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Abstract: Three-phase motors find extensive applications in various industries. Open-circuit faults
are a common occurrence in inverters, and the open-circuit fault diagnosis system plays a crucial role
in identifying and addressing these faults to enhance the safety of motor operations. Nevertheless,
the current open-circuit fault diagnosis system faces challenges in precisely detecting specific faulty
switches. The proposed work presents a neural network-based open-circuit fault diagnosis system
for identifying faulty power switches in inverter-driven motor systems. The system leverages trained
phase-to-phase voltage data from the motor to recognize the type and location of faults in each
phase with high accuracy. Employing separate neural networks for each of the three phases in a
three-phase permanent magnet synchronous motor, the system achieves an outstanding overall fault
detection accuracy of approximately 99.8%, with CNN and CNN-LSTM architectures demonstrating
superior performance. This work makes two key contributions: (1) implementing neural networks
to significantly improve the accuracy of locating faulty switches in open-circuit fault scenarios,
and (2) identifying the optimal neural network architecture for effective fault diagnosis within the
proposed system.

Keywords: open-circuit fault (OCF); permanent magnet synchronous motor (PMSM); neural network

1. Introduction

Electric vehicles (EVs) have garnered significant attention due to their environmentally
friendly characteristics and high efficiency [1]. The motor serves as the core source of energy,
enabling the movement of the electric vehicle. Permanent magnet synchronous motors
(PMSMs) have been popularly used in the electric vehicles industries [2]. Meanwhile,
the inverter is responsible for controlling the motor’s speed and direction. The failure of
the inverter, which is cause by the failure of power switches, could reach approximately
30% [3,4]. It is important for the open-circuit fault diagnosis system (OCFDS) to check the
system to ensure it is able to work under normal and safe conditions [5].

There are three main types of faults that can occur in motors: (1) mechanical faults,
(2) electrical faults, and (3) magnetic faults [6–8]. This paper mainly focuses on electrical
faults, which can arise from stator phase winding short circuits, open circuits, ground
faults, and other issues. Short circuits in the winding are usually caused by wire insulation
breakdown, overheating, or overload [9,10]. This paper’s main focus is on open-circuit
faults caused by driver problems, and proposed neural network-based open-circuit fault
diagnosis system. Generally, the open-circuit fault diagnosis methods used for the inverter
can be majorly classified into signal analysis processing methods, model-based methods,
and data analysis methods [11,12]. Signal analysis processing methods use sensors to obtain
the current or voltage in the phases for analysis [13]. By using the measured current and
voltage to compute the fault detection index, the system can check for faults [14]. In [15],
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current analysis was conducted to analyze fault and normal conditions. Subsequently, a
conditioned table was created to represent the normal and faulty operation of the sym-
metrical components of the PMSM motor. The symmetrical components of the PMSM can
be categorized into three types: (1) zero sequence, (2) positive sequence, and (3) negative
sequence. To detect faults, the magnitude ratio of the positive sequence component to the
negative sequence component was calculated to produce a fault detection index, which
was utilized for fault type identification. Finally, the fault detection index was used in
fault localization to determine the specific faulty switch. In [16], the open fault in the open
winding motor fault diagnosis system was based on the differential-mode component to
identify faults in the PMSM system. Through current analysis under faulty conditions, the
zero sequence current and zero sequence voltage in the differential mode component were
computed [16–18]. A zero sequence controller was employed to identify the fault type and
perform a comparison of conditions to locate the faulty switch.

