factors need to
be considered comprehensively in applications, and suitable probabilistic models and
methods need to be selected according to specific situations.

2.3. Hybrid Method

A hybrid approach refers to combining several different methods or models to achieve
better performance or more comprehensive analysis results. Common hybrid methods
include the hybrid model, ensemble learning, stacked integration, and hybrid optimization.

A hybrid model combines multiple probability distribution functions into a single
model, with each distribution function corresponding to a submodule or subpopulation. By
combining different sub-models in a weighted manner, data can be modeled and predicted
more accurately. Common mixture models include a mixture of Gaussian and mixture
Bayesian networks.

Hardy et al. [33] proposed an adaptive Gaussian mixture model (aGMM) formula
for multi-step probabilistic state prediction using a non-parametric Gaussian process (GP)
regression model. The proposed prediction algorithm is suitable for any dynamic sys-
tem, which is difficult to model parametrically, but the data are available. The proposed
adaptive GP-AGMM formula is suitable for the prediction of driver behavior at road inter-
sections using the GP driver behavior model combined with the parametric vehicle model.
Jiang et al. [34] proposed a probabilistic vehicle trajectory prediction method based on a
dynamic Bayesian network (DBN) model that incorporates the driver’s intention, maneu-
vering behavior, and vehicle dynamics. A Gaussian mixture model-hidden Markov model
was designed by selecting the most relevant feature vectors using joint mutual information,
and the model was used as a node in the DBN to recognize the driver’s intention.

The mixture models have the following advantages and disadvantages. The advan-
tages are the following: (1) Flexibility: The hybrid model is very flexible and can be adapted
to various forms of data distribution. By combining multiple simple distributions, com-
plex data distributions can be modeled, including multi-peaked distributions, asymmetric
distributions, and so on. (2) Powerful: The mixture model can represent more complex
data structures and generative processes, including multiple potential subpopulations or
hidden states. It can capture different patterns and clusters in the data, providing more
detailed data analysis and pattern recognition capabilities. (3) Probabilistic modeling: The
mixture model provides probabilistic modeling of the data, allowing for the calculation
of the probability that a data point belongs to each component. This allows tasks such
as probabilistic inference, statistical analysis, and outlier detection. (4) Parameter estima-
tion: Parameter estimation for mixed models can usually be performed using standard
maximum likelihood estimation or Bayesian inference methods. These methods have been
widely studied and applied to efficiently estimate model parameters. The disadvantages
are the following: (1) Model selection: The performance and fitting ability of a mixed model
is highly dependent on the choice of the number of components and distribution. The
selection of an inappropriate number of components or type of distribution may lead to the
overfitting or underfitting of the model, thus affecting the accuracy of the modeling results.
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(2) Computational complexity: the computational complexity of hybrid models is usually
high, especially in the case of high-dimensional data or large datasets. (3) Initial value
sensitivity: the parameter estimation for hybrid models usually requires the selection of ap-
propriate initialization values. Inappropriate initialization values may cause the algorithm
to fall into a local optimum solution, thus affecting the model fit and performance. (4) Data
requirements: hybrid models usually require a large amount of data support, especially in
the case of complex data models and high-dimensional data. For cases with a small amount
of data or poor data quality, it may lead to inaccurate results.

Ensemble learning (EL) is a machine-learning method that improves overall prediction
performance by combining predictions from multiple base learners. Common types of en-
semble learning include random forest, Boosting, including AdaBoost (Adaptive Boosting),
Gradient Boosting, and XGBoost.

Yang et al. [35] conducted a study using a random forest approach to investigate the
level of contribution of 13 features of human driver decision-making to decision-making in
unsignalized intersections. They invited 30 skilled driver participants to test in a real-time
driving simulator. For the test, they designed a variety of traffic scenarios with different
motion styles to simulate real traffic situations. Jahangiri et al. [36] used a random forest
(RF) machine-learning technique to build a predictive model for red-light running (RLR)
violations. Sensitivity analyses showed that the importance of factors for identifying RLR
violations changed when the prediction model was built with data from different time
frames. Time to Intersection (TTI), Distance to Intersection (DTI), Required Deceleration
Parameter (RDP), and Speed at the onset of the yellow indication were the most important
factors identified by the models constructed using observed and simulator data.

Random forests have the following advantages and disadvantages. The advantages
are the following: (1) High accuracy: Random forest can improve the overall prediction
accuracy by integrating the prediction results of multiple decision trees to get the final
prediction. It can effectively handle complex nonlinear relationships and high-dimensional
feature spaces. (2) Robustness: random forest has better robustness to noise and outliers.
Since each decision tree is trained based on a randomly sampled subsample and a random
subset of features, random forest reduces the risk of overfitting and can handle incomplete
or missing data. (3) Feature importance evaluation: Random forest can calculate the
importance of each feature and evaluate how much it contributes to the prediction based
on the split contribution of the feature in the tree. This is helpful for analyzing key features
of traffic participant behavior and feature selection. (4) Parallelization: the decision tree
in random forest can be trained and predicted in parallel, so it has better computational
efficiency when dealing with large-scale datasets. The disadvantages are the following:
(1) Poor interpretability: the prediction results of the random forest model are harder to
interpret relative to individual decision trees. Since random forest is integrated through
multiple decision trees, it is difficult to intuitively understand the decision-making process
of the model. (2) Parameter adjustment: There are some parameters in random forest
that need to be adjusted, such as the number and maximum depth of decision trees. In
practice, the best combination of parameters needs to be selected by methods such as cross-
validation. (3) Memory consumption: random forests need to store multiple decision tree
models and thus may require larger memory space when dealing with large-scale datasets.
(4) Training time: Compared with simple linear models, the training time of random forests
is usually longer, especially when the number of decision trees is large. However, training
time can be improved by parallelization and other optimization techniques.

Sethuraman et al. [37] proposed an AdaBoost multi-class support vector machine
(MSVM) with Cat Mouse Optimizer (CMO) algorithm for Advanced Driver Assistance
System (ADAS) Intrusion Detection to categorize normal and abnormal activities of the
driving vehicle. Xu et al. [38] used the Light Gradient Booster Machine (LGBM) algorithm
to construct a model for the detection of anomalous lane-changing behavior. The model
integrates information from surrounding vehicles, which helps to extract feature parameters
while considering vehicle interactions and distinguishing different stages of lane changing.
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Liu et al. [39] proposed an XGBoost model-based algorithm for connected and self-driving
vehicles for determining their trajectories, considering surrounding vehicles, and predicting
the acceleration the target vehicle should take based on the current state of the target vehicle
and its lead vehicle.

The AdaBoost has the following advantages and disadvantages. The advantages
are the following: (1) High accuracy: Boosting can build a strong classifier by combining
multiple weak classifiers to improve the overall prediction accuracy. It can effectively
handle nonlinear relationships and high-dimensional feature spaces and is suitable for
modeling complex traffic participant behavior. (2) Adaptive: Boosting focuses on samples
misclassified by the previous round of classifiers by adjusting the sample weights to
enhance the learning ability of these samples. This adaptivity makes Boosting robust when
dealing with difficult samples and noisy data. (3) Feature importance evaluation: The
Boosting algorithm evaluates the importance of features, i.e., which features contribute
the most to the prediction. This is very helpful for understanding the key features of
traffic participant behavior and feature selection. (4) Better interpretability: Boosting
algorithms usually use simple weak classifiers (e.g., decision trees) and, therefore, have
better interpretability. The decision-making process of the model is relatively intuitive and
easy to understand and explain. The disadvantages are the following: (1) Sensitivity to
noise and outliers: the adaptive nature of Boosting may lead to overfitting and sensitivity
to noise and outliers in the training data. In the presence of noise or outliers in the data,
Boosting may lead to the degradation of model performance. (2) Parameter adjustment:
there are some parameters in the Boosting algorithm that need to be adjusted, such as
the number of iterative rounds and the learning rate. In practice, the best combination of
parameters needs to be selected by methods such as cross-validation. (3) Longer training
time: Compared with a single weak classifier, the training time of the Boosting algorithm
is usually longer. Since Boosting trains multiple classifiers serially, each iteration needs
to be trained based on the model of the previous round, so the training time is longer.
(4) Requirements on data distribution: the Boosting algorithm assumes that the training
data are independently and identically distributed, and for unbalanced data or the presence
of class imbalance, additional processing or weight adjustment may be required.

Stacking ensembles, also known as stacked ensembles, or stacking models, are a type
of ensemble learning method that combines the predictions of multiple base models by
training a meta-model to make a final prediction. The key idea behind stacking ensembles
is to leverage the diverse predictions of the base models to improve the overall predictive
performance. Khoshkangini et al. [40] proposed a multi-task snapshot stacked ensemble
(MTSSE) deep neural network to transfer knowledge from high-resolution data and to make
vehicle behavior predictions from low-resolution but high-dimensional data aggregated by
vehicles over time. Horng et al. [41] proposed a stacked bidirectional long-term memory
neural network (Bi-LSTM) to predict the in-wheel turn trajectories of large vehicles at
intersections. The model predicted the trajectories in the next second with an accuracy of
87.77%, and it predicted the trajectories 2 s later with an accuracy of 75.75%. Zhou et al. [42]
proposed a pedestrian crossing behavior prediction network for surveillance videos. The
network achieves the accurate prediction of pedestrian crossing behavior through a new
cross-stacked GRU structure that integrates pedestrian pose, local environment, and global
environment features.

