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Abstract: For continuously changing road conditions and vehicle operating states, the exactitude
of vehicle path tracking has not been secured by model predictive control based on linear lateral
stiffness. An amended square root cubature Kalman filter method based on the minimization of
a new covariance of interest is proposed to calculate the tire lateral deflection force in real time.
The ratio of the estimated tire force to the linear tire force was used as a ratio to adjust the lateral
deflection stiffness, and an adaptive model predictive controller was built based on the vehicle
path-tracking error model to correct the tire lateral deflection stiffness. Finally, an analysis based on
the joint CarSim and Simulink simulation platform shows that compared to a conventional model
predictive control (MPC) controller, a trajectory-following controller built based on this method can
effectively reduce the lateral distance error and heading error of an autonomous vehicle. Especially
under low adhesion conditions, the conventional MPC controllers will demonstrate large instability
during trajectory tracking due to the deviation of the linear tire force calculation results, whereas
the adaptive model predictive control (AMPC) controllers can correct the side deflection stiffness by
estimating the tire force and still achieve stable and effective tracking of the target trajectory. This
suggests that the proposed algorithm can improve the effectiveness of trajectory tracking control for
autonomous vehicles, which is an important reference value for the optimization of autonomous
vehicle control systems.

Keywords: automatic vehicles; path-tracking control; minimum new interest covariance; square root
volume Kalman filter; adaptive model prediction

1. Introduction

In recent years, to alleviate traffic congestion and ensure driving safety, autonomous
driving technology has become the most important developmental focus in the automotive
industry [1]. Path tracking is an important part of autonomous driving. To improve
the stability, comfort, and computational efficiency of path tracking, researchers have
proposed various types of path-tracking algorithms, which mainly include proportional
integral derivative (PID) [2], the linear-quadratic regulator (LQR) [3], the pure tracking
algorithm [4] and the model predictive control (MPC) algorithm [5].

In most cases, the design of control algorithms for tracking depends on the system
model of the controlled object, so the first step in the design of a control system is to
create a vehicle dynamics model. In the literature, a classical two degrees of freedom
vehicle dynamics model [6] has been developed to reduce the complexity of control strat-
egy design and the resolution pressure of hardware algorithms and is widely used in the
design of control algorithms. In addition, several experts and researchers have developed
multi-degree-of-freedom vehicle dynamics models, including the three-degree-of-freedom
model, which describes the steering behavior, and the seventeen-degree-of-freedom model,
which fully describes the nonlinear characteristics of the tires, suspension, and kinematic

World Electr. Veh. J. 2024, 15, 95. https://doi.org/10.3390/wevj15030095 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj15030095
https://doi.org/10.3390/wevj15030095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://doi.org/10.3390/wevj15030095
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj15030095?type=check_update&version=1


World Electr. Veh. J. 2024, 15, 95 2 of 16

constraints and more accurately describes the vehicle dynamics during the motion pro-
cess. Many approaches to the development of control algorithms are based on theoretical
mathematical models of vehicle dynamics, the calculation of physical quantities describing
vehicle motion, such as angular velocity, and the subsequent development of a feedback
control system for tracking. Liu et al. [7] pointed out that the steering performance of
a two-degree-of-freedom linear model is similar to that of a fourteen-degree-of-freedom
model under normal operating conditions, but there is a big difference under extreme
operating conditions, and the tire profile, load transfer, and other vehicle characteristics,
such as the kinematic constraints of the vehicle, need to be considered. Aouaouda et al. [8]
proposed a nonlinear predictive control method to design a self-adaptive fuzzy controller
using a two-domain linear vehicle model and an empirical tire model with a magic formula
and iteratively adapted the membership function of the fuzzy controller and the control
basis for vehicle control.

Traditional control methods struggle to effectively deal with multi-constrained prob-
lems. Compared with general feedback control and optimal control algorithms, MPC
algorithms are especially good at solving multi-objective problems under optimal control
systems [9]. With the development of online optimization and computer hardware, model
predictive control has become an area of increasing interest in vehicle active safety [10,11]
and path tracking [12]. Considering the problem of poor tracking of an automated vehicle
when it slows down to change lanes in a given vicinity, Li et al. [13] proposed a lane change
detection algorithm using two controllers and a steering tracking algorithm based on the
combination of an MPC controller and a PI controller. Liang et al. [14] considered the prob-
lem that the saturation range of tire lateral deflection stiffness during cornering reduces the
vehicle tracking performance on low-grip roads and proposed model predictive control
(MPC). To address the problems with traditional tracking methods that may cause the car
to crash and fall off the edge of the road, Gou et al. [15] proposed an implicit linear control
method with model predictive control to design a tracking controller that can effectively
deal with modeling errors by using different sampling times and prediction horizons.
Wurts et al. [16] gave full consideration to the influence of surrounding vehicles on the
self-driving vehicle and adopted a centralized control approach to ensure vehicle stability
under extreme working conditions. Yakub et al. [17] proposed a MPC controller based on
longitudinal velocity and considered the constraints of lateral oscillation dynamics in the
vehicle model, which effectively reduced the trajectory tracking error and improved the
stability of trajectory tracking. Ji et al. [18] proposed an integrated controller for real-time
collision-free trajectory planning and tracking that builds an artificial 3D potential field
based on road environment information and uses MPC with several constraints, including
obstacle avoidance and stability constraints for basic control. Cui et al. [19] calculated
trajectory safety bounds based on real-time pre-scan points to identify time-varying con-
straints in the forecast time domain and coordinated MPC control based on the relationship
between trajectory tracking accuracy and stability. Active front-wheel steering with an
additional steering angle can effectively improve the vehicle’s lateral stability on the high-
way, making active front-wheel steering a primary goal for optimizing trajectory control.
Nathan et al. [20] addressed the complex and difficult-to-model pattern of nonlinear dy-
namics and environmental data uncertainty in the development of vehicle path-following
controllers by using vehicle driving data to build a neural network model for predictive
control (NNMPC), which is the proposed method. This method enables complex dynamic
models to be predicted and the neural network models learned to be integrated into a
non-linear solver, thereby increasing the reliability of MPC control.