For the model-based method, the model was used to predict the outputs and compare
them with the measured values to check and determine whether faults are occurring
in the system [16,19,20]. In Reference [21], a Disturbance-Observer-Based model was
used to estimate external disturbances and the unmodel dynamics and provide them
to the torque reference. This system proves to be particularly effective in instances of
torque fluctuations attributable to open-circuit conditions. Under such circumstances,
the disturbance observer is responsible for determining the parameters necessary for the
fault-tolerant switching table. This table plays a pivotal role in regulating the torque and
stator flux, thereby improving the interference rejection ability of the system under open-
circuit fault conditions. In Reference [22], a hybrid diagnosis method was proposed; there, a
Luenburger observer was used to obtain the current residuals for estimating the three-phase
currents. Then, the principle current analysis (PCA) and the support vector machine (SVM)
were used to evaluate the current residuals to locate the faults. PCA was used to reduce
the computational load on the classifier and refine the dataset into more distinct sample
types, while SVM was applied to categorize and identify the specific type of fault. In [23],
an adaptive sliding mode observers (SMOs) diagnosis method for detecting open-circuit
faults in inverters used in PMSM drives was introduced. The comprehensive inverter
system was decomposed into augmented and non-singular coordination transformations.
SMOs were utilized to estimate the system state vector and calculate the residual error,
enabling the determination of the fault’s phase location and the identification of the faulty
switch. In [24], an approach was introduced for diagnosing open-circuit faults in drives
equipped with Model Predictive Current Control (MPCC). By utilizing MPCC, their model
is capable of predicting currents and generating a corresponding cost function which the
fault detection system uses for calculating a fault index. The subsequent stage involves a
fault localization function that employs the calculated fault index to categorize the fault
type based on predefined thresholds.

The data analysis method uses models based on data to analyze the conditions of
the system and differentiate between normal states and various types of fault conditions.
Several open-circuit fault diagnosis systems (OCFDS) based on machine learning methods
have been developed for fault detection. In [25], modular multi-level converters (MMCs)
were analyzed, and specific conditions (such as the current and voltage passing through
the phase) were categorized based on the type of faulty conditions. A neural network
(ANN) was trained under normal operating conditions and three different types of faulty
operating conditions. The fault diagnosis system successfully classified the three types
of faults in single-submodule open-circuit faults. Next, a fault localization system was
employed, leveraging the ANN’s output to determine the exact location of the faulty
switches or capacitors. In [26], an improved support vector machine (SVM) was utilized for
open-circuit fault identification in the fault diagnosis system. This improved SVM utilized
an Overlapped Wavelet Packet Transform (MODWPT), significantly enhancing the feature
extraction process for fault identification. The SVM effectively classifies the faults, leading
to an approximate 3% increase in accuracy compared to conventional SVM methods. This
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classifier was applied to determine faults within the submodule. In [27], a model data
hybrid-driven method was proposed. The artificial neural network was trained with two
datasets: one comprising experimental or simulation data and the other containing data
from the analytical model of the power converters. The model was designed to extract and
analyze fault features present in both datasets, encompassing a classification scheme that
recognizes seven distinct patterns, including normal operation. The diagnostic capability
of the model allows for the precise identification of faulty switches by analyzing input
diagnostic variables. In [28], a 1D convolutional neural network (CNN) was trained using
three-pole voltages under three different frequencies. The model was used to extract infor-
mation on how variations in the modulation index and fundamental frequency influence
pole voltages. A softmax function was used as its output layer, effectively classifying
different types of faults occurring in submodule switches.

In traditional open-circuit fault diagnosis systems, the primary objective is to predict
the phases that have experienced faults. However, the characteristics of multiple-phase
motors are complex, involving considerations of intricate parameters. The current models
have drawbacks, notably the lack of robustness and an inability to precisely identify specific
faulty switches. This paper contributes in two significant ways: First, it implements neural
networks into the open-circuit fault diagnosis system to enhance the accuracy in locating
the faulty switch(es). Secondly, it determines an optimized neural network architecture
suitable for application in the proposed open circuit fault diagnosis system.

2. Proposed Open-Circuit Fault Diagnosis System

In this paper, the main focus is on the operation of a three-phase Permanent Magnet
Synchronous Motor (PMSM) with a three-phase inverter.The three-phase inverter com-
prises a total of six switches responsible for controlling the three-phase PMSM [29]. The
configuration of the three-phase inverter is visually represented in Figure 1. In this circuit,
three switches are positioned on the high side, while the remaining three are situated on
the low side. Each pair of high-side and low-side switches forms a bridge that controls one
phase of the motor [30]. It is important to note that the high-side and low-side switches
must operate in complementary operation, meaning that only one switch in each pair can
be closed at a time. For instance, if the high-side switch in a pair is closed, the low-side
switch in that pair must be open, and vice versa.