The stacking ensembles have the following advantages and disadvantages. The ad-
vantages are the following: (1) High predictive performance: By combining the predictive
results of multiple base models, stacking integration can achieve higher predictive perfor-
mance than a single base model. It can leverage the strengths of different models to provide
more accurate and robust predictions. (2) Model diversity: Stacking integration can use
different types of base models, such as decision trees, support vector machines, neural
networks, etc., thus increasing model diversity. This helps capture the complementarities
between different models and improves overall performance. (3) Flexibility: Stacking
integration can choose the right base model for a specific task and achieve better perfor-
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mance by tuning the meta-model. This flexibility makes stacking useful when dealing with
complex tasks, such as traffic participant behavior prediction. (4) Feature combination: the
stacking integration can capture higher-order feature interactions by performing feature
combinations from the prediction results of the base model. This helps to extract underlying
nonlinear relationships and improve the expressive power of the model. The disadvantages
are the following: (1) Longer training time: Since stacking integration involves training
multiple base models and a meta-model, it can take longer to train as compared to a
single model. This is due to the need for multiple-model training and prediction, as well
as the meta-model training process. (2) Complexity: Stacking integration requires the
training and prediction of multiple models and meta-model training and prediction at
the top level and, hence, may be more complex in implementation and tuning processes.
The careful selection and tuning of base models, as well as meta-models, is required for
optimal performance. (3) Requirements on the amount of data: Stacking integration usually
requires more data to train and validate multiple models, as well as meta-models. If there
is less training data, it may lead to overfitting or performance degradation. (4) Poor model
interpretation: Since stacking integration uses the prediction results of multiple models
to make the final prediction, the model interpretation is relatively poor. Compared with
a single model, the decision-making process of stacking integration is more complex and
difficult to explain intuitively.

Hybrid optimization refers to the combination of multiple optimization techniques or
algorithms to solve complex optimization problems. It aims to leverage the strengths of
different optimization methods to improve the overall performance and efficiency of the
optimization process. Xie et al. [43] proposed a dynamic Bayesian network DBA model,
which consists of three layers: the observation layer, the hidden layer, and the behavioral
layer. In order to improve the performance of the DBA model, a distributed genetic
algorithm (GA) was used to optimize the network structure. A comprehensive model
consisting of a back-propagation (BP) neural network model optimized by the particle
swarm optimization (PSO) algorithm and a continuous recognition model was developed
by Wang et al. [44]. Hu et al. [45] developed a neural network lane change trajectory
prediction model with hyperparametric optimization capabilities to predict vehicle lane
change behavior considering lane change intentions using Bayesian optimization and GRU.

Hybrid optimization algorithms have the following advantages and disadvantages.
The advantages are the following: (1) Comprehensive advantage: Hybrid optimization
algorithms can combine the advantages of multiple optimization algorithms and overcome
the limitations of various algorithms. By combining different optimization strategies
and search methods, a more comprehensive and powerful optimization performance
can be obtained. (2) Convergence improvement: Hybrid optimization algorithms can
improve convergence by applying different algorithms to different optimization stages or
different search spaces. Different algorithms may have better search capabilities in different
search spaces or problem phases, thus speeding up the convergence of the optimization
process. (3) Robustness enhancement: Hybrid optimization algorithms can improve the
robustness of the algorithms and have better adaptability to non-convex, multi-peaked,
and complex optimization problems. By combining the features of different algorithms,
they can better cope with local optima and changes in the search space in the problem.
(4) Interpretability: Hybrid optimization algorithms are usually based on the combination
of some known and proven optimization algorithms and are, therefore, relatively easy to
explain and understand. This helps to analyze and tune the performance of the algorithms,
as well as model interpretation and the interpretation of the prediction of traffic participant
behavior. The disadvantages are the following: (1) Complexity: Hybrid optimization
algorithms are more complex compared with single optimization algorithms and need
to consider the combination and interaction of multiple algorithms. This increases the
difficulty of implementing and tuning the algorithms and requires more experiments and
domain knowledge. (2) Parameter tuning: Hybrid optimization algorithms usually involve
parameter tuning of multiple algorithms, which requires more computational resources
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and time. The careful tuning and optimization of the parameters of each algorithm is
required to obtain the best performance. (3) Algorithm selection: Hybrid optimization
algorithms require the selection of appropriate optimization algorithms and combination
methods, which depend on specific problems and data characteristics. Wrong algorithm
selection or configuration may lead to performance degradation or failure to converge.

In summary, the prediction of traffic participant behavior using hybrid methods can
combine the advantages of multiple models and methods to improve prediction perfor-
mance and robustness. However, it also faces challenges in terms of complexity, data
requirements, efficiency, and interpretability. These factors need to be weighed in the
application, and appropriate hybrid methods and strategies need to be selected according
to the specific situation.

3. Behavioral Decision-Making in AVs

Behavioral decision-making is evaluated according to the driving needs and driving
tasks of the driver and passenger, based on the traffic rules and situational awareness of
the behavioral prediction results, and combined with the global path and the surrounding
environment information to make a reasonable human-like driving behavior. Behavioral
decision-making is the key to whether the vehicle can accurately complete a variety of
driving tasks and should be able to ensure that automatic driving requires a very high level
of safety and reliability.

Drawing on the existing research, behavioral decision-making can be classified into
three categories: reactive, learning, and interactive. Figure 3 presents a summary of the
relevant studies.
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3.1. Reactive Decision-Making

AVs rely on reactive decision-making, which involves logical strategic reasoning based
on a priori information mechanisms, such as causal properties and mapping relationships
between traffic situation cognition and the causes of behavioral decision-making.
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The accurate assessment and quantification of the situational risk of dynamic envi-
ronments using AVs are prerequisites for identifying potential risks and making rational
and effective decisions. The main risk indices involved in situational risk assessment are
time-to-collision exposure (TET), time-to-collision integration (TIT), the time-to-rear-end
collision exposure risk index (TERCRI), lane change conflict (LCC), and the number of
critical jerks (NCJ) [46], which require the derivation of related indices or the fusion of
multiple indices [47].

The risk indicators have the following advantages and disadvantages. The advan-
tages are the following: (1) Comprehensive performance assessment: Risk indicators can
provide a comprehensive assessment of decision-making options by considering different
risk factors and objectives together. It can help decision-makers make more accurate and
comprehensive decisions when considering multiple factors rather than focusing solely
on a single indicator or objective. (2) Risk management: Risk indicators can help decision-
makers identify and manage potential risks. By quantifying and assessing the risk level of
different decision options, decision-makers can take appropriate measures to reduce risk
and improve the reliability and robustness of decisions. (3) Decision-making flexibility:
Risk indicators can be customized and adjusted according to specific situations and needs.
Decision-makers can adjust the weights and calculations of risk indicators according to
their own preferences and risk preferences to adapt to different decision-making environ-
ments and objectives. (4) Decision-making transparency: The use of risk indicators can
provide transparency and interpretability in decision-making. Decision-makers can have a
clear understanding of the source of risk and calculation of decision outcomes, making the
decision-making process more credible and understandable. The disadvantages are the
following: (1) Subjectivity: The selection and weighing of risk indicators usually involves
subjective judgment. Different decision-makers may have different risk perceptions and
preferences, leading to different decision outcomes. This may introduce subjectivity and
uncertainty, affecting the consistency and comparability of decisions. (2) Data uncertainty:
The calculation of risk indicators usually relies on reliable data and models. If data are
incomplete or subject to uncertainty, the accuracy and reliability of risk indicators may be
compromised. This can lead to biased and misleading decision-making results. (3) Com-
plexity: The calculation of risk indicators often involves a combination of multiple variables
and indicators, which increases the complexity of the decision-making process and com-
putational costs. Appropriate tools and techniques are needed to effectively calculate and
assess risk indicators. (4) Difficulty in obtaining information: Some risk factors may be
difficult to quantify or obtain relevant data. This may lead to limitations in the calculation of
risk indicators, limiting the overall assessment of risk and the accuracy of decision-making.

Accordingly, researchers have visualized abstract risk levels through the artificial
potential field (APF) theory [48,49]. Hamid et al. [50] proposed an intersection collision
avoidance architecture consisting of an APF for motion planning and nonlinear model
predictive control (NMPC) as a path-tracking strategy. Xu et al. [51] used the APF theory to
achieve decision-making and the movement of turning vehicles.

