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Abstract: Precise trajectory prediction is pivotal for autonomous vehicles operating in real-world
traffic conditions, and can help them make the right decisions to ensure safety on the road. However,
state-of-the-art approaches consider limited information about the historical movements of vehicles.
On highways, drivers make their next judgments according to the behavior of the ambient vehicles.
Thus, vehicles need to consider temporal and spatial interactions to reduce the risk of future collisions.
In the current work, a trajectory prediction method is put forward in accordance with a graph attention
mechanism. We add the absolute and relative motion information of vehicles to the input of the model
to describe the vehicles’ past motion states more accurately. LSTM models are employed to process
the historical motion information of vehicles, as well as the temporal correlations in interactions. The
graph attention mechanism is applied to capture the spatial correlations between vehicles. Utilizing a
decoder rooted in an LSTM framework, the future trajectory distribution is generated. Evaluation
on the NGSIM US-101 and I-80 datasets substantiates the superiority of our approach over existing
state-of-the-art algorithms. Moreover, the predictions of our model are analyzed.

Keywords: autonomous vehicles; trajectory prediction; vehicle interactions; graph attention mechanism

1. Introduction

Autonomous technology is regarded as an important solution to decrease the presence
of traffic accidents and increase traffic safety. Cognition and decision-making constitute the
foundational elements of autonomous vehicular navigation [1]. On the road, autonomous
vehicles detect and sense their surroundings by analyzing the information collected by
sensors to maintain their stability. However, there is a challenging task between these
two modules—vehicle trajectory forecasting. The goal of vehicle trajectory forecasting is to
ensure that self-driving cars are able to forecast the trajectory layout in the future when
facing complex traffic scenarios, and to help autonomous vehicles understand what is
going to happen in the future and make effective decisions to enhance driving safety. Such
prediction becomes difficult due to the uncertainty of human driving behavior.

Vehicle trajectory prediction is usually inferred on the basis of the motion character-
istics of the vehicles in the past [2]. However, people often focus only on the historical
positions of the vehicles and ignore other useful information. Employing extensive his-
torical data enriches the environmental context surrounding the subject vehicle, thereby
enhancing the precision of trajectory forecasting to facilitate a more judicious and secure
navigational pathway. In fact, there are a large number of reasons that may influence driv-
ing action, of which the primary category are the reasons associated with vehicle kinematics,
such as vehicle speed, acceleration, etc. [3]. However, the forthcoming trajectory of a vehicle
is influenced not merely by its own kinematic state but significantly by the dynamics of
surrounding vehicles. As the environment becomes more complex, experienced drivers
can choose an appropriate road to drive on by judging the intentions of the drivers of the
ambient vehicles. Therefore, the movement states of the surrounding vehicles also need
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to be considered. The secondary set of variables encompasses the kinematic attributes
of proximate vehicles relative to the subject vehicle, such as their spatial positioning and
velocity vectors. The third category is the factors caused by the drivers themselves, such as
psychological factors [4]. We use the former two factors in this paper to increase the input
information and make the vehicle’s historical information as rich as possible.

Furthermore, intervehicle interactions serve as an additional critical determinant for
trajectory prediction. Within a shared operational environment, individual vehicles do not
operate in isolation; rather, their actions reciprocally impact each other’s trajectory forecasts.
Initially, prioritization should be accorded to the temporal window most impactful to the
subject vehicle’s future trajectory, thereby enabling efficacious navigational decisions to
preempt potential collisions. Subsequently, the focus should be directed towards quantify-
ing the influence exerted by surrounding vehicles on the subject vehicle. This analytical
approach aids in isolating high-impact variables, thereby allowing drivers to concentrate
primarily on the most influential external agents, minimizing navigational distractions. For
instance, in a lane-changing scenario, the vehicles within the destination lane are accorded
elevated attention relative to those in alternative lanes. Consequently, a nuanced under-
standing of the temporal dynamics and spatial relevance of intervehicular interactions is
central to our research endeavors.