Figure 1. Structure of the electrical three-phase inverter.

2.1. Behaviour of the Open-Circuit Fault Diagnosis System

Figure 2 illustrates the space vector and sectors of the three-phase inverter. The
possibility of various combination of the on and off states of the high-side switch was
determined using the space vector voltage [12]. Within the space vector voltage, eight
possible combinations were identified. The space vector was divided into six sectors, each
evenly distributed in 60°, with vectors (V1–V6) representing these sectors [31]. It should
be noted that two zero vectors were present in the space vector [20,30,32]. The normal
switching sequences of the three-phase inverter are shown in Table 1, where State 0 and
7 corresponded to the zero vectors, while States 1 to 6 represented the normal switching
sequences of the three-phase inverter.
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Figure 2. Space vector voltages of the three-phase inverter.

Table 1. Properties of normal-operation switching sequences.

State Closed Switch
Line to Neutral Voltage Phase to Phase Voltage

VU VV VW Vab Vbc Vca

0 - 0 0 0 0 0 0
1 S1, S5,S6 2VDC/3 −VDC/3 −VDC/3 VDC 0 −VDC
2 S1, S2, S6 VDC/3 VDC/3 −2VDC/3 0 VDC −VDC
3 S2, S4, S6 −VDC/3 2VDC/3 −VDC/3 −VDC VDC 0
4 S2, S3, S4 −2VDC/3 VDC/3 VDC/3 −VDC 0 VDC
5 S3, S4, S5 −VDC/3 −VDC/3 2VDC/3 0 −VDC VDC
6 S1, S3, S5 VDC/3 −2VDC/3 VDC/3 VDC −VDC 0
7 - 0 0 0 0 0 0

2.2. Type of Open-Circuit Fault

The proposed fault diagnosis aims to detect the specific damaged switch within the
inverter. Figure 3 illustrates the structure of the switches in a phase with each of the phase
comprising a high side and a low side. The proposed model is tailored to determine which
switch has been damaged in that specific phase. There are two types of faults in one phase
condition: (1) one switch fault, where either one of the switches is faulty and (2) two
switch faults, where two of the switches are faulty. The states of each switch under normal
conditions are clearly defined according to Table 1. Table 2 presents the response of the
switches in one phase, along with the machine learning state labelling for all scenarios. For
instance, when the machine learning state is one, it signifies that the high-side switch (Sa)
has experienced a fault.

Figure 3. Structure of the switches in one phase.
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Table 2. Properties of faulty operation switching sequences and machine learning state labelling.

Condition Damaged Switch Machine Learning
State Labelling

Normal Condition - 0

One switch fault Sa 1
Sb 2

Two switch fault Sa and Sb 3

2.3. Type of Phase Fault

In the experiment, a three-phase permanent magnet synchronous motor (PMSM) was
utilized. Three possible types of phase faults were considered: (1) one-phase fault—one of
the phases in the motor system experiences a fault condition; (2) two-phases fault—any
two of the phases in the motor system are faulty; (3) three-phases fault—all three phases
are damaged and experience faults. Table 3 represents the machine learning labelling under
normal phase conditions and faulty phase conditions.

Table 3. Normal and phase fault cases in machine learning labelling.

Phase with Fault Machine Learning State
Label

Normal operation None 0

One Phase Fault U 1
V 2
W 3

Two Phases Fault U, V 4
U, W 5
V, W 6

Three Phases Faults U, V, W 7

3. Methodology of Developing Proposed Open-Circuit Fault Diagnosis
System (OCFDS)

The proposed OCFDS comprised five main components: input (voltage (Line–Line)),
controller, processor, three-phase inverter, and PMSM. The block diagram illustrating the
structure of the open-circuit fault diagnosis system is shown in Figure 4.