The artificial potential field has the following advantages and disadvantages. The ad-
vantages are the following: (1) Real-time response: the algorithm offers quick adaptability
to dynamic environments, reacting promptly to changes based on perceived information.
(2) Simple and intuitive: Its concept is straightforward, making it easy to grasp and im-
plement. By employing attractive and repulsive forces, it enables autonomous obstacle
avoidance and target searching. (3) Robustness: it is capable of handling complex and
uncertain situations by relying on local perception and decision-making, thus enhancing
its resilience. (4) Efficiency: it has high computational efficiency due to its reliance on
local sensing and decision-making, eliminating the need for global path planning and map
building, facilitating real-time execution. The disadvantages are the following: (1) Local
optimum: it is prone to getting stuck in local optimal solutions, as it focuses on local
perception and decision-making, potentially hindering global goal attainment or obstacle
avoidance. (2) Collision risk: there is a risk of collisions when navigating around obstacles,
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as the algorithm’s reliance on repulsive forces might lead to unstable motion, increasing the
likelihood of collisions with objects. (3) Parameter adjustment: there is difficulty in parame-
ter adjustment, as different environments and tasks necessitate varying parameter settings.
Tuning parameters often requires extensive trial and error, especially in complex scenarios.

Bayesian networks and MDPs have also been used for situational assessment. Noh [52]
used a standalone distributed inference structure to identify potential threats (vehicles) and
collision zones in future paths using threat metrics, Bayesian networks, and time-window
filtering. Sun [53] proposed a modified obstacle mutual collision avoidance (MORCA)
prediction model to predict the trajectory of an agent vehicle, and on the basis of MORCA,
a partially observable Markov decision process (POMDP) framework was developed.

The Bayesian networks have the following advantages and disadvantages. The advan-
tages are the following: (1) Uncertainty modeling: it effectively deals with uncertainty by
modeling and representing probabilistic relationships between variables, enabling accurate
assessment of risks and decision effects in the presence of incomplete or uncertain infor-
mation. (2) Comprehensive performance analysis: it allows for a thorough performance
analysis of decision-making scenarios through probability-based reasoning, providing
insights into possible outcomes, their probabilities, expected values, or other relevant
metrics, thus aiding in informed decision-making. (3) Flexibility and interpretability: it
provides a flexible and interpretable modeling framework that can be customized and
adapted to specific problems, with results and inference processes represented through
probabilistic and graphical means, enhancing the intuitive understanding and interpreta-
tion of decision outcomes. (4) Applicable to complex environments: suitable for complex
environments and problems due to its ability to handle many variables and complex proba-
bilistic relationships, capturing interactions and dependencies between multiple factors
in multivariate and multi-objective decision-making problems. The disadvantages are the
following: (1) Data requirements: The modeling and inference in Bayesian networks require
substantial data support. It requires accurate prior probabilities and conditional probability
distributions, which may be difficult to obtain or estimate for some problems. If the data
are insufficient or inaccurate, the modeling and inference results of Bayesian networks may
be affected. (2) Computational complexity: For large-scale and complex Bayesian networks,
the computational and inference complexity may be high. Inference in Bayesian networks
involves computing joint probability distributions between variables, which may require
efficient algorithms and computational resources to handle. In some cases, computational
complexity may be a limiting factor in applying Bayesian networks. (3) Prediction error:
The inference results of Bayesian networks depend on the accuracy of the model and the
quality of the data. If there is an error in the model or data, the prediction results of Bayesian
networks may have some error. This requires the decision-maker to interpret and evaluate
the results appropriately when using Bayesian networks for decision-making.

The Markov decision-making process has the following advantages and disadvan-
tages. The advantages are the following: (1) Modeling flexibility: MDP provides a flexible
modeling framework that enables the modeling of environmental and decision-making
problems. By defining state, action, and reward functions, as well as state transfer probabil-
ities, MDP captures the dynamics of the environment and the impact of decision-making,
enabling the modeling and optimization of decisions. (2) Optimal decision-making: MDP
allows to find the optimal decision-making strategy through mathematical optimization
methods. By defining a reward function and an objective function, optimal strategies can
be computed using dynamic programming, augmented learning, and other methods to
maximize long-term cumulative rewards or to achieve specific goals. This enables MDPs
to find optimal decision-making solutions in either deterministic or stochastic environ-
ments. (3) Long-term considerations: MDP can consider long-term decision implications.
By considering the discounting of future rewards, MDPs can weigh immediate and fu-
ture rewards in the decision-making process and avoid focusing on immediate benefits at
the expense of long-term benefits. This makes MDP suitable for decision problems that
require long-term planning and the consideration of future impacts. The disadvantages
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are the following: (1) State space dimension: The performance of MDP is affected by the
state space dimension. As the state space dimension increases, the solution complexity
of MDP increases exponentially. For problems with large state spaces, such as complex
real-time environments or high-dimensional systems, the solution of MDP may become
difficult or even infeasible. (2) Temporal limitation: MDP usually assumes that decisions are
made based on the current state without considering the influence of historical states. This
Markov property may not be applicable to some problems where the influence of past states
on the current decision is important. In such cases, MDP may not be able to adequately
consider historical information, leading to limitations in decision-making. (3) Reward
design: the performance of MDP is highly dependent on the design of the reward func-
tion. Properly designing the reward function is a challenging task that requires balancing
immediate rewards with long-term goals and avoiding potential optimization biases or
undesirable behaviors. An ill-conceived reward function may lead to the degradation of
MDP’s performance or produce unintended decision strategies.

Decision trees can represent a decision-making mechanism as a visual tree structure,
which can be regarded as a reactive rule-based decision-making method that traverses and
searches for driving actions. Xin et al. [54] investigated the “wait-or-leave” behavior of
pedestrians at signalized intersections using trajectory data and a decision-tree method.
Zhang [55] used a decision tree to search for the optimal strategy and used the prediction
results to perform a risk assessment of vehicles at an intersection. The results were used to
assess the risk to vehicles at intersections.

Decision trees have the following advantages and disadvantages. The advantages are
the following: (1) Intuitive and easy to understand: Decision trees provide an intuitive ap-
proach to decision modeling. It makes the decision process and results easier to understand
and interpret by visualizing the decision process as a tree structure. The nodes of a decision
tree represent the decision points, the branches represent the decision conditions, and the
leaf nodes represent the decision results, which gives the decision tree an advantage in
terms of interpretability. (2) Feature selection: Decision trees can automatically select the
most relevant features for decision-making. By selecting the best-dividing features at each
node, the decision tree is able to identify the features that are most discriminating to the de-
cision, thus improving the accuracy of the decision. This gives decision trees an advantage
when dealing with large numbers of features or high-dimensional data. (3) Robustness:
Decision trees are robust to noise and missing values in the data. Since the segmentation
process of the decision tree is based on features, it is relatively insensitive to outliers and
missing values in the data. This allows the decision tree to provide better decision-making
ability even when the data are of poor quality or contain noise. (4) Non-parametric: A
decision tree is a non-parametric model that makes no assumptions about the data distribu-
tion. This gives decision trees the flexibility to work with data with complex or nonlinear
relationships without being limited by distributional assumptions. The disadvantages are
the following: (1) Overfitting risk: Decision trees are prone to overfitting the training data.
When a decision tree is too complex or too deep, it may learn the training data’s special
cases in too much detail and fail to generalize to new unseen data. Overfitting can cause the
decision tree to be overly sensitive to noise or irrelevant features, affecting the accuracy of
the decision. (2) Instability: Decision trees are sensitive to small changes in the input data,
which can lead to unstable decision results. Small data changes or slight changes in samples
may lead to completely different decision tree structures, which may lead to inconsistent
decisions. (3) Local optimization problem: The decision tree partitioning process is based
on a greedy algorithm that selects the current best partitioning feature each time. However,
this greedy strategy may cause the decision tree to fall into a local optimal solution and fail
to reach the global optimal solution. (4) Lack of processing of continuous data: Decision
trees are mainly suitable for processing discrete features and data. For continuous data,
decision trees need to be discretized, which may lead to loss of information or introduce
additional processing complexity.
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Fuzzy logic and expert systems are typical decision-making methods that employ
reactive rules. Fuzzy logic can express experience and knowledge with unclear boundaries,
is effective at dealing with fuzzy relationships, and can simulate the reactive rule-based
reasoning logic implemented by the human brain. Tian [56] developed a fuzzy reason-
ing system to solve the problem of the assessment limitations and uncertainties caused
by experts’ inability to provide clear scores despite the availability of scoring criteria
for risk assessment. A fuzzy risk assessment model based on a fuzzy inference system
was proposed.