Aiming at solving these problems, we built an LSTM model according to a graph
attention mechanism (GA-LSTM), which can focus on key time series and vehicle interac-
tions in temporal and spatial terms, respectively. In the current traffic scenario, the graph
attention (GAT) mechanism offers an effective framework for capturing spatial interactions
across vehicles within a single temporal snapshot [5]. LSTM models are adopted to encode
historical information about different vehicles simultaneously and generate future vehicle
trajectory estimation within a predictive scope after aggregating the features of all vehicles.
The important results of the present article are shown below:

1. We enhance the input information of the model by introducing the absolute and
relative motion information of vehicles, enhancing the vehicle interaction relationship, and
providing more comprehensive information on the historical motion of vehicles.

2. We propose graph-attention-integrated LSTM for trajectory prediction (GA-LSTM)
to achieve the representation of temporal and spatial dependencies between the subject as
well as the ambient vehicles on the highway.

2. Related Research

Recently, plenty of scientists have accomplished the approach to vehicular trajectory
forecasting. We will summarize these existing methods, focusing on the latter two.

Methods based on physics: Physics-driven frameworks characterize vehicles as dy-
namic entities compliant with mechanical laws, primarily utilizing kinematic and dynamic
equations to forecast the future trajectory of the moving entity. These models usually
consider vehicle speed, acceleration, and external environmental conditions such as the
road friction coefficient. Veeraraghavan et al. [6] combined the unscented transformation
sampled by a switched Kalman filter to provide an accurate trajectory inference at traffic
junctures. Yu [7] amalgamated a 4-DoF vehicle model with a trace-free Kalman filter to
enhance predictive fidelity. However, such methods can only accomplish trajectory pre-
diction for a short period of time, and it is hard to acquire perfect accuracy. The models
cannot use the interactions between the vehicles to predict the change in motion. The
cooperation of autonomous vehicles is also very important. Semsar-Kazerooni et al. [8]
used an artificial potential function to design a controller for cooperative adaptive cruise
control by defining appropriate control laws where the system state is always driven to
the minimum of the designed potential function. Liang [9] proposed a multi-agent system
based distributed control architecture together with a hierarchical controller for the CAVs
cooperation control system. Longitudinal, lateral, and yaw integration control of CAVs was
realized by combining an artificial potential field with the distributed model predictive con-
trol algorithm. An optimal solution strategy was introduced to solve the CAVs cooperation
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problem, and multiple constraints were designed to ensure the safety of vehicle spacing
and vehicle stability.

Methods based on maneuvering: In these models based on maneuverability, the
subject vehicle makes a series of actions according to the information from other vehicles on
the road. These models usually consist of two parts: the first part is a maneuver recognition
module, and the second part is a trajectory prediction module that makes better predictions
of future trajectories of the vehicles based on the recognized maneuvers. The parts perform
a similar task to classifiers, using the vehicles’ motion states and locations as the input
features, while the output is the vehicles’ positions under different maneuvers in the future.
Scholars have used classifiers (e.g., hidden Markov models, Bayesian networks, heuristic-
based classifiers, and random forest classifiers [10–14] for maneuver recognition). Xing [15]
used an unsupervised clustering algorithm to identify three driving styles and generate
vehicle-specific driving styles through a Gaussian mixture model. The shortcomings of this
method are that, as the traffic scenes become more complex, it is difficult for the models to
distinguish different behaviors of vehicles. Moreover, manually marking the trajectories is
very time-consuming, which tends to affect the accuracy of the model classifications.