Figure 4. Block diagram of proposed OCFDS.

3.1. Setup Arrangement and Flow of the Proposed Open-Circuit Fault Diagnosis System

The experiment utilized a PMSM motor, and its specifications are outlined in Table 4.
In the neural network, signal standardization and filtering were essential steps before
passing through the neural network. This standardization and filtering of the input were
necessary to ensure that the signals were observable for the neural network to extract the
fault features.
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The experimental setup was depicted in Figure 5. Phase–phase voltage readings
(Vab, Vbc, Vca) were collected using an Arduino board functioning as the controller. These
readings were then transmitted to the processor for the neural network to generate machine
learning state labels, indicating the damaged switch. After receiving the output from the
neural network, a signal was generated by the controller and transmitted to a Programmable
Logic Controller (PLC). The PLC utilized this signal to control the Variable Frequency Drive
(VFD), enabling the regulation of the motor’s speed. Lastly, the phase-phase voltage
readings were fed back to the controller for further analysis.

Table 4. PMSM motor information.

Description (Unit) Value

Input AC Voltage (V) 220/230
Frequency (Hz) 100

Rated Torque (Nm) 12.8
Rated Speed (rpm) 3000
Rated Current (A) 8.6
Rated Power (kW) 4

No. of Poles 4

Figure 5. Experimental Setup of OCFDS.

Figure 6 illustrates a flow diagram of the open-circuit fault diagnosis system (OCFDS).
The process begins with loading the neural network models (H5 files) and initializing
variables. Subsequently, the system continuously monitors the phase-to-phase voltages,
logging the data into a CSV file. These data undergo processing including filtering and
standardization to facilitate feature extraction. The refined data are fed into the neural
network models for each of the three phases to detect any faults. If a fault is detected,
the corresponding phase neural networks generate output, which is transmitted to the
classification system to identify the fault type and pinpoint the location of the faulty switch.
Finally, the program returns to the initial state, perpetually monitoring the system.
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Figure 6. Flow diagram of OCFDS program.

3.2. Arrangement of the Neural Network

For the three-phase PMSM experiment, three distinct neural networks were developed
to inspect each phase. Figure 7 illustrates the architecture of the proposed open-circuit
fault diagnosis system’s neural network, comprising two main components: (1) phase
neural network and (2) classification system. Initially, the phase neural network comprises
three specific neural networks dedicated to checking the phase and identifying the switch
conditions within that specific phase. Subsequently, the classification system takes the
output from all phase neural networks as input and utilizes it to identify faulty phases and
locate switches experiencing faults. In the designed system, every phase neural network
model is dedicated to a specific phase and utilizes phase–phase voltage data as input. This
approach ensures that faults within individual phases are effectively detected. Once a
fault is detected by the phase neural network, the classification system takes over. The
classification system is responsible for identifying the type of fault and locating the faulty
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switches, within the system. This setup ensures accurate fault detection and identification
in the system.

The general structure of the neural network in the proposed open-circuit fault diagno-
sis system (OCFDS), as depicted in Figure 8, was implemented using the TensorFlow and
Keras library in Python. Data are important in training the model, as they allow the neural
network to effectively extract relevant features. For this purpose, phase-to-phase voltage
data corresponding to various conditions are prepared and labeled according to the type of
open-circuit fault present in each phase. Consequently, each neural network is trained on
these labeled datasets to accurately identify and classify the type of open-circuit fault in its
respective phase. The neural network models were designed to detect phase conditions
and determine the status of all switches. The supervised learning method was employed
to train all neural networks in the proposed open-circuit fault diagnosis system. Initially,
input data undergoes signal processing for filtering and standardization, and the processed
data is then fed through the neural network. Finally, the output layer generates outcomes,
depending on the type of result. For instance, in the case of a multi-class classification
model, the softmax activation function was deployed as the activation function for the
output layer [33].

Figure 7. General structure of neural network used in the proposed open-circuit fault diagnosis
system.

