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Abstract: An identification technique is proposed to create a relation between the accelerator pedal
position and the corresponding driving moment. This step is beneficial to replace the complex
physical model of the vehicle control unit, especially when the sufficient information needed to
model certain functionalities of the vehicle control unit are unavailable. We utilized the nonlinear
autoregressive exogenous model to regenerate the electric motor torque demand, given the accelerator
pedal position, the motor’s angular speed, and the vehicle’s speed. This model proved to be extremely
efficient in representing this highly complex relationship. The data employed for the identification
process were chosen from an actual three-dimensional route with sudden changes of a dynamic nature
in the driving mode, different speed limits, and elevations, as an attempt to thoroughly cover the
driving moment scope based on the alternation of the given inputs. Analyzing the selected route data
points showed the widespread coverage of the motor’s operational scope compared to a standard
driving cycle. The training outcome revealed that linear modeling is inadequate for identifying
the targeted system, and has a substantial estimation error. Adding the nonlinearity feature to the
model led to an exceptionally high accuracy for the estimation and validation datasets. The main
finding of this work is that the combined model from the nonlinear autoregressive exogenous and the
sigmoid network enables the accurate modeling of highly nonlinear dynamic systems. Accordingly,
the maximum absolute estimation error for the motor’s moment was less than 10 Nm during the
real-world driving maneuver. The highest errors are found around the maximum motor’s moment.
Finally, the model is validated with measurements from an actual field test maneuver. The identified
model predicted the driving moment with a correlation of 0.994.

Keywords: torque demand; electric vehicle; real-world driving maneuver; NARX; neural network;
machine learning

1. Introduction

Empirical modeling approaches, such as black-box model identification, differ from
theoretical ones. The creation of empirical models only requires measurement data of the
system plant, which means modeling, especially for complex systems, can be carried out
with less effort and in a shorter time than theoretical models. The comprehensive expertise
necessary for creating a physically based theoretical model is not mandatory for empirical
modeling. Another advantage is that the evaluation of empirical models often requires
less computing time than that of physical models, which is particularly important for
optimization processes requiring computational effort. A disadvantage of empirical models
compared to physical models is that they do not provide direct knowledge regarding the
effects of influential design factors of the powertrain [1,2].

Polynomial models are characterized by their ease of implementation and low com-
puting time requirement for model creation. They are the most straightforward model
approach and the standard model of empirical modeling [2]. Polynomial models are
represented as a linear combination between regressors and coefficients. Regressors are
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mathematical expressions of the model inputs, usually in multiplication or exponentiation
forms. Polynomial models have linear coefficients and, therefore, are characterized as linear
models. The term “linear” describes the connection between the coefficient and prediction
space, not the input and output variable space. Continuous differentiable nonlinear system
models can be attained based on polynomial models [1].

Nonlinear regression models are generally used when polynomial models cannot
adequately describe the system to be modeled. A widely used approach is artificial neural
networks (ANNs), whose model structure is derived initially from biological structures
within the brains of humans or animals [3]. This machine learning technique can be
combined with other methods to improve the overall modeling accuracy. Artificial neural
networks are capable of modeling any nonlinear mapping between several variables.
Because of this feature, ANNs are used in diverse fields such as system identification,
function approximation, pattern classification, regression, classification, clustering, and
optimization. However, ANN performance degrades when the system contains unknown
delays. The nonlinear autoregressive exogenous model (NARX) generally uses ANN
internally for time series prediction applications [4]. Introducing the concept of feedback
into the network provides a solution for modeling such systems accurately. The NARX
networks integrate feedback between the output and input layers, which makes them a
perfect choice for system identification with time delays. This property increases ANN
performance, reduces the number of training data samples, promotes early convergence,
and reduces error. Despite the advantages of NARX networks, they come with the price of
increased complexity [5,6].