The fuzzy logic has the following advantages and disadvantages. The advantages are
the following: (1) Dealing with ambiguity: Fuzzy logic can effectively deal with vague
and uncertain information. Unlike traditional binary logic (true or false), fuzzy logic
allows variables to have continuous degrees of affiliation that can represent ambiguity or
uncertainty. This makes fuzzy logic suitable for decision-making scenarios where ambiguity
and uncertainty are present in real-world problems. (2) Flexibility: Fuzzy logic provides
a flexible approach to decision modeling. By defining fuzzy sets, fuzzy rules, and fuzzy
inference mechanisms, fuzzy logic can be applied to a variety of domains and problems.
Fuzzy logic allows for the adaptation and optimization of specific situations and needs,
making the decision-making process more flexible and customizable. (3) Interpretability:
Fuzzy logic provides an interpretable framework for decision-making. Fuzzy rules are
defined based on the knowledge and experience of human experts, so their decision-
making process and results are easier to understand and interpret. This gives fuzzy logic an
advantage in decision-making scenarios that require transparency and interpretability, such
as medical diagnosis or risk assessment. (4) Multimodal decision-making: Fuzzy logic can
handle multimodal decision-making situations. It can combine different input variables
and rules to generate multiple possible decision outcomes. This enables fuzzy logic to
cope with complex decision scenarios, including situations with multiple decision factors
and multiple goals. The disadvantages are the following: (1) Difficulty in knowledge
acquisition: The application of fuzzy logic relies on the knowledge and experience of
domain experts. Acquiring and defining accurate fuzzy sets, fuzzy rules, and affiliation
functions can be challenging and requires a lot of time and effort. The lack of domain
experts or inaccurate knowledge may lead to the degradation of fuzzy logic performance.
(2) Overfuzzy: Fuzzy logic may suffer from being overfuzzy when dealing with ambiguity.
Excessive fuzzification may lead to decision-making results that are too conservative or
inaccurate to fully use the available information. Therefore, the degree of fuzzification
needs to be balanced when designing a fuzzy logic system in order to obtain accurate
and useful decision results. (3) Data requirements: Fuzzy logic requires a large amount
of data to support the definition of fuzzy sets and affiliation functions. Lack of sufficient
data may lead to the inaccuracy of fuzzy sets and the invalidity of fuzzy rules. Therefore,
before applying fuzzy logic, it is necessary to ensure that there is enough reliable data
available. (4) Computational complexity: The computational complexity of fuzzy logic may
be high. Especially in larger-scale problems and complex sets of fuzzy rules, fuzzy logic
may require more computational resources and time to generate decision results. Therefore,
computational complexity needs to be evaluated, and performance requirements need to
be considered in practical applications.

Reactive decision-making generally offers clear mechanism logic, a relatively simple
structure, and good interpretability. However, the typical reactive rule-based approach
makes behavioral decisions from macro and meso perspectives and lacks consideration
from a micro perspective. The “one-time decision-making approach”, which relies on
a collection of inductive reasoning skills, is inadequate for coping with the complexity,
stochasticity, and uncertainty of dynamic traffic.
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3.2. Learning Decision-Making

Decision-making in machine learning is primarily based on data analysis and expe-
rience to obtain laws and correlations. The training model is continuously optimized to
allow AVs to make reasonable decisions.

Reinforcement learning is commonly used to learn human behavior because its archi-
tecture and learning approach are based on the human learning process [57]. Xu et al. [58]
proposed a reinforcement learning approach for autonomous decision-making in intelligent
vehicles on motorways. In the proposed method, the sequential decision-making prob-
lem for lane changing and overtaking is modeled as a Markov decision-making process
with multiple objectives, including safety, speed, and smoothness. Furthermore, deep
reinforcement learning (DRL) [59–61] was used to achieve optimal driving action deci-
sions [62–64]. In addition to the reinforcement learning-based behavioral decision-making
methods, support vector machines [65] are widely used for driving action decision-making.

Reinforcement learning has the following advantages and disadvantages. The advan-
tages are the following: (1) Adaptability: Reinforcement learning can adapt to change and
uncertainty as it continuously interacts and learns from its environment. It can optimize
decision-making strategies through trial and error and feedback mechanisms to adapt to
different situations and goals. (2) Autonomy: Reinforcement learning is an autonomous
learning method where the decision-maker can choose actions autonomously based on the
current state and environmental feedback. This allows reinforcement learning to learn and
make decisions without explicit rules or guidance. (3) Coping with complexity: Reinforce-
ment learning can cope with complex decision-making problems, including situations with
many states and action spaces. It can search for optimal decision-making strategies through
value functions and policy optimization methods to achieve the goal of maximizing long-
term gains. (4) Learning by interacting with the environment: Reinforcement learning
learns by interacting with the environment in real-time and can obtain actual feedback
and reward signals. This makes the learning closer to the actual application scenarios and
enables the decision-making strategies to be optimized in practice. The disadvantages
are the following: (1) Training complexity: The training process of reinforcement learning
is usually complex and time-consuming. Many interactions and attempts are needed to
search for the optimal policy, and multiple rounds of training and tuning may be required.
This can be a challenge for some complex problems and large-scale decision spaces. (2) Data
efficiency: Reinforcement learning usually requires a large amount of experimental and
interaction data for learning. This may require multiple attempts and iterative training in
real-world environments to obtain sufficient empirical data. In some applications, obtaining
real-world data can be costly and risky. (3) Balance between strategy exploration and use:
Reinforcement learning requires a balance between exploring new decision strategies and
using known ones. In the early learning phase, strategy exploration may lead to perfor-
mance degradation, while in the later phase, over-reliance on known strategies may cause
to miss better choices. Therefore, the balancing mechanism between strategy exploration
and use needs to be carefully designed and adjusted. (4) Dependence on reward design:
The effectiveness of reinforcement learning relies heavily on the design of reward signals. If
the reward signal is unreasonable or inaccurate, it may lead to bias in the learning process
or failure to achieve the desired effect. Therefore, designing appropriate reward functions
is an important challenge in reinforcement learning.

Deep reinforcement learning has the following advantages and disadvantages. The
advantages are the following: (1) Automatic feature learning: Deep reinforcement learning
combines deep neural networks and reinforcement learning methods to be able to automat-
ically learn feature representations of input data through neural networks. This allows the
model to extract high-level features from the raw data without the need to manually design
features, resulting in better adaptation to different decision-making tasks. (2) Handling
high-dimensional data: Deep neural networks excel at handling high-dimensional data
and can effectively process complex data, such as images, text, and speech. This gives deep
reinforcement learning advantage in decision-making problems with rich perceptual infor-
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mation to better understand and use the inputs from the environment. (3) Generalization
ability for state representation: Deep reinforcement learning can be trained to give neural
networks the ability to generalize to states. This means that the model can take similar
actions based on similar states and thus be able to make sound decisions when faced with
unseen states. The disadvantages are the following: (1) High data requirements: Deep
reinforcement learning usually requires a large amount of training data to train neural
networks. This may require many interactions and experiments that consume a lot of time
and computational resources. In some tasks and domains, obtaining large-scale data can
be difficult and expensive. (2) Training instability: The training process of deep neural
networks may not be stable enough and is prone to training non-convergence or overfitting
problems. Adjusting the network structure and optimizing the algorithm and hyperparam-
eter selection requires some experience and skill to ensure the stability and performance
of training. (3) Limited interpretability: The black-box nature of deep neural networks
limits the interpretability of the model. In some cases, it is difficult to understand how the
model makes decisions, which may limit the ability to explain and interpret the decision-
making process and results. (4) Requirement of large amounts of computational resources:
The training process of deep reinforcement learning usually requires large amounts of
computational resources, including high-performance hardware and large-scale storage
space. This may limit the application and generalization of deep reinforcement learning in
resource-limited environments.

Optimization theory ideas are incorporated into the decision-making process, whereby
an autonomous vehicle (AV) can select the optimal driving action from the action space
according to demand criteria, including access efficiency, smoothness, and safety. For
example, Furda [66] proposed multi-criteria decision-making, which is refined into four
levels with 11 criterion attributes, and the established method can satisfy certain real-
time requirements. Similarly, optimization theory has been employed for identifying
optimal decisions in MDPs. For example, Desjardins et al. [67] used optimization theory
for longitudinal driving behavior decision-making for adaptive cruising conditions.

Optimization theory has the following advantages and disadvantages. The advantages
are the following: (1) Optimality: Optimization theory can help self-driving vehicles find
the optimal decision-making solution under given constraints. By building mathematical
models and defining objective functions, optimization theory can provide accurate numeri-
cal solutions that enable self-driving vehicles to maximize or minimize desired performance
metrics under various constraints. (2) Flexibility: Optimization theory provides a flexible
framework that can be tailored to specific scenarios and needs. By adjusting the objec-
tive function and constraints, the decisions of an autonomous vehicle can be optimized
according to different objectives and preferences, such as shortest path, minimum energy
consumption, or maximum safety. (3) Complex environment response: Optimization theory
can respond to complex traffic environments and variable traffic conditions. By considering
multiple factors and variables, such as vehicle speed, traffic flow, road restrictions, etc.,
self-driving vehicles can use optimization models to make adaptive decisions and adjust
driving strategies in different situations. (4) Real-time: Optimization theory can support
real-time decision-making. Through efficient optimization algorithms and computational
techniques, self-driving vehicles can generate optimal decision-making solutions in a short
period of time to cope with rapidly changing traffic conditions and obstacles. The disadvan-
tages are the following: (1) Assumption limitation: Optimization theory is usually based on
several assumptions and preconditions, such as the convexity of the objective function and
the linearity of the constraints. In real problems, these assumptions may not always hold,
leading to the inapplicability of the optimization theory’s methods or the generation of
suboptimal solutions. (2) Complexity: Some optimization problems may be very complex,
with large-scale decision spaces, complex constraints, and nonlinear objective functions. In
such cases, solving the optimal solution may be difficult and time-consuming, requiring
the design of efficient optimization algorithms and computational methods. (3) Local
optimal solution problem: Optimization problems are plagued by local optimal solutions,
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i.e., they may fall into a local optimal solution during the search process without being able
to find the global optimal solution. This may lead to the failure or suboptimality of the
decision strategy.