Figure 8. Structure of the open-circuit fault diagnosis system (OCFDS)’s neural network.

4. Result and Discussion

In this paper, the proposed OCFDS consists of a three-phase neural network (U, V,
W). All of these neural networks were developed using Python code with the Keras and
TensorFlow libraries.

4.1. Performance of Different Neural Network Architectures in Phase Neural Networks of
Open-Circuit Fault Diagnosis System

The performance analysis of the open-circuit fault diagnosis system, considering
various neural network architectures, is presented in Table 5. The experimental setup
involved the examination of five distinct neural network types. Given the three phases
in the motor (U, V, W), three separate phase neural networks were implemented. The
comprehensive performance metrics are detailed in Table 6. Notably, only two neural
network structures, namely Convolutional Neural Network (CNN) and Convolutional
Neural Network-Long Short-Term Memory (CNN-LSTM), were successfully applied to the
phase neural network. The LSTM (Long Short-Term Memory Neural Network) structure,
on the other hand, proved to be unsuitable for implementation in this context due to
its inability to capture the features of the open-circuit fault signal, resulting in lower
and inconsistent accuracy. While the Deep Neural Network (DNN) and Artificial Neural
Network (ANN) demonstrated feasibility in Phase U, their application in Phase V and Phase
W failed to precisely determine faults, resulting in a notably low accuracy of approximately
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30%. This limitation arose from the incapacity of DNN and ANN structures to effectively
process the complex and inconsistent data inherent in the three-phase neural network.
In contrast, CNN-LSTM and the 1D Convolutional Neural Network (CNN1D) exhibited
comparable accuracy, achieving approximately 99.80% across all three phases in the neural
networks. Both CNN1D and CNN-LSTM structures proved effective for implementation in
this application, offering promising results in fault detection.

Table 5. Architecture of different types of neural networks models.

Layer ANN DNN CNN1D

1 Dense (50, ReLu) Dense (50, ReLu) Conv1D (6, 3 ReLu)

2 Flatten Flatten MaxPooling1D (2,
ReLu)

3 Dense (4, softmax) Dense (24, ReLu) Flatten
4 - Dense (12, ReLu) Dense (16, ReLu)
5 - Dense (4, ReLu) Dense (4, softmax)
6 - Dense (4, softmax) -

Training Duration - - -

Layer LSTM CNNLSTM

1 LSTM (50, tanh) Conv1D (6, 3 ReLu)

2 Dense (50, ReLu) MaxPooling1D (2,
ReLu)

3 Dense (25, ReLu) Dense (50, ReLu)
4 Dense (12, ReLu) LSTM (50, tanh)
5 Dense (4, ReLu) Flatten
6 Dense (4, softmax) Dense (4, softmax)

Table 6. Performance of the neural networks in all phases (UVW).

Detection Accuracies
(%)

Neural Networks Phase U Phase V Phase W

ANN 97.94 28.78 28.78
CNN 99.84 99.78 99.80

CNN-LSTM 99.87 99.80 99.80
DNN 99.74 28.79 28.78
LSTM - - -

Figure 9 displays the confusion matrices for the CNN across all phases (U, V, W),
demonstrating its capability to distinctly classify all labels with an accuracy of approx-
imately 99% in identifying all conditions. Similarly, Figure 10 presents the confusion
matrices for the CNN-LSTM across the same phases, achieving comparable results to the
CNN with an accuracy of around 99% in identifying all conditions. The analysis of the
confusion matrices for both CNN-LSTM and CNN1D highlights their exceptional profi-
ciency in accurately identifying diverse states. Nonetheless, instances of misclassification
were observed, primarily due to scenarios where signal overlap caused delays in accu-
rately identifying the correct fault. Figure 11 shows the confusion matrices for the DNN
across all phases (U, V, W), with a particular focus on the DNN’s performance within the
Phase U neural network. It is observed that, while the model excels in Phase U, accurately
distinguishing between the four distinct labels in Phases V and W poses significant chal-
lenges. The graphical depiction reveals a relatively uniform spread of misclassifications
across incorrect labels, indicating difficulties in achieving precise label discrimination. For
example, in the classification of label 0, the model accurately predicted approximately
7000 instances, yet misclassified around 4000 instances into alternative labels, highlighting
areas for improvement in model accuracy.
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Figure 9. Confusion matrix for the performance of CNN1D.
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Figure 10. Confusion matrix for the performance of CNN-LSTM.
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Figure 11. Confusion matrix for the performance of DNN.