Meanwhile, for automotive safety systems, oversteer and vehicle sideslip are easily
produced when steering and driving, which can endanger personal safety in serious cases,
so research on vehicle lateral stability is needed. The real-time and accurate estimation of
the vehicle lateral motion state is the basis for the study of vehicle lateral stability control
systems. Karn et al. [21] proposed a real-time algorithm for estimating the lateral deflection
angle using low-cost sensors for vehicle lateral stability control, which combines model
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estimation and kinematics theory to compensate for the existence of road slope angle
and variation in tire performance. Xiaoyu et al. [22] proposed a dynamic modeling and
observation method to estimate the lateral force and lateral deflection angle and developed
a trackless observer with a Kalman filter. Under different road conditions, the developed
state observers are able to estimate the lateral deflection angle of the vehicle very well with
very small estimation errors, which can provide reliable vehicle state information for vehicle
stability management. Qi et al. [23] proposed a novel electronic stability control system for
electric vehicles based on Kalman filtering for lateral deflection angle estimation, which
achieves accurate lateral deflection angle estimation and improves the stability control
system by using the combined model error and external disturbances as an extended
Kalman filtering algorithm.

However, considering the complexity of tire structure and the influence of factors such
as the road adhesion coefficient, there exists a complex nonlinear dynamic relationship
between tire lateral force and slip angle. When the road environment and vehicle operating
conditions constantly change, the tire lateral force obtained through linear lateral stiffness
will have significant model errors, resulting in lower tracking accuracy in conventional
MPC control for automatic vehicle path tracking [24]. Especially when the vehicle steering
approaches the adhesion limit, MPC controllers designed based on linear lateral stiffness
may pose traffic safety risks due to errors.

To this end, this paper uses a new minimization of covariance of an interest-based
modified elementary amended square root cubature Kalman filter (ASRCKF) to estimate
vehicle front and rear tire side forces based on a vehicle model. Next, an adaptive model
predictive control (AMPC) algorithm based on the vehicle tracking error model is proposed
by developing a tuning criterion for adaptive tire side bending stiffness using the ratio
of the estimated tire side force to the estimated linear value of tire side bending stiffness
as a scaling factor. Finally, the proposed AMPC controller is validated by building a joint
simulation based on the CarSim and Simulink platforms.

2. Path-Tracking Error Modeling of Vehicles
2.1. Vehicle Dynamics Model

The task of path tracking is to rapidly and stably track a reference path. In this study,
we controlled the steering of the front wheels to accomplish the lateral path-tracking task
of the vehicle. A 2-DOF vehicle dynamics model was created assuming that the vehicle is
moving at a constant speed and ignoring the effects of the suspension system, transverse
and longitudinal tire coupling forces, and aerodynamics [25], as shown in Figure 1.
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Figure 1. 2-DOF vehicle dynamics model.

The equation of lateral motion is given by:

m(
.
vy +

.
vx

.
φ) = Fyf + Fyr (1)

The equation of motion of the transverse pendulum is given by:

Iz
..
φ = aFyf − bFyr (2)
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where m is the vehicle mass; vx and vy denote the longitudinal and transverse speeds of the
vehicle in the body coordinate system; Fyf and Fyr are the lateral forces on the front and rear
tires, respectively; Iz is the torque of the vehicle about the axis;

.
φ is the angular velocity of

the vehicle’s pendulum; and a and b denote the distances from the center of mass of the
vehicle to the front and rear axles.

When the lateral deflection angle of the tire is small, the relationship between the
lateral force and the lateral deflection angle is linear, and using the small angle assumption,
the tire lateral force can be linearized as:

Fyf = Cαfαf = Cαf(δ −
vy+a

.
φ

vx
)

Fyr = Cαrαr = Cαr(−
vy−b

.
φ

vx
)

(3)

where Cαf and Cαr denote the linear lateral deflection stiffnesses of the front and rear tires,
respectively, and their values are two times the individual tire deflection stiffness; δ is
the front wheel rotation angle; and αf and αr are the front and rear tire deflection angles,
respectively.

Substituting Equation (3) into Equations (1) and (2), the vehicle dynamics model can
be obtained: 

.
vy = Cαf+Cαr

mvx
vy + ( aCαf−bCαr

mvx
− vx)

.
φ − Cαf

m δ

..
φ = aCαf−bCαr

Izvx
vy +

a2Cαf+b2Cαr
Izvx

.
φ − aCαf

Iz
δ

(4)

2.2. Tracking Model That Considers Trajectory Curvature

When a vehicle is traveling along a trajectory, the trajectory curvature plays an im-
portant role in steering characteristics and driving stability. Since this will directly affect
the trajectory tracking accuracy of the vehicle, a tracking error model that considers the
trajectory curvature should be established [26]. As shown in Figure 2, assuming that the
reference path in the figure is obtained by smoothing the path obtained from the planning
module using a B-spline curve, P is the projection point of the center of mass of the vehicle
on the reference trajectory, ed is the distance between the center of mass of the vehicle and
the projection point, φ is the actual heading angle of the vehicle, φd is the angle between
the tangent direction of the reference path and the X-axis of the ground coordinate system,
and eφ is the steering deviation of the vehicle.
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According to the positional relationship of the vehicle and the reference path, the
tracking error equation that considers the trajectory curvature can be expressed as:{ .

eφ =
.
φ − kd

.
s

.
ed = vx sin(eφ) + vy cos(eφ)

(5)



World Electr. Veh. J. 2024, 15, 95 5 of 16

where kd is the curvature at the point P, and
.
s is the rate at which the projected point P

moves along the reference path.