Recurrent neural network-based methods: As trajectory forecasting is considered as
a time series regression or classification issue, methods in accordance with recurrent neural
networks are increasingly applied to such tasks. The long short-term memory (LSTM)
architecture, a specialized form of recurrent neural network, effectively captures long-term
dependencies between features and decides selectively whether the information is retained
or not by gating units. In recent years, different architectures of LSTM networks have been
used for vehicle trajectory prediction [16,17]. Altche [18] and Zyner [19] both used a single
LSTM for modeling. Xin [20] used a double LSTM. Two core modules were delineated:
the first ascertained driver intent through behavioral feature extraction, while the second
extrapolated future trajectories. In vehicle interaction simulation, Deo et al. [21] employed
an encoder–decoder schema for trajectory estimation. An additional convolutional social
pooling layer was added to the social tensor to describe the interactions between vehicles.
Finally, the decoder generated a multi-modal trajectory distribution based on the six driving
behaviors. Alahi [22] integrated a social pooling layer to aggregate the LSTM’s hidden
states, thereby extracting inter-pedestrian correlations. Liu et al. [23] devised a vehicular
risk map, capturing interactive dynamics to determine the subject vehicle’s trajectory risk
index. However, these methods lack specificity in portraying interactions between the
subject vehicle and adjacent vehicles, and fail to quantify the influence exerted by adjacent
vehicles on the subject vehicle.

Graph neural networks (GNNs): GNNs represent frameworks for learning directly
from graph-structured information. GNNs have made significant breakthroughs in many
different areas [24]. Li et al. [25] used static and dynamic graphs, respectively, to forecast
the trajectories of different traffic participants to reduce the probability of autonomous
vehicle accidents. There are some methods [26,27] that apply GNNs to spatiotemporal
data. The graph attention (GAT) mechanism [5] is one of these methods, which represents
the influence of neighboring nodes by assigning them different importance. Huang [28]
applied GAT to research on pedestrian trajectory prediction and obtained excellent results.
For our problem, we use GAT to model the spatial information of the vehicles. Additionally,
the graphs are designed to characterize complex interactions.

3. Problem Description

To anticipate the probabilistic spatial positioning of the subject vehicle in future
instances, both absolute and relative vehicular motion data from historical timestamps
are essential.
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3.1. Coordinate System

We use a static coordinate system, as indicated in Figure 1. The x-axis denotes the travel
direction of the subject vehicle along the highway, while the y-axis is oriented perpendicular
to the x-axis. This allows our model to be more independent of the curvature of the road.
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3.2. Construction of Local Traffic Scenes

There are two methods for constructing local traffic scenes. The first one is to construct
based on the distance of the subject vehicle, although this approach is commonly used, it is
too subjective. Therefore, we adopt the second method, which is constructed according to
the spatial proximity relationship of the subject vehicle. Figure 1 shows a local traffic scene
that we constructed, consisting of ten vehicles, where the front vehicle of the front vehicle
of the subject vehicle is also taken into account. This method is not limited by distance, and
we extract the surrounding vehicles only if they appear at the corresponding locations near
the subject vehicle. If no vehicles appear at these specific locations, they are not considered.

3.3. Inputs and Outputs

The model’s input is divided into two discrete segments.
The first part is the historical motion information of the subject vehicle Cov, which

includes the positions, velocities, and accelerations:

Cov = [ctobs−th
ov , · · · , ctobs−∆t

ov , ctobs
ov ] (1)

where,
ctobs

ov = [xtobs
ov , ytobs

ov , vtobs
ov , atobs

ov ] (2)

where, xtobs
ov and ytobs

ov denote the position of the subject vehicle at time tobs, respectively, vtobs
ov

denotes the speed of the subject vehicle at time tobs, atobs
ov denotes the acceleration of the

subject vehicle at time tobs.
The second part is the previous motion data of the neighboring vehicles Csvi, incorpo-

rating positional, velocity, and acceleration data of both surrounding and adjacent vehicles
relative to the subject vehicle:

Csvi =
[
ctobs−th

svi , · · · , ctobs−∆t
svi , ctobs

svi

]
i ∈ {lb, la, l f , eb, e f , e f f , rb, ra, r f } (3)

where,
ctobs

svi =
[

xtobs
svi , ytobs

svi , vtobs
svi , atobs

svi , ∆xtobs
svi,ov, ∆ytobs

svi,ov, ∆vtobs
svi,ov, ∆atobs

svi,ov

]
(4)
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where, xtobs
svi and ytobs

svi denote the positions of the surrounding vehicles at time tobs, respec-
tively, vtobs

svi denotes the velocities of the surrounding vehicles at time tobs, atobs
svi denotes

the accelerations of the surrounding vehicles at time tobs, ∆xtobs
svi,ov and ∆ytobs

svi,ov denote the
positions of the surrounding vehicles relative to the subject vehicle at time tobs, respectively,
∆vtobs

svi,ov denotes the velocities of the surrounding vehicles relative to the subject vehicle

at time tobs, ∆atobs
svi,ov denotes the accelerations of the surrounding vehicles relative to the

subject vehicle at time tobs.
The model yields a probabilistic distribution delineating the forthcoming spatial

coordinates of the subject vehicle:

Y = [ytobs+∆t, · · · ·, ytobs+t f ] (5)

where,
ytobs = [xtobs

ov , ytobs
ov ] (6)

Given the inherent unpredictability of trajectory prediction, it is posited that the
subject vehicle’s positions conform to a Gaussian distribution throughout the predictive
time horizon.

θ = [θtobs+∆t, θtobs+2∆t, · · · θtobs+t f ] (7)

representing the Gaussian distribution parameters of the positions of the subject vehicle
across the predictive timeframe, including its mean vector and covariance matrix.

4. Model

The architecture of our proposed model is illustrated in Figure 2, encompassing an
LSTM encoder, a graph attention mechanism, and an LSTM decoder. A homologous
encoder–decoder structure is applied to Deo [21]. In lieu of convolutional pooling strata,
we incorporate a graph attention mechanism to augment model efficacy.
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The decoder then extrapolates the future trajectory of the subject vehicle.

4.1. LSTM Encoder

The encoder scrutinizes past vehicular movements within the existing traffic milieu. It
comprises fully connected and LSTM layers, where vehicle-specific weights are universally
applied. Across historical time intervals, each vehicle’s motion metrics are fed through
the encoder:
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etobs
i = FC(ctobs

ov , ctobs
svi ; Wemb) (8)

htobs
svi = LSTM(htobs−∆t

svi , etobs
i ; Wencoder) (9)

where, FC( ) is a fully connected function with the activation function LeakyReLU, Wemb

and Wencoder are the weights of its embedding layer as well as the encoder. htobs
svi and htobs

ov
denotes the contemporaneous hidden vectors for the surrounding and subject vehicles,
respectively.

4.2. Graph Attention Mechanism

However, the interactions between vehicles cannot be represented by using only
LSTMs. To share information among vehicles on the highway, we consider the vehicles
as nodes on the graph. Because the graph attention mechanism can collect information
from neighboring nodes for aggregation by assigning different levels of importance to
them according to their influence, we chose to use GAT as our sharing mechanism. For
the graph attention mechanism, nodes and edges are the two most important constituent
elements. As shown in Figure 2, in our model, each node represents the feature vector
htobs = [htobs

ov , htobs
svi ] encoded by each vehicle at tobs, and each edge represents the weight of

the ambient vehicles on the subject vehicle.
GAT computes the features of nodes by focusing on each node’s neighbors and com-

bining them with the data from the graph structure. Multiple graph attention layers are
stacked into GAT.

During the observation period, htobs
ov is sent to the graph attention layer. For the node

pair (OV, SVi), its weight in the attention mechanism can be represented as:

α
tobs
ov,svi =

exp(LeakyReLU(aT [Whtobs
ov

∣∣∣∣∣∣Whtobs
svi ]))

∑
svi∈Ni

exp(LeakyReLU(aT [Whtobs
ov

∣∣∣∣∣∣Whtobs
svi ]))

(10)

where, || denotes the splicing operation between vectors, .T denotes the transposition of a
matrix, α

tobs
ov,svi denotes the attention weight of the node SVi compared to the node OV at

time tobs, Ni denotes the set of all neighboring nodes of the node OV. W ∈ RF′×F denotes
the learnable shared-weight matrix, and a ∈ R2F′ denotes the learnable weight vector. This
is normalized by applying the LeakyReLU activation function.