All neural networks in OCFDS were trained using the Adam optimizer with a learning
rate of 0.001 and a batch size of 20. Table 7 represents the performance accuracy of both
CNN and CNN-LSTM models, differentiated by their respective numbers of hidden layers.
The data in Table 7 reveal that the CNN-LSTM 2 configuration obtained the highest average
accuracy. Among the CNN variants, the CNN 5 model had the highest average accuracy.
Except for the CNN 4, CNN-LSTM 1, and CNN-LSTM 3 models, which fell slightly below,
all other configurations consistently achieved an accuracy of approximately 99%.
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Table 7. Comparison of the accuracy of CNN and CNN-LSTM model with different hidden layers in
open-circuit fault diagnosis system.

CNN 1 CNN 2 CNN 3 CNN 4 CNN 5

Conv1D Conv1D Conv1D Conv1D Conv1D
MaxPooling MaxPooling MaxPooling MaxPooling MaxPooling

1D 1D 1D 1D 1D
Flatten Flatten Flatten Flatten Flatten
Dense Dense Dense Dense Dense

- Dense Dense Dense Dense
- - Dense Dense Dense
- - - Dense Dense
- - - - Dense

U Accuracy(%) 99.84 99.84 99.84 93.61 99.85
V Accuracy(%) 99.71 99.72 99.78 99.73 99.75
W Accuracy(%) 97.58 98.11 99.80 99.85 99.86

Average
Accuracy(%) 99.04 99.22 99.81 97.73 99.82

CNN-LSTM 1 CNN-LSTM 2 CNN-LSTM 3 CNN-LSTM 4 CNN-LSTM 5

Conv1D Conv1D Conv1D Conv1D Conv1D
MaxPooling MaxPooling MaxPooling MaxPooling MaxPooling

1D 1D 1D 1D 1D
LSTM Dense Dense Dense Dense
Flatten LSTM Dense Dense Dense
Dense Flatten LSTM Dense Dense

- Dense Flatten LSTM Dense
- - Dense Flatten LSTM
- - - Dense Flatten
- - - - Dense

U Accuracy(%) 99.84 99.84 95.02 99.81 99.85
V Accuracy(%) 87.61 99.80 99.77 99.84 99.77
W Accuracy(%) 99.80 99.84 94.73 99.82 99.82

Average
Accuracy(%) 95.75 99.83 96.51 99.82 99.81

4.2. Response of the Proposed Open-Circuit Fault Diagnosis System

In this study, open-circuit faults within three-phase power systems were investigated
using both simulation and experimental techniques to closely replicate real-world scenarios.
In the simulation phase, open-circuit faults were digitally induced by the deliberate opening
of switches within the circuit model, utilizing software tools such as Python or Matlab. This
allowed for the analysis of the theoretical response of the system to faults in a controlled
setting. In the experimental phase, open-circuit conditions were manually established
in the experiment by disconnecting specific switches that are anticipated to fail under
normal operational conditions. The simulation of open-circuit conditions was facilitated by
a custom code that interrupted signal transmission to the switches, effectively creating an
open-circuit scenario in the inverter.

Figure 12 illustrates the behavior of phase-to-phase voltage, phase current, and the
performance of the three-phase neural network during an event where the high-side gate
of Phase W was compromised due to a one-phase fault. This figure demonstrated that the
fault became evident after three complete cycles of the Permanent Magnet Synchronous
Motor (PMSM), specifically after a single cycle (2π). Notably, the neural network dedicated
to Phase W identified the fault at approximately 8/3π, aligning with the moment the fault
signal exclusively appeared. Observations revealed a significant decrease in the phase-to-
phase voltages Vbc and Vca at 8/3 π, along with an impact on the phase current in Phase
W, where the positive current values became zero. This anomaly was attributed to the
malfunction in the high-side gate of Phase W, which remained in an open-circuit condition.
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Consequently, the output from the Phase W neural network was set to one, indicating a
fault in the high-side gate.