.
s =

1
1 − kded

[
vx cos(eφ)− vy sin(eφ)

]
(6)

when the vehicle is at a small angle front wheel turn, and as such, the above equation can
be simplified as: { .

eφ =
.
φ − kdvx

1−kded
=

.
φ − kdvx

.
ed = vxeφ + vy

(7)

Combining Equation (4) and Equation (7), let x = [vx
.
φ ed eφ]

T be the state

quantity, u = δ be the control input quantity, v = [0 0 0 −kdvx]
T be the disturbance

input quantity, and y = [
.
φ ed eφ]

T be the output quantity of the system. In this case, the
vehicle tracking error model is: { .

x = Ax + Bu + v
y = Cx

(8)

A =


Cαf+Cαr

mvx

aCαf−bCαr
mvx

− vx 0 0
aCαf−bCαr

Izvx

a2Cαf+b2Cαr
Izvx

0 0
1 0 0 vx
0 1 0 0


B =

[
−Cαf

m − aCαf
Iz

0 0
]T

C =

0 1 0 0
0 0 1 0
0 0 0 1


2.3. Tire Model

The above is due to the complex structure of the tire and the nonlinearity of its dynamic
behavior. In this paper, the magic formula proposed by Pacejka et al. [27] is used. Figure 3
shows the lateral force and slip angle curves of the tire under different pavement adhesion
coefficients determined by the magic formula when the vertical load is 7000 N. It can be
seen that the linear tire lateral force based on linear tire slip stiffness obtained at point A is
significantly larger than the nonlinear tire lateral force obtained at point B under the same tire
slip angle condition. Therefore, it is necessary to develop an MPC controller to adjust the tire
slip stiffness in real time according to the tire lateral force, because the lateral force determined
based on the linear tire slip stiffness cannot respond to the change in the actual lateral force.
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3. ASRCKF-Based Lateral Force Estimator
3.1. Vehicle System Modeling with ASRCKF Algorithm

The discrete equation of state and observation equation of the system are expressed as [28]:{
xτ+1 = f (xτ) + wτ

zτ+1 = h(xτ+1) + vτ+1
(9)

where wτ is the process noise and vτ+1 is the measurement noise.
When defining the vehicle’s yaw rate as

.
φ, lateral forces on the front and rear axles are

Fyf and Fyr, their first-order derivatives
.
Fyf and

.
Fyr constitute the state variable

x = [
.
φ Fyf

.
Fyf Fyr

.
Fyr]

T
, the transverse angular rate and lateral acceleration consti-

tute the observation z = [
.
φ ay]

T , and the input u is the front wheel angle δ. The nonlinear
equation of state and observation function of the vehicle system can thus be obtained:

f (xτ) =


1 a cos δT

Iz
0 − bT

Iz
0

0 1 T 0 0
0 0 1 0 0
0 0 0 1 T
0 0 0 0 1

xτ (10)

{
h1(xτ+1) = x1,τ

h2(xτ+1) =
Fyf+Fyr

m − vx
.
φ

(11)

Combining Equations (9)–(11), the tire lateral force estimator is designed by the
ASRCKF algorithm:

(1) Initialization

The initial values of the state x̂τ|τ and the covariance matrix Pτ|τ are determined

x̂τ = E(x0)

Pτ = E
[
(x0 − x̂τ)(x0 − x̂τ)

T
] (12)

(2) Time Updates

The initial values of x̂τ|τ and Pτ|τ at time τ yield the volume point xi
τ|τ :

Pτ|τ = SτSτ
T

xi
τ|τ = Sτξi + x̂τ|τ , i = 1, 2, . . . , 2n

(13)

where Sτ is the square root of the covariance Pτ|τ , ξi is the basic volume points, Im is the
unit matrix, and m is the dimension of the state vector.

ξi =

{ √
mIm, i = 1, 2, . . . , m

−
√

mIm, i = m + 1, m + 2, . . . , 2m
(14)

The volume point after passing through the state transfer equation can be given as:

xi∗
τ|τ = f

(
xi

τ|τ

)
(15)

Using the transferred volume points, one can derive the predicted value of the state
xi

τ+1|τ and the square root of the predicted covariance Sτ+1|τ as such:
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x̂τ+1|τ = 1
2n

2n
∑

i=1
xi∗

τ+1|τ

Sτ+1|τ = Tria
([

χi∗
τ+1|τ ,

√
Qτ

]) (16)

where Tria denotes the QR matrix operation, and χi∗
τ+1|τ is the central weighting matrix.

χi∗
τ+1|τ =

1√
2n

(x1∗
τ+1|τ − x̂τ+1|τ , x2∗

τ+1|τ − x̂τ+1|τ , . . . , x2n∗
τ+1|τ − x̂τ+1|τ) (17)

(3) Measurement Updates

The volume point can be determined as follows:

xi
τ+1|τ = Sτ+1|τξi + x̂τ+1|τ (18)

After the volume point is passed through the observation function, the following is true:

zi
τ+1|τ = h

(
xi

τ+1|τ

)
(19)

The observed predictions ẑτ+1|τ , the square root of the new interest error covariance
matrix Szz,τ+1|τ , and the new interest rτ+1 are derived using the transferred volumetric
points to further compute the observed covariance matrix pzz,τ+1|τ and the reciprocal
covariance matrix pxz,τ+1|τ .