Learned decision-making has the advantage of solving complex high-order and large-
scale problems. This is suitable for addressing difficult problems that are abstract, without
explicit rules, strongly nonlinear, or highly coupled. However, it is highly dependent on
data. Online learning is inefficient, and learning based on dynamic environments may pose
a risk of failure.

3.3. Interactive Decision-Making

Certain decision-making methods tend to overlook the impact of continuous vehicle
interactions. Decision-making requires dynamic methods to ensure safe driving. As au-
tonomous driving technology advances, it is crucial to understand the driving behavior
of human drivers in real traffic environments. This will allow AVs to interact with sur-
rounding vehicles and other systems in real-time, ensuring safe driving that aligns with the
decision-making logic of human drivers [68]. Game theory is a methodology based on the
relationship between the behavioral approaches of participating subjects who interact with
each other in a mutually influential, interdependent, and interactive manner and the corre-
sponding results they produce. It distinguishes between cooperative and noncooperative
games. The primary distinction between cooperative and noncooperative games is the abil-
ity to reach a binding agreement among participants in interactive behavior. Cooperative
games can achieve agreement, prioritize collective rationality, and address issues related
to the distribution of the cooperative surplus. In contrast, noncooperative games do not
reach an agreement, prioritizing individual rationality and optimal decision-making at the
individual level.

With regard to cooperative game interactive decision-making, Abdoos [69] used co-
operative game theory to dynamically control traffic signals at multiple intersections,
significantly reducing the average delay time under different traffic demand scenar-
ios. Stryszowski [70] developed a computationally feasible, self-reinforcing, coopera-
tive intersection deconvolution algorithm using a cooperative game solution approach.
Wang et al. [71] investigated the navigation strategies of two intersecting connected AVs
(CAVs) at unsignalized intersections. As a highly intelligent and automated entity, the CAV
identifies noncooperative behavior according to a Nash game of discrete decision-making
strategies and simulates cooperative control mechanisms via a cooperative game.

The cooperative game has the following advantages and disadvantages. The advan-
tages are the following: (1) Traffic flow optimization: Cooperative gaming can promote
cooperation and collaboration among self-driving vehicles to optimize the overall traffic
flow. By making joint decisions and coordinating driving strategies, autonomous vehicles
can reduce traffic congestion and improve traffic efficiency, thereby reducing travel time
and fuel consumption. (2) Safety enhancement: Cooperative gaming can help self-driving
vehicles negotiate and coordinate driving maneuvers among themselves to enhance traffic
safety. By sharing information and traveling together, autonomous vehicles can reduce
the risk of collision, avoid dangerous situations, and improve driving safety and stability.
(3) Resource allocation optimization: Cooperative gaming can help self-driving vehicles
optimize the allocation and use of resources. Through consultation and negotiation, self-
driving vehicles can share road space, traffic signals and other resources in order to realize
the effective use and fair distribution of resources. (4) Maximization of social benefits: The
goal of a cooperative game is to maximize the overall benefits through collaborative ac-
tions. In self-driving vehicle decision-making, cooperative games can promote cooperation
and collaboration among participants to maximize social benefits, such as reducing traffic
congestion and improving air quality. The disadvantages are the following: (1) Implemen-
tation complexity: Cooperative gaming of self-driving vehicles involves negotiation and
coordination among multiple participants. This requires the design of complex negotiation
mechanisms, communication protocols, and decision-making algorithms to ensure coop-
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eration among participants and the implementation of decisions. (2) Conflicting interests
of participants: In self-driving vehicle decision-making, the interests of different vehicles
may conflict and compete. For example, some vehicles may pursue the shortest travel
time, while others may be more concerned with fuel consumption or safety. This may
lead to difficulties in cooperative gaming and instability in decision outcomes. (3) Data
sharing and privacy issues: Cooperative games may require self-driving vehicles to share
information such as location and speed for negotiation and coordination. This involves
data privacy and security issues, and there is a need to ensure appropriate data protection
and privacy confidentiality mechanisms. (4) Complex environment response: Self-driving
vehicles make decisions in complex traffic environments, which require consideration of
multiple factors and variables. Cooperative gaming may face challenges in coping with
complex environments, such as uncertainty, dynamically changing traffic conditions, and
the behavior of other participants.

The noncooperative game approach [72] is widely used for interactive decision-making.
Cheng et al. [73] developed a decision-making mechanism based on cooperative and
noncooperative game theory in the context of unsingable intersections. Specifically, when
the system decides to drive cooperatively, it plans joint actions based on a cooperative
game to optimize the overall benefit of multiple vehicles while considering the conflicting
relationship with neighboring vehicles. When the system is unable to perform cooperative
driving or respond to a timeout, the vehicle adopts noncooperative driving to optimize the
trajectory, considering only its individual benefits.

The noncooperative game has the following advantages and disadvantages. The
advantages are the following: (1) Independent decision-making: Noncooperative games
allow self-driving vehicles to make decisions independently without the need to negotiate
and collaborate with other vehicles. This reduces the complexity of communication and
negotiation and allows each vehicle to make decisions based on its own goals and interests.
(2) Response flexibility: Noncooperative games allow self-driving vehicles to respond
quickly to changes in dynamic environments. Each vehicle can autonomously adjust its
driving strategy and path selection to adapt to changes in traffic conditions based on
current perceptions and context. (3) Adapting to diversity: Noncooperative gaming is
applicable to various types of vehicles and driving behaviors. Different vehicles may
have different goals and preferences, such as speed prioritization, fuel economy, or safety.
Noncooperative games can accommodate diversity by allowing vehicles to make decisions
based on their preferences. (4) Information privacy protection: Noncooperative games
do not require the sharing of sensitive information between vehicles, thus protecting
their information privacy. Each vehicle can make decisions based on its own perceptions
and local information without disclosing private data such as location, speed, etc. The
disadvantages are the following: (1) Lack of coordination: Noncooperative games may
lead to increased conflict and competition between vehicles. Each vehicle pursues its own
optimal decision, but this may lead to a decrease in overall transportation efficiency, such as
an increase in traffic congestion and conflicts. (2) Sub-optimal solutions: In noncooperative
games, vehicles only focus on their own optimal solutions and ignore the optimal solutions
of the overall system. This may lead to the achievement of local optimal solutions but
does not necessarily lead to overall optimality. (3) Instability: Noncooperative games may
lead to instability and inconsistency in decision-making. Vehicle decisions may change
frequently with time and environment, which may lead to discontinuous driving behavior
and unpredictable outcomes. (4) Zero-sum game assumption: Noncooperative games are
usually based on the assumption of a zero-sum game, i.e., the gain of one vehicle is equal to
the loss of other vehicles. However, in a transportation system, there may be opportunities
for reciprocity and cooperation between multiple vehicles, such as alternating traffic or
sharing resources, which cannot be fully exploited by a noncooperative game.

In addition, the idea of interactive decision-making has been widely applied in research
on traffic network management and pedestrian–vehicle interaction behavior in mixed
traffic. Jia et al. [74] proposed an interactive decision-making method for intersection
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environments that considers factors such as driving safety, smoothness, comfort, high
passing speeds, surrounding space, and a variety of driving styles suitable for different
groups of drivers. Shu et al. [75] presented a framework for left-turn planning and decision-
making at intersections that consider the interactions between AVs and human drivers
and pedestrians, thereby achieving interactive, human-like planning and decision-making
at intersections.

In summary, decision-making for self-driving vehicles using interactive decision-
making has the advantages of global planning, personalization, risk management, and
interpretability. However, it also faces challenges in terms of computational complexity,
perception and information requirements, user interaction, and environment dynamics.
In practical applications, these factors need to be balanced, and the advantages of other
decision-making methods need to be considered in order to improve the decision-making
performance and safety of self-driving vehicles.

4. Path Planning for AVs

The path-planning quality is a crucial indicator of a vehicle’s intelligence level. The
path must be safe, feasible, and smooth, and the planning solution must optimize the
path quality and efficiency. In addition, the plan must be adaptable to real-time changes
in unknown or partially unknown environments and in the presence of dynamic traffic
participants. This remains an important scientific issue. Improving path quality and
planning efficiency while allowing for the real-time correction or replanning of paths in
unknown or partially unknown environments—and in the presence of dynamic traffic
participants—is a crucial problem.