Figure 13 depicts the dynamics of phase-to-phase voltage, phase current, and the
responses of the three-phase neural network during a scenario involving a two-phase fault,
specifically affecting the high-side gates of Phase V and Phase W. In this situation, faults
are identified in both phases. The phase-to-phase voltage Vab experiences an increase of
0.3 per unit, while Vbc saw a decrease on the positive side by approximately 0.3 per unit and
an increase on the negative side by about 0.3 per unit. Similarly, Vca witnesses a decrease
of 0.3 per unit on the positive side. Consequently, the positive phase currents in Phases V
and W drop to zero, indicating that the high-side gates in both phases were compromised,
leading to an open-circuit condition. The neural network for Phase V identifies the faults at
7/3π, whereas the Phase W neural network detects the faults slightly later, at 8/3π, due
to the fault characteristics emerging at that specific moment. The outputs from the Phase
V and Phase W neural networks are set to one, signifying the detection of high-side gate
faults in the respective phases.

Figure 14 illustrates the characteristics of phase-to-phase voltage, phase current, and
the responses of the three-phase neural network during a three-phase fault condition, which
involved damage to the low-side gates of Phase U and Phase V, as well as the high-side
gates of Phase V and Phase W. In this scenario, the negative side of the phase-to-phase
voltage Vab dropped to zero. For Vbc, there was a decrease on the positive side and an
increase on the negative side. Similarly, the positive side of Vca fell to zero. The phase
current’s positive side in Phases V and W dropped to zero, and the negative side of the
phase current in Phase U also fell to zero, indicating a complete interruption. The Phase
U Neural Network’s output was two, indicating a fault in the low-side gate, whereas the
outputs for the Phase V and W Neural Networks were one, signifying that the faults had
occurred in the high-side gates. Notably, all three phase neural networks pinpoint the fault
at 2π.

Figure 12. Characteristics of the phase-to-phase voltage, phase current, and deep learning output in
one-phase fault conditions (eg: Phase W: high-side gate fault).
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Figure 13. Characteristics of the phase-to-phase voltage, phase current, and deep learning output in
two-phase fault conditions (eg: Phase V: high-side gate fault and Phase W: high-side gate fault).

Figure 14. Characteristics of the phase-to-phase voltage, phase current, and deep learning output in
three-phase fault conditions (eg: Phase U: low-side gate fault and Phase V: low and high-side gate
fault and Phase W: high-side gate fault).

5. Conclusions

In this study, two neural networks models, namely the CNN and CNN-LSTM models,
were successfully implemented in the proposed open-circuit fault diagnosis system. Both
models demonstrated high accuracy in detecting various faults across all three phases.
Notably, both architectures achieved a similar detection performance. The experimental
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results confirm that the proposed system can achieve an overall detection accuracy of
approximately 99.8%. In the first scenario, where a one-phase fault affected the high-side
gate of Phase W, the fault was precisely detected after three oscillations of the Permanent
Magnet Synchronous Motor (PMSM) at 2π. In the second scenario, involving a two-phase
fault affecting both Phase W and Phase V, the neural networks identified the faults at
8/3π for Phase W and 7/3π for Phase V. The delayed response of the Phase W neural
network was attributed to fault signals closely resembling normal signals, resulting in
a more gradual identification. In the third scenario, a three-phase fault impacting the
low-side gates of Phase U and Phase V, along with the high-side gates of Phase V and
Phase W, was concurrently pinpointed by all three-phase neural networks at 2π. Overall
this system effectively identifies the specific phase where the fault occurs, enabling the
localization of faulty switches within the inverter.
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