ẑτ+1|τ = 1
2n

2n
∑

i=1
zi

τ+1|τ

Szz,τ+1|τ = Tria
[(

Zτ+1|τ ,
√

Rτ+1

)]
rτ+1 = zτ+1 − ẑτ+1|τ

Pzz,τ+1|τ = Szz,τ+1|τST
zz,τ+1|τ

Pxz,τ+1|τ = χτ+1|τZT
τ+1|τ

(20)

where Zτ+1|τ and χτ+1|τ are the weighting matrices.

Zτ+1|τ =
1√
2n

[z1
τ+1|τ − ẑτ+1|τ , z2

τ+1|τ − ẑτ+1|τ , . . . , z2n
τ+1|τ − ẑτ+1|τ ] (21)

Zτ+1|τ =
1√
2n

[z1
τ+1|τ − ẑτ+1|τ , z2

τ+1|τ − ẑτ+1|τ , . . . , z2n
τ+1|τ − ẑτ+1|τ ] (22)

(4) Status Updates

The τ + 1 momentary filter gain Kτ+1|τ , the state estimate x̂τ+1|τ+1, and the estimation
error covariance Sτ+1|τ+1 can be determined as follows:

Kτ+1|τ = pxz,τ+1|τ

(
pzz,τ+1|τ

)−1

x̂τ+1|τ+1 = x̂τ+1|τ + Kτ+1|τ

(
zτ+1|τ − ẑτ+1|τ

)
Sτ+1|τ+1 = Tria

[(
χτ+1|τ − Kτ+1|τZτ+1|τ , Kτ+1

√
Rτ+1

)] (23)

(5) Factor Correction

The coefficients are corrected based on the minimum new interest covariance [20],
which is first corrected for the τ moment estimate x̃τ|τ :

x̃τ|τ = x̂τ|τ + Dτrτ+1 (24)
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where Dτ =
[
d1 d2 · · · dn

]T denotes the coefficients of the observation vector.
The corrected estimation error covariance as well as the prediction error skewness can

thus be obtained:

P̃τ|τ = Pτ|τ + Dτ Pzz,τ+1|τ DT
τ − Pτ|τ MT

τ NT
τ+1DT

τ − Dτ Nτ+1Mτ PT
τ|τ

P̃τ+1|τ = Pτ+1|τ + Eτ Pzz,τ+1|τET
τ − Pτ+1|τ NT

τ+1ET
τ − Eτ NT

τ+1Pτ+1|τ
(25)

where Mτ = ∂ f
∂xτ

∣∣∣
xτ=xτ+1|τ

and Nτ+1 = ∂h
∂xτ

∣∣∣
xτ=xτ+1|τ

are the state transfer matrix and the

linearized approximation matrix Eτ = Mτ Dτ of the observation function, respectively.
This gives the corrected new interest covariance:

P̃zz,τ+1|τ = Lτ+1Pzz,τ+1LT
τ+1 − Γτ+1LT

τ+1 − Lτ+1Γτ+1 (26)

In Equation (26), Lτ+1 = Nτ+1Pτ+1|τ NT
τ+1, Γτ+1 = Nτ+1Eτ .

The modified new interest covariance matrix can then be minimized as follows:

∂P̃zz,τ+1|τ
∂Lτ+1

=
(

Pzz,τ+1|τ + PT
zz,τ+1|τ

)
Lτ+1 − Γτ+1 − ΓT

τ+1 = 0 (27)

Lτ+1 =
(

Pzz,τ+1|τ + PT
zz,τ+1|τ

)(
Γτ+1 + ΓT

τ+1

)
(28)

when Pzz,τ+1|τ and Pτ+1|τ are symmetric matrices, Equation (27) can be expressed as:

Lτ+1 = P−1
zz,τ+1|τΓτ+1 (29)

The factor adjustment that satisfies the minimum value for the updated covariance
matrix can be translated as:

Dτ = (Nτ+1Mτ)
+P−1

zz,τ+1|τΓτ+1 (30)

where the matrix Nτ+1Mτ may be a singular array, and ( )+ is the Moore − Penrose of
the matrix.

Finally, utilizing the updated state estimation values obtained through the aforemen-
tioned adjustments, together with the estimated error covariance, filtering is performed
once again through Equations (13)–(23) in a recursive manner.

In Table 1, all symbols used in this paper are listed and explained.

Table 1. List of symbols.

Symbol Meaning Unit

A State-space system matrix
a, b Front and rear semi-wheelbases m
B Control action matrix

Cαf Linear lateral deflection stiffness of the front tire N·rad−1

Cαr Linear lateral deflection stiffness of the rear tire N·rad−1

Dτ Coefficients of the observation vector
ed Lateral position error m
eφ Heading angle error rad
Fyf Lateral force on the front tire N
Fyr Lateral force on the rear tire N
Im Unit matrix
Iz Torque of the vehicle about the axis kg·m2

J Cost function
kd Road curvature

Kτ+1|τ Filter gain
m Total vehicle mass kg
Mτ State transfer matrix
Nc Number of steps of the control horizon
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Table 1. Cont.