This paper summarizes the related research on graph search, sampling, and numerical
planning methods from a methodological perspective. Figure 4 presents a summary of the
relevant studies.
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the current position to the target position is to traverse the state space [76]. For example,
Zhao et al. [77] proposed an anomalous trajectory detection algorithm based on road net-
work segmentation (RNPAT), which is divided into four phases: map matching, insertion
point-based road network segmentation, offline training, and anomaly detection. In the
offline training phase, the road consumption is modeled, and the minimum consumption
between each S–D pair is trained using the Dijkstra algorithm, where S is the starting point
of the vehicle, and D is the end point of the vehicle. Wei et al. [78] achieved autonomous
tracking and autonomous obstacle avoidance over short distances using artificial potential
field path planning methods and shortest path optimization over long distances using
Dijkstra’s algorithm.

Dijkstra’s algorithm has the following advantages and disadvantages. The advantages
are the following: (1) Shortest path: Dijkstra’s algorithm finds the shortest path from the
source node to the target node. In path planning for self-driving vehicles, finding the
shortest path can help vehicles save time and energy and improve efficiency. (2) Applicable
to single-source shortest path problem: Dijkstra’s algorithm is applicable to single-source
shortest path problem, i.e., from a source node, calculate the shortest path to all other nodes.
In the path planning of self-driving vehicles, the starting point and the goal point are
usually specified, so Dijkstra’s algorithm can be directly applied. (3) Potential consideration
of edge weights: Dijkstra’s algorithm can consider the weights or distances of the edges
in the graph, which allows it to adapt to different road and road conditions. For example,
a vehicle can adapt its path choice to the congestion or speed limit of the road. The
disadvantages are the following: (1) Scalability: Dijkstra’s algorithm may have scalability
issues when dealing with large-scale graphs. The algorithm needs to traverse all the nodes
and update the distances, which can lead to high computational complexity, especially
when the graph size is large. (2) Not applicable to negatively weighted edges: Dijkstra’s
algorithm cannot handle graphs with negatively weighted edges. If negatively weighted
edges are present, Dijkstra’s algorithm may obtain wrong results or enter a dead loop.
(3) Not applicable to dynamic environments: Dijkstra’s algorithm is a static algorithm
that cannot adapt to changes in dynamic environments. In real-time path planning for
self-driving vehicles, road conditions and traffic flow may change constantly, and Dijkstra’s
algorithm cannot update the path in time. (4) Storage overhead: Dijkstra’s algorithm needs
to maintain distance information and path information between nodes, which may require
a large storage overhead, especially in large-scale graphs.

Zhang et al. [79] designed an improved A-Star path planning algorithm that combines
a new heuristic function with an artificial potential field method that contains both distance
and obstacle information. The algorithm shows excellent performance in improving exe-
cution efficiency and reducing the number of turning points. Xidias et al. [80] proposed a
new method for route and motion planning decisions for self-driving cars in the context
of Intelligent Transportation Systems (ITSs). In their approach, a hybrid optimization
method is used, combining the A-star algorithm and two improved genetic algorithms.
By combining the A-star algorithm and the improved genetic algorithms, it is possible to
take full advantage of the heuristic information of the A-star algorithm during the search
process and optimize it by means of the evolutionary process of the genetic algorithms.
This hybrid approach can generate high-quality route and motion planning decisions for
self-driving cars while accounting for traffic uncertainty.

The A-Star has the following advantages and disadvantages. The advantages are
the following: (1) Optimal path: The A-Star algorithm can find the optimal path from
the source node to the target node, i.e., the shortest path that considers the heuristic
function (heuristic). The heuristic function helps the algorithm to choose the next move
more intelligently and find the target node faster. (2) Fast search: The A-Star can quickly
converge to the optimal solution in most cases using heuristic functions and priority
queues. It prioritizes nodes with lower total costs for expansion, thus reducing the search
space. (3) Applicable to different environments: The A-Star can be adapted to different
environments and road conditions. By adjusting the heuristic function, different factors,



World Electr. Veh. J. 2024, 15, 99 24 of 35

such as distance, time, road congestion, etc., can be considered so that path planning can
be performed according to demand. (4) Scalability: The A-Star can be applied to large-
scale graphs because it expands only the most promising nodes, not all of them. This
reduces the computational complexity and increases the scalability of the algorithm. The
disadvantages are the following: (1) Heuristic function selection: The performance of A-star
is highly dependent on the selection of the heuristic function. An inappropriate heuristic
function may result in the algorithm failing to find an optimal solution or generating a
sub-optimal solution. Designing and tuning heuristic functions may require some domain
knowledge and experience. (2) Storage overhead: The A-Star needs to maintain distance
and cost information between nodes, as well as priority queues. In large-scale graphs,
storing this information may require a large memory overhead. (3) Not applicable to
dynamic environments: The A-star is a static algorithm that cannot adapt to changes in
dynamic environments. In real-time path planning for self-driving vehicles, changes in
road conditions and traffic flow may cause the path generated by the A-star to no longer
be optimal. (4) Inability to handle negative weighted edges: Like Dijkstra’s algorithm,
the A-star cannot handle graphs with negatively weighted edges. If there are negatively
weighted edges, the A-star may get wrong results or enter a dead loop.

In summary, path planning for self-driving vehicles using graph algorithms has
the advantages of global optimal solutions, consideration of multiple constraints, accu-
racy, and scalability. However, it also faces challenges in terms of computational com-
plexity, dynamic environment adaptability, constraint structure, and real-time perfor-
mance. In practical applications, other path-planning methods, such as model-based
methods and real-time perceptual feedback control, can be combined to fully use the ad-
vantages of various methods and improve the path-planning performance and safety of
self-driving vehicles.

4.2. Planning Sampling Methods

Rapidly exploring random trees (RRTs) and probabilistic roadmaps (PRMs) are typical
sampling-based path-planning methods. A rapidly exploring random search is achieved
by randomly sampling the space and expanding the tree in its direction. The RRT allows
for rapid path planning in semi-structured spaces with the consideration of incomplete
constraints. For example, Lukyanenko [81] used a search method based on RRT* graphs in
high-dimensional space to plan vehicle trajectories at an intersection. Wu [82] combined
Gaussian process regression (GPR) and RRT to generate localized paths to guide vehicles
through intersections. The procedure consists of two phases: prediction and planning.
In the prediction phase, GPR predicts the future trajectory points of the vehicle. The
prediction results are combined with the destination location (intersection exit) to generate a
probabilistic map for sampling, avoiding redundant sampling and improving the sampling
quality. The deployment of the optimal strategy ensures that the trajectories are collision-
free both at present and in the future. Thus, combining these two proposed improvements
results in collision-free paths in dynamic crossing regions. Additionally, the proposed
method achieves faster path generation than the RRT algorithm.

The RRT has the following advantages and disadvantages. The advantages are the
following: (1) Adaptation to complex environments: the RRT algorithm is suitable for high-
dimensional, complex environments and can perform path planning on maps containing
obstacles and complex terrain. (2) Efficient and fast exploration: The RRT algorithm
explores the search space by random sampling and fast expansion. It generates random
samples in each iteration and then constructs a tree structure by connecting the nearest
neighbor samples. This fast exploration allows the RRT algorithm to quickly find feasible
paths in large-scale environments. (3) Ability to cope with dynamic environments: The
RRT algorithm naturally adapts to changes in dynamic environments. Since each iteration
generates new random samples and expands the tree structure, it can adapt to changes
in the environment and replan the path at runtime. (4) Scalability: The RRT algorithm
has good scalability in large-scale environments. Its performance mainly depends on the
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efficiency of sample generation and tree expansion and does not decrease significantly as the
environment increases. The disadvantages are the following: (1) Non-optimal paths: The
RRT algorithm can find feasible paths, but it is not guaranteed to find optimal paths. Due
to its stochastic nature, the quality of the paths depends on the order of random sampling
and tree expansion. In some cases, sub-optimal paths may be generated instead of shortest
paths. (2) Path feasibility: The paths generated by the RRT algorithm may not satisfy
specific constraints. For example, paths may be generated that do not comply with road
regulations or have small safety intervals. Therefore, additional validation and correction
steps are required when applied to path planning for self-driving vehicles. (3) Storage
overhead: The RRT algorithm needs to store the generated tree structure, including nodes
and connectivity relationships. In large-scale environments, this may require larger storage
space. (4) Parameter selection: The performance of RRT algorithms is highly dependent on
the selection of parameters.

Lukyanenko et al. [83] addressed the convergence proofs of existing sample-based mo-
tion planners by formulating a flexible framework that considers only Euclidean state-space
settings, where the widely used PRM*, RRT, and RRT* algorithms remain asymptotically
optimal in non-Euclidean settings. Zhao et al. [84] proposed a novel collision-free emer-
gency braking system (CFEBS) that uses a peripheral vehicle intent recognition model
based on LSTM networks and CRFs, as well as a global safest trajectory generated by a
potential risk model (PRM) and a discrete method, to achieve conservative and safe braking
operations for smart connected vehicles in hazardous scenarios.