Due to their reduced computational effort, cost effectiveness, and compact structure,
the ‘machine learning’ techniques are becoming one the most popular approaches for
performing prediction activities, especially in the automotive industry [7]. Among the
machine learning approaches, NARX modeling is a promising method for estimating
the nonlinear dynamic system of the internal combustion engine (ICE) torque [7–9]. For
instance, the study in reference [10] investigated different intelligent modeling techniques,
specifically, the NARX neural network, linear regression, and regression error with the
autoregressive moving average, for modeling a diesel engine truck’s fuel consumption and
emissions. The results showed that the NARX method led to the best accuracy compared
to the other methods.

The NARX network was proven to be more capable of learning long-term dependen-
cies than the static neural network. Moreover, it proved to be a promising technique for
the online recognition of different automotive applications under real driving conditions.
The NARX network was applied as a dynamic neural network with feedback and memory
functions to characterize the brake intensity influenced by the driver’s sequential actions,
demonstrating long-term dependencies. The braking moment values are significantly
related to the driver’s behavior and driving maneuvers [11]. Moreover, the authors of [12]
used a neural network to model different systems in an autonomous vehicle: the steering,
acceleration, and braking systems. The neural network model efficiently tracked the target
data. As a comparison, they identified the acceleration system using the NARX method
but achieved less accurate results. A computationally efficient NARX ANN model was
developed in [13] to describe highly nonlinear thermally sensitive hydraulic dampers for
the virtual tuning of high-frequency loading passive suspension systems. A computation-
ally physical damper model with high accuracy is used to assist with the development of
the NARX model. Furthermore, an integrated time series model was developed based on
multivariate deep neural networks with long short-term memory units [14]. This approach
was used to estimate the dynamic brake pressure of electric vehicles (EVs). It was also
found that NARX approaches perform better than other methods, such as linear regression
and support vector regression prediction methods, making the NARX model an efficient
ANN method for predicting nonlinear systems.

Developing torque demand predictive models became a helpful approach toward
accurate energy consumption estimation during actual driving routes [14–17]. The behavior
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of a separately excited DC motor in the paper in reference [4] is recognized using NARX
neural networks. The system identification and controller design developed based on
the NARX neural networks presented a remarkable ability to rapidly track the set point
variations. NARX can characterize the torque of induction machine (IM) motors as part of
an electric powertrain [18]. The testing data for the NARX model were generated using
a model-based EV model, and the results were validated with the data from virtually
performing the WLTP standard driving cycle. Still, the ability to predict the torque demand
of an electric powertrain for dynamic real-world driving maneuvers was not investigated
thoroughly, which will be the focus of this study.

This work proposed a NARX sigmoid model to interpret the driving moment from
the accelerator pedal position, implementing single hidden layer sigmoid networks similar
to those applied in [19,20]. Besides the accelerator position value, additional quantities are
required to estimate the corresponding moment, which are the electrical motor angular
speed and the vehicle speed. Figure 1a shows the vehicle under test (VUT). A simplified
representation of the control unit functions influencing the transmission behavior between
the accelerator pedal and the electric motor is illustrated in Figure 1b. The regenerative
braking system is not considered in this work.
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Figure 1. Vehicle under test (a), the actual vehicle used for the field test; (b) schematic for the
interfacing systems between the accelerator pedal and the electrical motor of the test vehicle [21].

Actual measurements from a maneuver test using this vehicle will be employed to
validate the proposed identification model. The vehicle’s motor is powered by alternating
current (AC), delivered from the power electronics (PE) that convert the battery’s direct
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current (DC). The battery management system (BMS) manages the processes of battery
discharging and charging. The torque demand command is determined according to the
actuation of the accelerator pedal. The chain of events begins with a sensor detecting
the accelerator pedal angle. The digitized accelerator pedal percentage value (SD) is the
input variable of the vehicle control unit (VCU). An output of the VCU system is the
value by which the maximum available motor torque is determined under given boundary
conditions. The driver’s desired moment that is determined is the basis for calculating the
final driving moment (Mdrive). In addition to the driver, auxiliary units, vehicle dynamics
control systems, and control unit functions for components, further modifications can be
placed on the VCU, which are checked for plausibility and consider the electrical motor’s
target moment formation. Additional control unit functions are activated during dynamic
driving maneuvers to increase driving comfort. They are called comfort functions because
they aim to increase the subjective driving comfort. These comfort functions also change or
shape the desired motor moment. Different comfort functions are necessary depending on
the drivetrain configuration [1].