Symbol Meaning Unit

Np Number of steps of the prediction horizon
Nτ+1 Linearized approximation matrix
Pτ|τ Covariance matrix

Pxz,τ+1|τ Reciprocal covariance matrix
s Distance covered along the path m

Sτ Square root of the covariance
Sτ+1|τ Square root of predicted covariance

Szz,τ+1|τ Square root of the new interest error covariance matrix
t Time s
T Sampling time s
u Control action vector
vx Longitudinal vehicle speed m·s−1

vy Lateral vehicle speed m·s−1

vτ+1 Measurement noise
wτ Process noise
x State vector

x̂τ|τ Initial value
xi

τ|τ Volume point
xi

τ+1|τ State prediction
x̃τ|τ State estimate
X, Y Coordinates in the global reference system m

Zτ+1|τ Weighting matrix
x̃τ|τ State estimate
X, Y Coordinates in the global reference system m

Zτ+1|τ Weighting matrix
δ Front wheel steering angle rad
β Vehicle sideslip angle rad
φ Yaw angle rad
ξi Basic volume point

χi∗
τ+1|τ Central weighting matrix

χτ+1|τ Weighting matrix

3.2. Validation of the Tire Lateral Force Estimator

To validate the effectiveness of the above lateral force estimator, a joint simulation was
performed using the CarSim and Simulink platforms: the actual tire lateral forces from the
CarSim vehicle model were compared with the estimates obtained from the ASRCKF estimator.
The vehicle was set to drive at an initial speed of 60 kph on a road with an adhesion coefficient
of 0.8, and the steering wheel input was a sinusoidal input signal with a period of 3 s and
an amplitude of 60

◦
. As shown in Figure 4, the results of estimating the lateral force of the

vehicle’s tires show that, under sinusoidal signal input conditions, the designed ASRCKF
estimator can effectively estimate changes in the lateral forces of the vehicle’s front and rear
tires and provide accurate vehicle data for the design of the next controller.
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4. Path-Tracking Controller Design
4.1. Guidelines for Adjusting Lateral Deflection Stiffness

The curves of the lateral force of the tire and the slip angle of the tire for different
vertical loads given in Figure 3 show that there is a more accurate linear relationship only
when the slip angle of the tire is small. In the presence of vertical load displacements
and for large slip angles, the lateral force values calculated with linear slip stiffness show
significant errors compared to the actual values [29]. To minimize the impact of linear slip
stiffness on control efficiency, this study developed a criterion for setting the linear slip
stiffness of a tire. However, if the tire slip stiffness values F̂yf/αf and F̂yr/αr are estimated
directly to estimate the tire slip angle values Ĉαf and Ĉαr, outlier estimation residuals may
occur, and it is impossible to solve when αf = 0 or αr = 0 appears. Therefore, this paper
uses the ratio of the estimated tire lateral force to the linear tire force to correct the slip
stiffness. As a result, the proportion factor of tire slip stiffness is expressed as:

χf = F̂yf/Fyf, χr = F̂yr/Fyr (31)

Therefore, the corrected tire lateral deflection stiffness is expressed as:

Ĉαf = χfCαf, Ĉαr = χrCαr (32)

To prevent the scale factors χf and χr from being unsolvable when the calculated value
of the linear tire force is 0, the scale factor is defined to take on a value of one when the tire
side deflection angle αf or αr is less than 0.1

◦
.

4.2. Tracking Controller Design

In this paper, the MPC control algorithm obtained by discretizing the model of
Equation (8) using the forward Euler method [30] (FE) is used to design a lateral con-
trol controller for autonomous vehicles:

x(τ + 1) = Aτx(τ) + Bτu(τ) + v(τ)
y(τ) = Cτx(τ)

(33)

where Aτ = I + AT, Bτ = BT, Cτ = C, τ is the current sampling moment, τ + 1 is the next
sampling moment, and T is the sampling period.

By constructing the new state vector ξ(τ) = [x(τ) u(τ − 1)]T , a new expression for
the state equation can be obtained:

ξ(τ + 1) = Ãτξ(τ) + B̃τ∆u(τ) + Tv(τ)

η(τ) = C̃τξ(τ)
(34)

Ãτ =

[
Aτ Bτ

0m×n Im

]
, B̃τ =

[
Bτ

Im

]
, C̃τ =

[
Cτ 0

]
, ṽ =

[
0 0 0 −kdvx

]T , m = n = 1

In the tracking process, the tracking control objective function is defined as in [31]:

J(τ) =
Np

∑
i=1

∥η(τ + i)∥
2

Q

+
Nc−1

∑
i=1

∥∆U(τ + 1)∥
2

R

+ βε2 (35)

where β is the weighting factor and ε is the slackness factor.
The control quantity constraint and control increment constraint of the control system

are mainly considered [32], and their expressions are:

Umin ≤ Uτ ≤ Umax

∆Umin ≤ ∆Uτ ≤ ∆Umax
(36)
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Therefore, the objective function is written as a standard quadratic function. By
combining this function with the following constraints, the optimization problem can
be addressed:

J =
[
∆U(τ)T , ε

]T
Hτ

[
∆U(τ)T , ε

]
+ Gτ

(
∆UT , ε

)
+ Zτ (37)

Hτ =

[
θT

τ Qθτ + R 0
0 ρ

]
, Gτ =

[
2(ψτξ(τ))TQθτ , 0

]
, Zτ = (ψτξ(τ))TQ(ψτξ(τ))

4.3. Adaptive Path-Tracking Control Framework

To obtain an adaptive MPC (AMPC) controller that considers the nonlinear tire
side forces, the variables Cαf and Cαr in Equation (8) are displaced by the variables Ĉαf
and Ĉαr in Equation (32). Figure 5 shows the proposed architecture of the path-tracing
AMPC controller.
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Figure 5. Architecture of the path-tracing AMPC controller.