The PRM has the following advantages and disadvantages. The advantages are the
following: (1) Global path planning: The PRM algorithm is capable of global path planning,
i.e., searching for feasible paths across the entire map. It achieves global search by randomly
sampling nodes in the configuration space on the map and connecting feasible nodes to
construct a road network. (2) Efficient local path planning: The PRM algorithm uses a local
path planning algorithm to search for paths between connected nodes. This approach can
efficiently find the optimal path in a local scope while avoiding the complexity of global
search. (3) Ability to cope with dynamic environment: The PRM algorithm can adapt to
changes in the dynamic environment at runtime. Since the nodes are randomly sampled
in the configuration space, when the environment changes, the nodes can be regenerated,
and the road network can be reconstructed to replan the paths. (4) Scalability: The PRM
algorithm has good scalability in large-scale environments. By increasing the number of
sampled nodes, the denseness of the road network can be increased, thus improving the
accuracy and efficiency of path planning. The disadvantages are the following: (1) Stor-
age overhead: The PRM algorithm needs to store the generated nodes and connectivity
relationships, which may lead to a large storage overhead. In large-scale environments,
storage resource limitations need to be considered. (2) Difficulty in dealing with narrow
channels and complex obstacles: The PRM algorithm may encounter problems with narrow
channels and complex obstacles when sampling nodes. In these cases, the generation
and connection of sampled nodes may be limited, resulting in an incompletely generated
road network or paths that cannot be found. (3) Parameter selection: The performance
of the PRM algorithm is highly dependent on the selection of parameters, such as the
sampling density and the selection of local path planning algorithms. The selection of
parameters needs to comprehensively consider the characteristics and requirements of the
map environment in order to obtain better path-planning results. (4) Non-optimal paths:
The PRM algorithm can find feasible paths, but it is not guaranteed to find optimal paths.
Since the nodes are randomly generated, the quality of the path depends on the location
and connection relationship of the sampled nodes. In some cases, sub-optimal paths may
be generated instead of shortest paths.

In summary, path planning for self-driving vehicles using sampling methods has the
advantages of real-time, adaptability, flexibility and multimodal path planning. However,
it also faces challenges in terms of solution quality, search space, parameter settings and
randomness and uncertainty. In practical applications, other path-planning methods, such
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as graph-based algorithms and model predictive control, can be combined to fully use the
advantages of various methods and improve the path planning performance and safety of
self-driving vehicles.

4.3. Planning Numerical Methods

Planning based on numerical methods aims to optimize an objective function subject
to different constraints, either maximizing the benefit function or minimizing the cost
function [85]. Katriniok et al. [86] developed a distributed motion planning scheme by
adding conditional constraints to allow a vehicle to decide whether to wait at a stop
line when it cannot pass safely. The coordinated operation of AVs at road intersections
was solved efficiently. Wang [87] proposed a multi-objective optimal control model that
considers vehicle safety, energy efficiency, and ride comfort and derived the optimal CAV
trajectory through analysis.

The numerical optimization method has the following advantages and disadvantages.
The advantages are the following: (1) Global optimal solution: Numerical optimization
methods are usually able to search the entire search space to find the global optimal solution,
which is crucial for autonomous vehicle path planning as it ensures that the optimal path is
found to ensure safety and efficiency. (2) Flexibility: Numerical optimization methods can
be easily applied to different path-planning problems and can be adapted and optimized
for specific situations. (3) Interpretability: Numerical optimization methods usually have
good interpretability, which clearly shows the evolution and selection process of path
planning during the search process, which is crucial for debugging and improving the
algorithms. The disadvantages are the following: (1) High computational cost: Numerical
optimization methods may require a large amount of computational resources and time
to find the optimal solution, especially in complex path-planning problems. This may
result in the real-time performance being compromised, which is a serious problem for
autonomous driving systems. (2) Local optimal solution problem: Numerical optimization
methods may sometimes fall into local optimal solutions, especially in complex, multi-
peaked search spaces. This may lead to suboptimal path-planning results or even safety
hazards. (3) Parameter sensitivity: Numerical optimization methods usually require tuning
of parameters for optimal performance, which may require expertise and experience. If the
parameters are not chosen properly, the algorithm may suffer from degraded performance
or fail to converge to a valid solution.

The APF method can also be used for global and local path planning. Huang et al. [88]
proposed a motion planning and tracking framework for self-driving vehicles based on the
artificial potential field (APF) complex resistance method, which plans a series of motion
states to help the vehicle to drive safely, comfortably, economically, and like a human,
among others. Huang et al. [89] proposed a motion planning method for self-driving
electric vehicles, which uses sinusoidal resistor networks for road meshing, combined with
biased elliptic APFs and velocity information to achieve collision-free and path-smoothing
planned path generation in a dynamic environment.

The APF has the following advantages and disadvantages. The advantages are the
following: (1) Real-time: The artificial potential field method usually has low computational
cost and can perform path planning with high real-time requirements, which is suitable for
scenarios in which the autonomous driving system requires a fast response. (2) Simple and
intuitive: The method is easy to understand and implement. Based on the concept of attrac-
tion and repulsion, it can intuitively describe the relationship between the vehicle and the
obstacle, which is easy to debug and adjust. (3) Localized obstacle avoidance: The artificial
potential field method tends to avoid obstacles, so it is more effective in local path planning
and obstacle avoidance and is suitable for vehicle navigation in complex environments. The
disadvantages are the following: (1) Local optimal solutions: Like numerical optimization
methods, artificial potential field methods are prone to fall into local optimal solutions,
especially in environments with complex terrain or many obstacles, which may lead to less
optimal path planning. (2) Unsmooth paths: Since the artificial potential field method tends
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to rely on local information, the generated paths may not be smooth enough, and there
are jerky or discontinuous situations that may affect driving comfort and vehicle stability.
(3) Difficulty in parameter adjustment: Adjusting the parameters of the artificial potential
field method may not be intuitive enough, requires in-depth knowledge of the scene and
vehicle characteristics, and thus may require more specialized knowledge and experience.

Model predictive control (MPC) [90] implements dynamic motion planning for vehi-
cles by building a mathematical model of the vehicle, predicting future states and solving
optimization problems. It adapts to different constraints and performance metrics and gen-
erates optimal control strategies in a real-time environment. Liang [91] effectively reduced
the tracking error and improved the tracking stability through dynamic MPC and precise
intersection planning control during frequent speed fluctuations. Storani [92] proposed a
traffic response control framework based on MPC in which a centralized approach is used
to compute network decision variables simultaneously.

MPC has the following advantages and disadvantages. The advantages are the fol-
lowing: (1) High-precision navigation: the MPC algorithm can provide high-precision
path planning, which can accurately predict the vehicle’s movement trajectory in various
environments and reduce the risk of collision of the vehicle in the process of traveling.
(2) Adaptive driving: the MPC algorithm can adjust the vehicle’s driving path in real time
according to the actual driving situation of the vehicle, which makes the vehicle able to
adapt to various complex road environments and traffic conditions. (3) High efficiency: the
MPC algorithm can quickly solve the vehicle path-planning problem, which greatly im-
proves the driving efficiency of self-driving vehicles. The disadvantages are the following:
(1) Computational complexity: the MPC algorithm has a high computational complexity,
especially when dealing with large-scale autonomous driving scenarios, which require a
lot of computational resources and time. (2) Sensitivity to environmental changes: MPC
algorithms are more sensitive to changes in the environment and require frequent updating
and adjustment of algorithm parameters to adapt to new environments. (3) Dependence
on algorithms: the successful implementation of MPC algorithms needs to rely on accurate
models and parameter settings, and if the models or parameters are not set properly, it may
lead to the failure of path planning.

Markov models can be applied to path planning for self-driving vehicles, especially
when considering dynamic environments and future states. A Markov model is a mathe-
matical model for describing the transfer and probability of states in a stochastic process.

In path planning, Markov models can be used to model state transfers during vehicle
travel, such as vehicle transfers between locations and lanes [93]. By observing historical
data or sensor data, the probability of state transfer can be estimated. In this way, Markov
models can be used to predict future states and perform path planning based on these
predictions. Luo et al. [94] proposed a field-theory-based driving risk field model using a
hidden Markov model to evaluate and determine the motion state of surrounding vehicles.
A safe, feasible, and smooth collision-free path is planned by calculating the magnitude of
potential field forces on the longitudinal and lateral sides of the obstructing vehicle.

The Markov model has the following advantages and disadvantages. The advan-
tages are the following: (1) Simple model: The Markov model is a simple and intuitive
mathematical model that is easy to understand and implement. It can predict future states
by modeling state transfer probabilities for path planning. (2) Consideration of dynamic
environment: Markov models can take into account the dynamics of the environment and
estimate state transfer probabilities by observing historical data or sensor data. This allows
for path planning to adapt to different traffic situations and vehicle behavior. (3) Real-time:
Since Markov models make predictions based on the current state, path planning can be
performed in real time. This is very important for self-driving vehicles, as they need to
make quick decisions to cope with changing environments. The disadvantages are the
following: (1) Assumption limitation: The Markov model assumes that the future state
depends only on the current state without considering longer history information. This as-
sumption may oversimplify real-world scenarios and ignore other important factors related
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to path planning, such as traffic rules, vehicle types, and driving intentions. (2) Inaccurate
prediction: Since Markov modeling is based on probabilistic prediction, it may not be able
to accurately predict future states in complex traffic situations. Especially in high traffic
density and complex intersections, the accuracy of the model may be limited. (3) Loss of
information: Markov models focus only on state transfer probabilities and ignore other
information relevant to path planning. For example, it may fail to consider factors such as
destinations of other vehicles, driving intentions, speed changes, etc., which may result in
generating paths that are not sufficiently optimized or safe.