2. Nonlinear Autoregressive Exogenous Model

Nonlinear regression models are generally used when linear polynomial models
cannot adequately describe the targeted system behavior. NARX is one of the most popular
model identification types in different industrial applications [8]. The NARX network,
shown in Figure 2, displays nonlinear mapping with a sigmoid activation function.
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Figure 2. Mapping function for NARX network (https://www.mathworks.com/help/ident/ref/
idneuralnetwork.html?s_tid=srchtitle_site_search_1_idNeuralNetwork, accessed on 10 February 2024).

The mapping function implements a combination of an offset, linear weights, and
a nonlinear function in parallel to estimate the output [19,22]. The nonlinear function
contains the sigmoid unit functions. An NARX model contains model regressors and an
output function. The output function includes mapping objects; each model output has a
single mapping object. The mapping object is selected as a sigmoid network. The block
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diagram illustrated in Figure 3 represents the arrangement of a single-output NARX model.
The NARX model output y is computed in two stages: Firstly, the regressor corresponding
values from the current and past input data and the past output data are calculated.
Secondly, the regressors are mapped to the output model by applying an output function
block. The parameters of the NARX model are a collection of parameters of the offset,
the linear function, and the nonlinear function. The modeling approach implemented in
this work is incremental: First, a linear three-input, single-output model for the torque
dynamics is estimated. Then, the NARX model is created by extending the linear model by
adding a single hidden layer, a sigmoid network, in a parallel configuration.
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html?s_tid=doc_ta, accessed on 10 February 2024).

3. Training the NARX Model Using Real-World Route Data

The NARX model training process is equivalent to the optimal mapping between the
current inputs and the next step prediction [23]. The validated VUT model will generate
the necessary data for the empirical model. Consequently, simulation data for selected
driving maneuvers will used instead of recording measurement data for the VUT to
identify the NARX model. The simulation model of the VUT includes a three-dimensional
body dynamics model, an empirical tire model, and a detailed electric powertrain model.
Furthermore, the model is parameterized according to the VUT technical data. Finally, the
proposed powertrain model is incorporated with a real-world simulation environment to
create the corresponding physical quantities for the driving scenario.

Selecting a proper test maneuver to source the training or validation data should
consider covering as many operating points as possible. This helps obtain sufficient
information about the system’s behavior with as little test effort as possible [1,7]. Based
upon that, a real-world driving (RWD) scenario is implemented using a simulation model
for the VUT, which was validated in a previous work [16]. This driving scenario starts in
Karlsruhe, Germany, with traffic elements like other vehicles and traffic lights. Then, the
test vehicle drives further to the suburban areas. After that, it takes place on the highway,
where the speed reaches the maximum. Finally, the test vehicle returns to the starting point
to complete a closed lap route. Figure 4a demonstrates the driving path. The route has a
three-dimensional profile. It covers a long driving distance and various elevation heights
that reach more than 400 m above sea level. It is expected, therefore, that the powertrain of
the test vehicle will undergo dynamic driving resistance along the route, which includes
straight and curved roads, uphill and downhill roads, and acceleration and deceleration.