In the architecture of the path-tracing AMPC controller, the road environment infor-
mation and vehicle state information obtained from the automatic vehicle system are used
for trajectory planning and lateral force estimation. By combining the desired vehicle speed
vx and the reference trajectory curvature kd obtained from the planning layer, the lateral
distance deviation ed and heading angle deviation eφ based on the vehicle-tracking error
model are obtained. The estimated values of F̂yf and F̂yr are obtained based on the estimator
designed using ASRCKF. Then, the ratio of the estimated tire forces F̂yf and F̂yr to the linear
tire forces Fyf and Fyr is used to calculate the scaling factors χf and χr to adjust the lateral
deflection stiffness, which in turn gives the adjusted lateral deflection stiffness values Ĉαf
and Ĉαr. Finally, by substituting the heading angle error, vehicle speed, lateral distance
error, yaw rate, and the adjusted lateral stiffness values Ĉαf and Ĉαr into the model, the
AMPC path-tracking controller is obtained. Then, the optimal front wheel steering angle δ
that satisfies the constraints is calculated, enabling the lateral control of the vehicle.
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5. Analysis of Simulation Results

To test the actual performance of the designed adaptive MPC controller, a common
simulation platform was developed using CarSim and Simulink, which was compared
with and analyzed alongside a conventional MPC controller without lateral tire stiffness
correction. The main vehicle parameters involved in the experimental simulation are
demonstrated in Table 2. The prediction time domain is set to Np = 25, the control time
domain is set to Nc = 15, the sampling time is set to T = 0.02 s, the weights of the control
increment is R = 10, the weight matrix of the output variables is Q = diag (200, 100, 100),
and the weight coefficients of the relaxation factor is ρ = 1000.

Table 2. Technical parameters of the automatic vehicle.

Parameters Unit Value

m kg 1413
Iz kg·m2 1536.7

Cαf N·rad−1 −112,600
Cαr N·rad−1 −80,500

a m 1.025
b m 1.885

5.1. High-Adhesion Double-Shift Line Condition

The maximum road adhesion coefficient for this working condition is set to 0.8, and
the vehicle speed value is 80 kph. The experimental simulation outcomes are demonstrated
in Figure 6a, indicating that both controllers have achieved overall tracking of the reference
trajectory. As seen in Figure 6b,c, the maximum lateral deviation and yaw angle deviation
for the MPC controller are 0.3486 m and 5.295 deg, respectively. In contrast, the AMPC
controller has maximum deviations of 0.1724 m and 3.855 deg, reducing them by 50.54%
and 27.20%, respectively. Therefore, the AMPC controller outperforms the MPC controller
in terms of overall path tracking. As seen in Figure 6d, under this condition, the vehicle
yaw rate of the AMPC-based controller is less than that of the conventional MPC controller.
This can reduce the lateral acceleration generated during cornering, thereby improving
driving safety and ride comfort.
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5.2. Low-Adhesion Double-Shift Line Condition

The maximum road adhesion coefficient for this working condition is 0.4, and the
vehicle speed is 54 kph. The experimental simulation outcomes are demonstrated in
Figure 7a, indicating that the traditional MPC controller cannot follow the reference track
under this working condition. When the time exceeds 3 s, the vehicle should be turning
according to the reference trajectory, but there is a phenomenon of deviation. The reason
behind this is that under this working condition, the calculation of the tire’s lateral force
based on linear lateral stiffness results in a significant difference from the actual lateral
force. As a result, the controller is unable to calculate the steering angle of the front wheels
that satisfies the driving conditions. However, the AMPC controller that incorporates
adjusted lateral stiffness can still track the reference trajectory. As seen in Figure 7b,c, the
lateral deviation and yaw angle deviation based on the MPC controller gradually fail to
meet the path-tracking requirements after 3 s. On the other hand, the vehicle based on the
AMPC controller can still suppress the lateral error and yaw angle error within 0.4989 m
and 5.295 deg, respectively. The control effect is significantly superior to that of the MPC
controller. In accordance with the above analysis, the AMPC controller developed in this
study can significantly improve the ability of the MPC control algorithm to handle different
road adhesion coefficients, which is of great importance for ensuring driving safety.
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As shown in Figure 8, the solution time of each step in the whole process of the
low-attachment double-shift condition test is basically maintained near 6 ms, which is
much smaller than the set sampling time of 20 ms, and the experimental results show that
the proposed AMPC control can guarantee the real-time performance of the optimization
solution in the trajectory-tracking process. Therefore, the simulation test shows that the
proposed AMPC control can meet the effectiveness and real-time performance of trajectory-
tracking control and can be used in the design and optimization of intelligent vehicle
control systems.
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6. Conclusions

In this study, the correlation between tire lateral forces and slip angle under various
vertical loads was analyzed based on the Magic tire model. A real-time tire lateral force esti-
mator was designed using the ASRCKF algorithm, and further verification was conducted
to demonstrate its effectiveness in estimating the lateral forces of the tires of a vehicle. By
comparing the tire sidewall force estimated in real time with the tire force calculated using
the linear tire model, a ratio was obtained and used as a proportional factor to adjust the tire
lateral stiffness. Moreover, a criterion for adjusting the front and rear tire lateral stiffness
was developed. Based on a vehicle tracking error model, an AMPC controller is proposed.
Simulation analysis showed that under high-adhesion dual-line working conditions, the
maximum lateral distance error and heading angle error are reduced by 50.54% and 27.20%,
respectively. As a result, the path-tracking control effect of automatic vehicles is improved,
allowing for fast and stable tracking of reference path.

The proposed AMPC algorithm has a superior adaptive ability to the road surface
attachment situation and vehicle running condition and can meet the requirements of
real-time tracking. The results of this research will significantly improve the stability of the
traditional predictive control strategy, significantly enhance the accuracy of vehicle motion
trajectory tracking, and provide a theoretical basis for improving the adaptive ability and
robustness of intelligent vehicles.