Following acquiring the attention weights, the output of the node OV in the single
graph attention layer at time tobs is represented as:

h
tobs
ov = σ( ∑

SVi∈Ni

α
tobs
ov,svi Whtobs

svi ) (11)

where, σ is a nonlinear function. Equations (10) and (11) exhibit how a single graph
attention layer operates. h

tobs
ov is the feature vector generated by aggregating the spatial

information of all ambient vehicles for the subject vehicle at time tobs.

4.3. LSTM Decoder

The decoder acquires important information about the vehicles according to the fea-
ture vector. It is employed to give a predicted probability regarding the subject vehicles’
positions in the future during the following time t f by outputting the Gaussian distribu-
tion parameters:

θtobs = Λ(LSTM(h
tobs−∆t
ov , Wdec )) (12)

where θtobs denotes the parameters of output in terms of the subject vehicle position distri-
bution at tobs, Λ( ) denotes a completely connected function with the activation function
LeakyReLU, and Wdec denotes the LSTM decoder’s weights.
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4.4. Training and Implementation Details

The number of units in both the encoder and the decoder is 128. The size of the
embedding vector is 32. In addition, we utilize the Adam optimization algorithm [29] with
a learning rate of 0.001 and the ReLU activation function with α = 0.1 to train the model.
The batch size is 128. The model is implemented using Pytorch [30].

5. Empirical Assessment
5.1. Dataset

For the current inquiry, the publicly available NGSIM US-101 [31] and I-80 [32] vehic-
ular trajectory datasets serve as the experimental foundation. Each dataset is composed
of trajectories from real highway scenes observed by the camera at 10 Hz in 2005. Each
dataset contains three 15 min periods representing three traffic states: light congestion,
moderate congestion, and full congestion during peak hours. Each dataset is partitioned
into training and testing subsets, comprising approximately 75% and 25%, respectively.
Trajectory sequences are segmented into 8 s intervals, utilizing the initial 3 s vehicle motion
history to extrapolate the subsequent 5 s trajectory of the subject vehicle. To enhance
computational efficiency, segments are down-sampled to 5 fps.

5.2. Evaluation Metrics

To validate trajectory prediction accuracy, the root mean squared error (RMSE) be-
tween the actual and predicted future trajectories across a 5 s horizon is employed, as
corroborated by prior studies [17,22]. RMSE is computed utilizing the Gaussian distribu-
tion’s predicted means and quantifies the divergence between real and estimated positions,
defined as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(xpred
i,tobs

− xtrue
i,tobs

)
2
+ (ypred

i,tobs
− ytrue

i,tobs
)

2
(13)

where, N represents the amount of trajectories within the testing set, xpred
i,tobs

and ypred
i,tobs

denote
the predicted position for the trajectory i at time tobs, respectively, xtrue

i,tobs
and ytrue

i,tobs
indicate

the true position for the trajectory i at time tobs, respectively.

5.3. Compared Models

In the following sections, trajectory prediction models are compared:
Constant Velocity (CV): The model uses a vehicle’s constant speed for trajectory prediction.
Convolutional Social Pooling (CS-LSTM) [21]: The model utilizes convolutional pool-

ing layers and generates single-mode trajectory predictions.
Non-Local Social Pooling (NLS-LSTM) [16]: This model integrates a social pooling

layer to encapsulate vehicle interactions within the prevailing traffic landscape, irrespective
of spatial proximity.

Multi-Head Attention Social Pooling (MHA-LSTM) [17]: This model uses a four-head
attention mechanism for trajectory prediction and does not input additional vehicle information.

Dual Learning Model (DLM) [33]: The model uses a risk map to consider collision
time and uses ConVLSTM to represent the spatiotemporal interactions of vehicles.