https://www.mathworks.com/help/ident/ref/idnlarx.html?s_tid=doc_ta
https://www.mathworks.com/help/ident/ref/idnlarx.html?s_tid=doc_ta
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Figure 4b shows a surface plot for the simulated pedal position (SD), the average angular
speed of the driving wheels (ω), and the motor’s estimated moment (Me). This figure
reveals several details: First, the complete range of each quantity is covered. Second, the
moment decreases with the speed, as expected from the electric motor characteristics, as
the maximum motor’s power is reached. Third, the powertrain components’ nonlinearity
displays highly nonlinear behavior in the resulting motor’s moment. The moment of an
ICE was evaluated in [1] by the delivery of the percentage of the pedal value pressing
during the driving maneuver. Other influencing factors are the motor’s angular speed and
the vehicle’s speed. Likewise, the exact quantiles will be used to identify an NARX model
for the electric motor moment. However, the training and validation data implemented in
this work are more dynamic, which makes it even more challenging. It is worth noticing
from Figure 4b that the selected maneuver has indeed covered a large amount of the scope
of the overall Me operating points. However, some missing data appear as gaps in the
surface plot. This issue could be an interesting topic for future work.
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Figure 4. Real-world driving (RWD) route: (a) route profile; (b) accelerator pedal position vs. angular
speed vs. motor’s moment during the RWD maneuver.

Figure 5 shows the simulation of the quantities corresponding to the driving route,
including the inputs Vx, SD, and ω, and the only output, Me. The maneuver lasts for 5600 s,
and the data samples are taken with a sampling time of 0.1 s, which yields 56,000 training data
samples. The implemented data are based on a predefined path, which needs to be prepared
before performing the test run. An improvement to this approach would be integrating a
path optimization algorithm so the vehicle could plan the path autonomously, as in [24].

The profile shapes of Vx and ω seem analogous, so it might be assumed that having one
would be sufficient. Nonetheless, subtle but significant variations manifest by correlating
Vx and ω, as in Figure 6. The differences are significant at rotational speeds of less than
450 rad/s. Moreover, the data points are not aligned for Vx and ω at higher speeds.

The dark green areas in Figure 7a,c represent the intersection between SD and Me.
The dissimilarity in the data distribution between SD and Me proves that Me cannot be
predicted with SD alone. Another important observation in Figure 7 is the larger area of
operating points covered by the RWD compared to the Artemis cycle, which proves that
even dynamic standard driving cycles do not provide enough data to accurately identify
the motor’s moment, although they might cover the whole speed range of the VUT. For
instance, Figure 7d shows that the maximum SD value recorded during the Artemis cycle is
77% and the maximum Me is 109.55 Nm, while the RWD maneuver stimulated the coverage
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of the whole range for both SD and Me, as shown in Figure 7b. On one hand, the complete
dataset is used to identify the NARX model. On the other hand, the validation dataset is
the Artemis driving cycle for highways with a maximum speed of 130 km/h, selected due
to its dynamic features. The schematic diagram in Figure 8 demonstrates the identification
process of the NARX model.
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For almost all applications of empirical models, modeling aims to predict points at
which the system behavior cannot be measured. Validation points are used in addition to
estimation points to examine a model for suitability in this regard. A quadratic coefficient
of determination can usually be calculated for these validation points [1]. The difference
between the quality measures should be at most 0.3. Otherwise, there will be a big difference
between the model’s ability to reproduce measured values and predict unmeasured points.
Validation points should be used to check a model, especially if there is uncertainty about a
suitable model approach for a modeling task [25].
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4. Results

The first step is to identify the linear function part of the NARX model, as shown in
Figure 9. The fitness of the estimated data to the reference data, i.e., training or validation
data, is evaluated with the Normalized Root Mean Square Error (NRMSE). The best fitness
value for the linear estimation function is 57%, which confirms that a nonlinear model is
required in this case. The next step is to extend the identified linear function to the complete
NARX model by identifying the nonlinear and the offset parts. Then, the identification
process is performed for the aggregated model of all the parts. Figure 10 illustrates excellent
fitness values of 98.25% and 98.03% for the training and validation data, respectively. The
errors in predicting the values of each estimation data point by the NARX model are
represented in Figure 11.
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The identified model was able to define the majority of the points with high precision.
Few points are overestimated, with a maximum difference of 0.5 Nm. The worst errors
appear at ω less than 100 rad/s and SD larger than 50%, where the motor’s moment is
underestimated. The error increased gradually from an SD equal to 50% until it reached
−9.4 Nm at an SD equal to 100%. The locations of these errors take us back to Figure 4b.
Some discontinuities were observed around the addressed areas, which promotes the
possibility of casing these errors due to excluded operational points.