In this study, the design of the controller only considered the steady state condition.
The next step will consider the coupled lateral and longitudinal control of the vehicle and
analyze optimal planning and control algorithms in dynamic environments.
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Abbreviations

Abbreviation Full Title
MPC Model predictive control
AMPC Adaptive model predictive control
PID Proportional integral derivative
LQR Linear quadratic regulator
ASRCKF Amended square root cubature Kalman filter

References
1. Mu, X.; Gao, W.; Li, X.; Li, G. Coverage Path Planning for UAV Based on Improved Back-and-Forth Mode. IEEE Access 2023, 11,

114840–114854. [CrossRef]
2. Marino, R.; Scalzi, S.; Netto, M. Nested PID Steering Control for Lane Keeping in Autonomous Vehicles. Control Eng. Pract. 2011,

19, 1459–1467. [CrossRef]
3. Xu, S.; Peng, H. Design, Analysis, and Experiments of Preview Path Tracking Control for Autonomous Vehicles. IEEE Trans. Intell.

Transp. Syst. 2020, 21, 48–58. [CrossRef]
4. Wang, R.; Li, Y.; Fan, J.; Wang, T.; Chen, X. A Novel Pure Pursuit Algorithm for Autonomous Vehicles Based on Salp Swarm

Algorithm and Velocity Controller. IEEE Access 2020, 8, 166525–166540. [CrossRef]
5. Wang, H.; Wang, Q.; Chen, W.; Zhao, L.; Tan, D. Path Tracking Based on Model Predictive Control with Variable Predictive

Horizon. Trans. Inst. Meas. Control 2021, 43, 2676–2688. [CrossRef]
6. Yakub, F.; Abu, A.; Sarip, S.; Mori, Y. Study of Model Predictive Control for Path-Following Autonomous Ground Vehicle Control

under Crosswind Effect. J. Control Sci. Eng. 2016, 2016, 6752671. [CrossRef]
7. Liu, J.; Jayakumar, P.; Stein, J.L.; Ersal, T. A Study on Model Fidelity for Model Predictive Control-Based Obstacle Avoidance in

High-Speed Autonomous Ground Vehicles. Veh. Syst. Dyn. 2016, 54, 1629–1650. [CrossRef]
8. Aouaouda, S.; Chadli, M.; Boukhnifer, M.; Karimi, H.R. Robust Fault Tolerant Tracking Controller Design for Vehicle Dynamics:

A Descriptor Approach. Mechatronics 2015, 30, 316–326. [CrossRef]
9. Oikonomou, M.G.; Ziakopoulos, A.; Chaudhry, A.; Thomas, P.; Yannis, G. From Conflicts to Crashes: Simulating Macroscopic

Connected and Automated Driving Vehicle Safety. Accid. Anal. Prev. 2023, 187, 107087. [CrossRef]
10. Nie, Z.; Jia, Y.; Wang, W.; Outbib, R. Eco-Co-Optimization Strategy for Connected and Automated Fuel Cell Hybrid Vehicles in

Dynamic Urban Traffic Settings. Energy Convers. Manag. 2022, 263, 115690. [CrossRef]
11. Liu, H.; Zhang, L.; Wang, P.; Chen, H. A Real-Time NMPC Strategy for Electric Vehicle Stability Improvement Combining Torque

Vectoring With Rear-Wheel Steering. IEEE Trans. Transp. Electrif. 2022, 8, 3825–3835. [CrossRef]
12. Stano, P.; Montanaro, U.; Tavernini, D.; Tufo, M.; Fiengo, G.; Novella, L.; Sorniotti, A. Model Predictive Path Tracking Control for

Automated Road Vehicles: A Review. Annu. Rev. Control 2022, 55, 194–236. [CrossRef]
13. Li, H.; Luo, Y. Study on Steering Angle Input during the Automated Lane Change of Electric Vehicle; Technical Paper 2017-01–1962; SAE

International: Warrendale, PA, USA, 2017. [CrossRef]
14. Liang, Y.; Li, Y.; Khajepour, A.; Zheng, L. Multi-Model Adaptive Predictive Control for Path Following of Autonomous Vehicles.

IET Intell. Transp. Syst. 2020, 14, 2092–2101. [CrossRef]
15. Guo, H.; Liu, J.; Cao, D.; Chen, H.; Yu, R.; Lv, C. Dual-Envelop-Oriented Moving Horizon Path Tracking Control for Fully

Automated Vehicles. Mechatronics 2018, 50, 422–433. [CrossRef]
16. Wurts, J.; Stein, J.L.; Ersal, T. Collision Imminent Steering at High Speeds on Curved Roads Using One-Level Nonlinear Model

Predictive Control. IEEE Access 2021, 9, 39292–39302. [CrossRef]
17. Yakub, F.; Mori, Y. Comparative Study of Autonomous Path-Following Vehicle Control via Model Predictive Control and Linear

Quadratic Control. Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2015, 229, 1695–1714. [CrossRef]
18. Ji, J.; Khajepour, A.; Melek, W.W.; Huang, Y. Path Planning and Tracking for Vehicle Collision Avoidance Based on Model

Predictive Control with Multiconstraints. IEEE Trans. Veh. Technol. 2017, 66, 952–964. [CrossRef]
19. Cui, Q.; Ding, R.; Wei, C.; Zhou, B. Path-Tracking and Lateral Stabilisation for Autonomous Vehicles by Using the Steering Angle

Envelope. Veh. Syst. Dyn. 2021, 59, 1672–1696. [CrossRef]
20. Spielberg, N.A.; Brown, M.; Gerdes, J.C. Neural Network Model Predictive Motion Control Applied to Automated Driving with

Unknown Friction. IEEE Trans. Control. Syst. Technol. 2022, 30, 1934–1945. [CrossRef]
21. Piyabongkarn, D.; Rajamani, R.; Grogg, J.A.; Lew, J.Y. Development and Experimental Evaluation of a Slip Angle Estimator for