Driving Risk Map-Integrated Deep Learning (DRM-DL) [23]: The model generates
trajectories based on CVAE, constructs a risk map to achieve the interactions between
vehicles, and represents the probability distribution of trajectories in accordance with the
trajectory risk value.

Graph Attention-LSTM (GA-LSTM): This is the model put forward in the present work.
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5.4. Results

Table 1 enumerates the RMSE metrics for the evaluated models. As evidenced by
the tabulated outcomes, our proposed architecture demonstrates superior performance,
affirming its efficacy.

Table 1. Comparative root mean squared prediction error (RMSE) across a 5 s forecasting horizon.

Evaluation Prediction
CV CS-LSTM NLS-LSTM MHA-LSTM DLM DRM-DL GA-LSTM

Metric Horizon(s)

RMSE
(M)

1 0.73 0.61 0.56 0.56 0.41 0.42 0.27
2 1.78 1.27 1.22 1.22 0.95 0.88 0.60
3 3.13 2.09 2.02 2.01 1.72 1.43 0.99
4 4.78 3.10 3.03 3.00 2.64 2.15 1.47
5 6.68 4.37 4.30 4.25 3.87 3.07 2.15

We observe that the constant velocity (CV) model yields elevated RMSE values and its
performance deteriorates with temporal progression. This decrement is attributed to the
CV model’s sole reliance on the vehicles’ physical states, while neglecting the kinematics of
surrounding vehicles. This also highlights the importance of vehicle interaction information
for trajectory prediction.

It is easy to notice that MHA-LSTM performs better than CS-LSTM and NLS-LSTM,
suggesting that vehicle interaction information can be captured better using attention
mechanisms compared to convolutional layers.

In addition, we observe that DLM produces lower RMSE values than MHA-LSTM.
The risk map in DLM portrays the uncertainty of vehicle motion better by describing the
hazard level of the current traffic scenario.

Finally, our proposed model reduces the prediction error by about 30% compared to
DRM-DL over the same prediction horizon. Because the input information to our model is
richer and the model knows how to describe the past motion of vehicles better, the model
improves the accuracy of trajectory prediction significantly. It has been shown that it is
more effective to consider the relative significance of the ambient vehicles with the help of
the absolute and relative motion information of vehicles than to introduce risk maps.

5.5. Qualitative Analysis

In this section, a qualitative analysis of the predictions made by our model is performed.

5.5.1. Effects of Different Input Features

Table 2 and Figure 3 show the RMSE values of our model with various input features
when considering the relative motion information of vehicles. We find that the model
produces the highest RMSE values when the input information for our model is only the
positions of the vehicles and the positions of the ambient vehicles relative to the subject
vehicle. Because the input information of the model is relatively singular, it cannot describe
the motion states of the vehicles well and affects the subsequent trajectory prediction.
The model performs better when the velocity information of the vehicles is added. The
performance of the model is further enhanced when the acceleration information of vehicles
continues to be added. This illustrates that the relationship between vehicles is fully
associated with positions, velocities, and accelerations. The motion states of the vehicles can
be described by velocity and acceleration, and the inclusion of the velocity and acceleration
information of the vehicles enhances the accuracy of trajectory prediction.
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Table 2. Comparative evaluation of model performance utilizing varied input features.

Model
Prediction Horizon(s)

1 2 3 4 5

GA-LSTM [Position] 0.36 0.74 1.18 1.73 2.44

GA-LSTM [Position–Velocity] 0.30 0.65 1.06 1.55 2.23

GA-LSTM [Position–Velocity–Acceleration] 0.28 0.62 1.00 1.48 2.15
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5.5.2. Effects of Different Input Lengths of Historical Trajectories

Table 3 as well as Figure 4 represent the RMSE values of the model with various input
lengths of historical trajectories. Our model performs better as the input length of the
historical trajectories increases. When the input length of the historical trajectories is 1 s,
although the prediction effect does not differ much from that of other input lengths over a 1 s
prediction horizon, the RMSE value rises faster as the prediction horizon increases. Because
it contains too little trajectory information and the model is not sufficiently trained to fit
well, our model, which selects a longer input length of historical trajectories appropriately,
can enhance the accuracy of the trajectory forecast.