In summary, path planning for self-driving vehicles using numerical methods has
the advantages of accuracy, flexibility, scalability, and dynamic environment adaptation.
However, it also faces challenges in terms of computational complexity, model error,
dependence on data and parameters, and approximation. In practical applications, other
path-planning methods, such as graph-based algorithms and sampling methods, can be
combined to fully use the advantages of various methods and improve the path-planning
performance and safety of self-driving vehicles.

5. End-to-End Decision-Making and Path Planning for AVs

The hierarchical step-by-step scheme outlined above involves clear functional modules
and input–output interfaces. With the emergence of artificial intelligence and computational
science—particularly neural networks—a new approach for solving traditional decision-
making and path-planning problems that is distinct from the hierarchical step-by-step
method has emerged. Environmental perception is crucial for autonomous driving sys-
tems. The mapping of perceived environmental information and vehicle states to control
signals using deep neural networks trained on large amounts of data is attracting attention
worldwide. This approach is known as end-to-end decision-making.

End-to-end decision-making and path planning are popular research topics. The
goal is to allow AVs to effectively complete integrated decision-making tasks according
to environmental perception information and the vehicle state [95]. It is important to
reveal the end-to-end nonlinear high-dimensional mapping relationship and overcome the
problems of the large data volume and excessive dependence on training data to optimize
the performance of the multilevel all-links and decision-planning output. The use of
multi-layer all-links can optimize the overall performance and provide a stable and reliable
decision-making output. This can enhance the network’s learning ability and training
efficiency and improve the interpretability, modifiability, and interactive adaptability of
the end-to-end scheme. These improvements allow the network to migrate and achieve a
high degree of generalization in dynamic scenarios. It is crucial to solve this key scientific
problem [96] to develop a more lightweight, flexible, and robust network.

Chen et al. [97] proposed a conditional deep Q-learning network for direction planning
with the ability to learn from the environment and make decisions directly from perception.
The network was applied to end-to-end autonomous driving using global paths to guide a
vehicle from the starting point to the endpoint. Guo et al. [98] detected the surrounding
traffic environment and shared real-time information with other vehicles and infrastructure
using wireless communication and the sensing capability of CAVs, applying an LSTM
network to implicitly learn traffic patterns and driver behavior and using DRL to solve the
signal optimization problem by learning the dynamic interactions between vehicles and the
traffic environment. Naderi [99] proposed a vehicle routing strategy based on fuzzy logic
and reinforcement learning, which uses software-defined networks to address traditional
protocol deficiencies, combined with a hierarchical intersection routing strategy (HIFS),
which considers factors such as vehicle density and traffic signal duration; improves the
packet delivery rate, throughput, and end-to-end delay; and reduces routing overhead.
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6. Research Perspectives

Extensive in-depth research on decision-making and planning for AVs has been con-
ducted both domestically and internationally. Although promising results have been
obtained, several technical challenges remain. Future research in this field should focus on
the following aspects:

(1) Generalized micromodels
Automatic driving models face challenges related to weak generalization ability,

low training efficiency, and limited applicability to diverse scenarios [100]. To address
these issues, researchers aim to develop general-purpose models with intelligent decision-
making logic, pattern recognition, memory reasoning, migration, and diffusion capabilities.
The use of larger models with higher levels of intelligence and versatility is expected to
enhance generalization abilities, allowing models to adapt effectively to high-dimensional,
multimodal, and dynamic driving scenarios. The scope of application and specific scenarios
of self-driving vehicle prediction, decision-making, and path planning models in the context
of enhanced intersections can be classified based on factors such as the number of lanes,
the intensity of traffic, and the type of vehicle. These models can be used to predict the
behavior of surrounding vehicles, make rational decisions, and plan optimal paths for
efficient and safe intersection crossing based on the characteristics of specific scenarios.

(2) Strong and robust multi-objective co-optimization algorithm based on multi-
modal data

Designing a robust multi-objective co-optimization algorithm based on multimodal
data is crucial for handling the dynamic and heterogeneous nature of driving environ-
ments [101]. This algorithm should balance and optimize multiple objectives while over-
coming challenges such as data heterogeneity, redundancy, and coupling. By effectively
using the diverse information collected from various sensors, a strong and robust co-
optimization algorithm can enhance the adaptability and optimization coordination of
automatic driving systems.

(3) Enhancement of interpretability mechanisms for end-to-end decision-making
and planning

End-to-end integrated decision-making and planning schemes have gained attention
due to their ability to effectively handle complex scenarios. However, these schemes lack
transparency and interpretability, making it challenging to trace and explain decision-
making processes [102]. Future advancements aim to reveal the internal hierarchical
dynamics and multidirectional feedback within end-to-end schemes, enhancing their in-
terpretability and accuracy. By ensuring the stability and reliability of decision-making
outputs, the trustworthiness and safety of autonomous driving can be improved.

(4) Personalized decision-making and planning
Personalization becomes crucial in enhancing the satisfaction, trust, acceptance, and

adaptability of automated driving systems [103]. By integrating personalization tech-
niques, automatic driving systems can exhibit behaviors similar to those of human drivers,
promoting better synergy and acceptance between vehicles and other traffic participants.

(5) Mixed traffic environment: human-like decision-making and planning
Human-like decision-making and planning in mixed-traffic environments are essential

for the successful integration of automated vehicles [104]. Research in this area aims to
develop decision-making algorithms that replicate the behavior of skilled drivers, allowing
AVs to seamlessly navigate complex and dynamic traffic scenarios.

The main difference between personalized vehicle decision-making and vehicle
decision-making in a mixed-traffic environment is the factors considered and the scope of
the decision. Personalized vehicle decision-making pays more attention to the information
and goals of the vehicle itself, and the decision-making scope is relatively independent.
Vehicle decision-making in the mixed-traffic environment needs to consider the impact of
the surrounding vehicles and the traffic environment, and the decision-making scope is
more extensive. In a mixed-traffic environment, vehicle decision-making usually requires
coordination and interaction with other vehicles to ensure smooth and safe traffic.



World Electr. Veh. J. 2024, 15, 99 30 of 35

It is important to note that personalized vehicle decisions and vehicle decisions in a
mixed-traffic environment may affect each other in practical applications. Personalized
vehicle decisions can be adjusted based on information in a mixed-traffic environment,
such as making reasonable lane changes or controlling speed based on the behavior of
surrounding vehicles. At the same time, vehicle decision-making in the mixed-traffic
environment can also consider the behavior and characteristics of personalized vehicles
to improve the overall efficiency of the traffic system. Therefore, careful consideration
of personalized vehicle decision-making and vehicle decision-making in a mixed-traffic
environment can better achieve a safe, efficient, and intelligent traffic system.

(6) Cluster decision making based on cooperative interaction of multiple intelligences
Integrating multiple intelligences in decision-making and planning processes is crucial

for achieving a high-confidence human-vehicle-environment integration model [75]. Future
advancements will focus on understanding and analyzing the collaborative interaction
mechanisms between multiple intelligences. By establishing a cluster decision-making
architecture that strengthens consistency and systematicity, personalized and human-like
driving behavior can be realized in dynamic traffic environments.

7. Conclusions

As research into vehicle intelligence technology deepens, there is an increasing demand
for the safety of autonomous driving, the integration of mixed traffic, and the human-like
nature of individual driving. This plays a core role similar to that of a human driver’s brain
center and is a prerequisite for the vehicle’s ability to accurately and smoothly complete
all types of driving tasks and be naturally integrated into the traffic ecosystem. Effective
decision-making and planning are crucial for improving vehicle safety, comfort, economy,
and energy efficiency. They also affect driver and passenger satisfaction, trust, acceptance,
adaptability, legality, coordination, and efficiency, along with the overall performance of
the traffic system. This technical field is becoming increasingly important, with fierce
competition among relevant automated driving companies.

This paper summarizes the key scientific issues and research progress in behavioral
prediction, behavioral decision-making, motion planning, and end-to-end decision plan-
ning for autonomous driving situational awareness. These approaches are crucial for
autonomous decision-planning in dynamically coupled traffic environments. In addition,
the text briefly discusses behavioral decision-making for AVs. The behavioral decision-
making task includes reactive, learning, and interactive decision-making. Among these, the
interactive decision-making method represented by game theory has become increasingly
popular in the research field of behavioral decision-making. This method captures the
integrated dynamic interaction mechanisms among humans, vehicles, and the environment.
In addition, this paper discusses motion planning for AVs. It provides a methodological
review of path planning and summarizes graph searches, sampling, and numerical meth-
ods. It also covers the latest advances and applications of common planning methods and
their derivatives for both theoretical and real-world scenarios. In addition, it discusses
end-to-end decision planning for AVs and identifies future research directions.
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