In this case, the fitness values are the NRMSEs of the estimated moment compared
to the training and validation data sets. The NARX model could accurately predict the
corresponding motor moment based on the given inputs, even for such a highly dynamic
maneuver. The Artemis driving cycle is used as a validation dataset for the NARX model.
It is desired to advocate that the identified driving moment model represents the actual
vehicle. So, the moment prediction model is validated using the measured data from actual
test vehicle measurements. The validation objective is to find whether the data used to
train the NARX model resemble the targeted system. The measured data from the field test
in [16] are used for this purpose, in which the driver performed a dynamic actuation for
the pedal to generate a challenging test case lasting about 385 s. The results in Figure 12
demonstrate a high Pearson’s correlation coefficient (Pearson’s correlation coefficient:
Wikipedia, https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#cite_note-3,
accessed on 2 March 2024) of 0.994 between the estimated and measured motor’s moment,
which approves the accuracy of the identified NARX model.

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#cite_note-3
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Figure 12. Correlation between the measured total motor’s moment during the field test maneuver
and the estimated moment from the NARX prediction model.

5. Conclusions

Analyzing the entire system’s behavior between the accelerator pedal and the final
motor moment is highly demanding because of the many components involved. Almost all
the powertrain components have nonlinear characteristics, and the electronic components
work discretely in time due to digital technology. In addition, the distribution of the
extensive software across several control devices that are networked with each other makes
analysis more difficult. The dependence between the driving maneuver operating points
and the VCU parameters is depicted using empirical models. The quality measures used
to assess the model quality are then introduced. The model assessment can be performed
graphically by analyzing the result and matching the test points with the prediction points.
A more precise assessment of a model takes place using quality measures. The modeling
complexity level is determined based on the effort and the benefits. The more precisely
the features of the components are depicted, the more valid the results are. However, the
effort increases with accuracy. A linear system can sufficiently represent the components’
behavior in the best-case scenario. In the worst-case scenario, the overall system behavior
is influenced by latency times between the control units. In contrast, the effort to select
application parameters based on measurement data can be easily estimated and is usually
lower. Therefore, this is usually preferred in practice. Models based on performance maps
are generally characterized by very good interpretability. An NARX sigmoid model is
proposed in this work to interpret the driving moment from the accelerator pedal position.
Besides the accelerator position value, additional quantities are required to estimate the
corresponding moment, which are the electrical motor angular speed and the vehicle speed.
Implementing a real-world driving maneuver with a large data set and acquiring high
prediction exactness represent the novelties of this work. In contrast, the other related
works used laboratory-created tests with smaller data sizes to train the prediction models.
The proposed NARX model demonstrated a normalized root mean squared error of less
than 2% for each training and validation data set. Furthermore, the proposed model is
validated with an actual measurement of the target vehicle, achieving an outstanding
correlation accuracy of 0.994.
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This work can be extended in different scopes: investigating the causes of the missing
acquired data, whether these operational points could be reached by performing other
maneuvers, or whether they are unreachable by the powertrain system itself. Particular
attention should be paid to the motor’s maximum moment operational range since the
highest errors occurred there. This scope can be further investigated by intense data
acquisition within that scope. Implementing routes with varying surface frictions can
extend the proposed approach by introducing tire slipping; for instance, driving on wet
and icy road segments. Moreover, the NARX technique can characterize the other types
of powertrain technologies, such as fuel cell and hybrid powertrains. A further area of
application with high potential would be developing the powertrain test benches. This test
bench needs a moment controller to generate an equivalent driving moment in the desired
real-world driving maneuver. The proposed NARX model was beneficial as a source for
the reference moment signal. We have a complete vehicle test bench under development
that was investigated in detail in [26], which will be a future development for this area of
research.
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