Table 3. Assessment of model performance with diverse historical trajectory durations.

Model
Prediction Horizon(s)

1 2 3 4 5

GA-LSTM [1s] 0.34 0.73 1.15 1.64 2.31

GA-LSTM [2s] 0.30 0.66 1.06 1.54 2.18

GA-LSTM [3s] 0.28 0.62 1.00 1.48 2.15

GA-LSTM [4s] 0.26 0.58 0.96 1.43 2.10

5.6. Visualization Outcomes

In order to highlight the performance of the vehicle trajectory forecast more intuitively,
a vehicle lane change trajectory was randomly chosen, and the change in trajectory pre-
diction results were observed over the entire process of the vehicle lane change. We took
six pictures within the specified time, as described in Figure 5. Figure 5a illustrates the
initial recognition of lane-changing attributes by the predicted trajectory. In Figure 5b−f,
the predicted trajectories gradually show the typical features of lane changes and converge
to the true trajectory as time goes on. We can see that these two trajectories are very similar
over the prediction horizon, which proves the efficiency of our model.
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6. Conclusions and Future Work

The current investigation introduces an interactive methodology for forecasting the
future trajectory of the subject vehicle. Initially, the model assimilated both absolute
and relative kinetic parameters to provide a multidimensional description of the vehicle’s
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historical motion. Subsequently, long short-term memory (LSTM) networks were employed
to encapsulate the historical motion data and discern temporal inter-dependencies in vehicle
interactions. Concurrently, a graph attention mechanism was implemented to delineate
the spatial interplay between the subject vehicle and its surrounding counterparts. The
decoding component ultimately generated a Gaussian distribution, representing the future
trajectory of the subject vehicle, based on the graph attention mechanism’s output.

In comparison with existing trajectory prediction models, we find that our model
is superior to other models with respect to RMSE values on two public natural vehicle
trajectory datasets. Qualitative analysis shows that our model performs better with the
addition of the absolute and relative vehicle motion information, demonstrating the validity
of the input information. The input length of vehicle historical trajectories also affects the
effectiveness of the model. The graphical outputs substantiate that our model proficiently
identifies lane-changing behavior, thereby corroborating the prediction’s fidelity.

One shortcoming of our method is that it is only applicable in highway scenarios.
Future work will focus on expanding the method to other traffic scenarios, including
intersections and roundabouts. In addition, we consider extending our proposed approach
to complex traffic scenarios with various agents (e.g., bicycles, pedestrians, or trucks).

In addition, the graph attention network (GAT) for processing interaction features is
more suitable for node-invariant scenarios; it needs to be defaulted that the surrounding
entities of the subject vehicle will not change during the historical observation time and
the future to-be-predicted time, but in real traffic environments, there is no guarantee
that a certain interacting vehicle will keep traveling near the subject vehicle during the
prediction time, and the surrounding vehicles can undergo lane-changing behaviors to
move away from the subject vehicle and quit the domain range of the subject vehicle. In
the future, the graph attention network for extracting interaction features can be improved
and structurally optimized to make it suitable for prediction scenarios with variable nodes.
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Abbreviations

LSTM: long short-term memory, GAT: graph attention, CAVs: cooperation of au-
tonomous vehicles, OV: subject vehicle, SVi: surrounding vehicle, GNNS: graph neural
networks, GA-LSTM: graph attention-LSTM, RMSE: root mean squared error, CV: constant
velocity, CS-LSTM: convolutional social pooling, NLS-LSTM: non-local social pooling,
MHA-LSTM: multi-head attention social pooling, DLM: dual learning model, DRM-DL:
driving risk map-integrated deep learning.
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