Vehicle Stability Control. IEEE Trans. Control Syst. Technol. 2009, 17, 78–88. [CrossRef]
22. Xiaoyu, L.; Nan, X.; Konghui, G. Vehicle Sideslip Angle Estimation Based on Fusion of Kinematic Method and Kinematic-geometry

Method. J. Mech. Eng. 2020, 56, 121. [CrossRef]
23. Qi, G.; Yue, M.; Shangguan, J.; Guo, L.; Zhao, J. Integrated Control Method for Path Tracking and Lateral Stability of Distributed

Drive Electric Vehicles with Extended Kalman Filter–Based Tire Cornering Stiffness Estimation. 2023. Available online: https:
//journals.sagepub.com/doi/10.1177/10775463231181635 (accessed on 11 January 2024).

https://doi.org/10.1109/ACCESS.2023.3325483
https://doi.org/10.1016/j.conengprac.2011.08.005
https://doi.org/10.1109/TITS.2019.2892926
https://doi.org/10.1109/ACCESS.2020.3023071
https://doi.org/10.1177/01423312211003809
https://doi.org/10.1155/2016/6752671
https://doi.org/10.1080/00423114.2016.1223863
https://doi.org/10.1016/j.mechatronics.2014.09.011
https://doi.org/10.1016/j.aap.2023.107087
https://doi.org/10.1016/j.enconman.2022.115690
https://doi.org/10.1109/TTE.2022.3153388
https://doi.org/10.1016/j.arcontrol.2022.11.001
https://doi.org/10.4271/2017-01-1962
https://doi.org/10.1049/iet-its.2020.0357
https://doi.org/10.1016/j.mechatronics.2017.02.001
https://doi.org/10.1109/ACCESS.2021.3063795
https://doi.org/10.1177/0954407014566031
https://doi.org/10.1109/TVT.2016.2555853
https://doi.org/10.1080/00423114.2020.1776344
https://doi.org/10.1109/TCST.2021.3130225
https://doi.org/10.1109/TCST.2008.922503
https://doi.org/10.3901/JME.2020.02.121
https://journals.sagepub.com/doi/10.1177/10775463231181635
https://journals.sagepub.com/doi/10.1177/10775463231181635


World Electr. Veh. J. 2024, 15, 95 16 of 16

24. Li, S.; Yang, Z.; Wang, X. Trajectory Tracking Control of an Intelligent Vehicle Based on T-S Fuzzy Variable Weight MPC. J. Mech.
Eng. 2023, 59, 199. [CrossRef]

25. Teng, S.; Hu, X.; Deng, P.; Li, B.; Li, Y.; Ai, Y.; Yang, D.; Li, L.; Xuanyuan, Z.; Zhu, F.; et al. Motion Planning for Autonomous
Driving: The State of the Art and Future Perspectives. IEEE Trans. Intell. Veh. 2023, 8, 3692–3711. [CrossRef]

26. Liu, J.; Wang, Z.; Zhang, L. Integrated Vehicle-Following Control for Four-Wheel-Independent-Drive Electric Vehicles Against
Non-Ideal V2X Communication. IEEE Trans. Veh. Technol. 2022, 71, 3648–3659. [CrossRef]

27. Pacejka, H. Tire and Vehicle Dynamics; Elsevier: Amsterdam, The Netherlands, 2005.
28. Han, K.; Choi, M.; Choi, S.B. Estimation of the Tire Cornering Stiffness as a Road Surface Classification Indicator Using

Understeering Characteristics. IEEE Trans. Veh. Technol. 2018, 67, 6851–6860. [CrossRef]
29. Cui, Z.; Xia, X.; Pei, X. A Modified Vehicle Following Control System on the Curved Road Based on Model Predictive Control. In

Proceedings of the 2021 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021; pp. 1098–1103.
[CrossRef]

30. Zhe, X.; Hailiang, C.; Ziyu, L.; Enxin, S.; Qi, S.; Shengbo, L. Lateral Trajectory Following for Automated Vehicles at Handling
Limits. J. Mech. Eng. 2020, 56, 138. [CrossRef]

31. Lu, Y.; Zhu, J.; Wang, Z.; Du, N.; Zhang, J. Path Preview Tracking for Autonomous Vehicles Based on Model Predictive Control.
In Proceedings of the 2022 IEEE International Conference on Unmanned Systems (ICUS), Guangzhou, China, 28–30 October 2022;
pp. 405–410. [CrossRef]

32. Taghavifar, H.; Shojaei, K. Adaptive Robust Control Algorithm for Enhanced Path-Tracking Performance of Automated Driving
in Critical Scenarios. Soft Comput. 2023, 27, 8841–8854. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3901/JME.2023.04.199
https://doi.org/10.1109/TIV.2023.3274536
https://doi.org/10.1109/TVT.2022.3141732
https://doi.org/10.1109/TVT.2018.2820094
https://doi.org/10.1109/CCDC52312.2021.9602682
https://doi.org/10.3901/JME.2020.14.138
https://doi.org/10.1109/ICUS55513.2022.9987142
https://doi.org/10.1007/s00500-022-07743-z

	Introduction 
	Path-Tracking Error Modeling of Vehicles 
	Vehicle Dynamics Model 
	Tracking Model That Considers Trajectory Curvature 
	Tire Model 

	ASRCKF-Based Lateral Force Estimator 
	Vehicle System Modeling with ASRCKF Algorithm 
	Validation of the Tire Lateral Force Estimator 

	Path-Tracking Controller Design 
	Guidelines for Adjusting Lateral Deflection Stiffness 
	Tracking Controller Design 
	Adaptive Path-Tracking Control Framework 

	Analysis of Simulation Results 
	High-Adhesion Double-Shift Line Condition 
	Low-Adhesion Double-Shift Line Condition 

	Conclusions 
	References

