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Abstract: Availability and continuous operation under critical conditions are very important in
electric machine drive systems. Such systems may suffer from several types of failures that affect
the electric machine or the associated voltage source inverter. Therefore, fault diagnosis and fault
tolerance are highly required. This paper presents a new robust deep learning-based approach to
diagnose multiple open-circuit faults in three-phase, two-level voltage source inverters for induction-
motor drive applications. The proposed approach uses fault-diagnosis variables obtained from the
sigmoid transformation of the motor stator currents. The open-circuit fault-diagnosis variables are
then introduced to a bidirectional long short-term memory algorithm to detect the faulty switch(es).
Several simulation and experimental results are presented to show the proposed fault-diagnosis
algorithm’s effectiveness and robustness.

Keywords: open-circuit fault; induction motor; sigmoid function; bidirectional long short-term
memory; deep learning

1. Introduction

Three-phase pulse-width modulation (PWM) voltage source inverters (VSIs) have
been widely used for grid-connected converters or AC machines’ variable-speed drive
applications. For most of these applications, high reliability and availability are of utmost
importance. Consequently, the condition monitoring, fault detection, and fault tolerance of
three-phase PWM VSIs are widely requested functions that should be added to the drive
system’s controller [1,2].

An open-circuit (OC) fault is one of the most relevant faults that may affect induction-
motor variable-speed drives [3]. This type of fault may affect one or more power semi-
conductors. As discussed in [4,5], OC faults introduce severe perturbations: a DC current in-
jection, an overcurrent, and pulsating electromagnetic torque. In some cases, the electric drive
must be shut down. Consequently, fault diagnosis and fault tolerant control [5,6] are of utmost
importance. Several studies have focused on OC faults, and different algorithms have been
proposed, as summarized by many survey articles [1–3,7,8]. OC fault-diagnostics methods
are mainly classified as model-based approaches [9–21], signal-based approaches [22–30],
and data-driven approaches [31–41].

Model-based fault-diagnosis approaches use the mathematical model of the electric
machine and/or the model of the voltage source inverter. The main idea is to compare
estimated quantities obtained from the system’s model to the measured quantities. In
most cases, electric machine currents [9–14] and output voltages of the voltage source
inverter [15–20] are the estimated quantities.
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In a well-functioning operation, the measured and estimated quantities are almost the
same. Hence, the estimation error converges to zero. When an open-circuit fault is affecting
one or more power switch(es), the deviation of the estimation error is used to detect the
fault and to identify the faulty switch(es).

In [9,10], Jlassi et al. use the current form factor (CFF) to detect open-circuit faults in
permanent magnet synchronous machine (PMSM) drives for both generator and motor
applications. The main idea is to compare the CFF obtained from the measured currents
to the CFF obtained from estimated currents based on the state Luenberger observer. A
similar approach is discussed in [11] to detect current sensors and open-circuit faults in
grid-connected three-level NPC inverters. In this study, the currents are estimated using a
sliding-mode observer.

The current residual approach is proposed to diagnose open-circuit faults in PMSM,
and induction-motor drive systems are discussed in [12,13], respectively.

Voltage-based OC fault detection has been discussed in [15–20]. To avoid the use of
additional voltage sensors, which may increase the system’s cost, the output voltage of
the VSI should be estimated. In [15], an OC fault-diagnosis scheme is proposed based
on voltage estimation for an induction machine drive system. A state estimator is used
to estimate the phase voltage based on the induction machine model. The estimated
voltage is compared to the voltage obtained from the DC-link voltage and the inverter
switching signals. The residual of the estimation error is used to detect the faulty switch(es).
Nevertheless, this approach needs the use of low-pass filters that require high tuning and
introduce delays in the detection time. Freire et al. present a similar approach applied to
PMSM drive systems [16]. In [17], the calculated common-mode voltage behavior is used
to detect and locate OC faults in three-phase, two-level inverters for induction machine
drive systems.

Recently, with the increase in the use of model predictive control (MPC) in variable-
speed drive systems, some studies propose the use of motor-current prediction errors to
detect OC faults for PMSM drive systems [22–25]. Thanks to the robustness of MPC, the
motor-current prediction errors are very low in well-functioning (healthy) operation modes.
It has been shown that in the case of OC faults, the motor-current prediction errors increase,
allowing for the detection and identification of the fault switch [22–25].

Signal-based methods typically involve motor-current signature analysis [26–30].
In [26], a single current sensor is employed to detect OS faults in the PMSM drive sys-
tem. A DC-link current sensor is used to reconstruct the motor stator currents. Then, the
normalized average value of the reconstructed current is used to detect the faulty switch.
Sejir et al. [27] present a current analysis-based algorithm to detect OS faults in PMSM
drive systems. The fault-detection variables use the interaction between two stator currents,
which allows for the detection of 27 types of OC faults and current-sensor faults. Reference
current errors are adopted to detect OC faults in voltage source inverters [28]. However,
this approach can only be used for closed-loop controlled electric drives.

More recently, data-driven fault-diagnosis approaches have become more attractive for
fault-diagnosis and fault-classification purposes [31–41]. Indeed, data-driven approaches
are only based on recorded data obtained from measured quantities, instead of specific
complex mathematical models.

In [31,32], a Fast Fourier Transform (FFT) algorithm is used to extract open-circuit fault
features from motor currents [31] or the inverter’s output line-to-line voltage [32]. Then, a
fast-learning technology is applied to diagnose the faulty switch(es). Xia et al. [33] present
a transferrable data-driven algorithm for open-circuit switch-fault diagnosis in three-phase
inverters. A deep learning-based approach for the open switch-fault diagnosis of three-phase
PWM converters is discussed in [34]. Current behaviors in healthy and faulty operation
modes are analyzed for fault feature extraction. Hang et al. [36] propose an OC fault-diagnosis
algorithm for PMSM drives using a wavelet convolutional neural network (WCNN). The
normalized current vector trajectory graph obtained by the Clark transform is sent to the
WCNN model to detect and localize the faulty power semi-conductor. However, this method
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requires high-computation execution time and needs preprocessing for noise robustness.
In [37], the online data-driven fault diagnosis of dual three-phase PMSM drives is discussed.

Long short-term memory networks (LSTMs) have been investigated for fault-diagnosis
issues due to their high accuracy compared to other fault-diagnosis techniques [38–45].
The effectiveness of the method is confirmed in [38], where it is used to detect multiple
open-circuit switch faults of the back-to-back converter in doubly fed induction generator
(DFIG)-based wind turbine systems. A similar approach has been used to diagnose OC
faults in multilevel converters [39–41]. The LSTM approach is applied for diagnosing
faults in electric vehicles [42,43] and for motor electrical faults [44] and mechanical fault
diagnosis [45].

A state-of-the-art review has shown that model-based OC fault-detection approaches
are effective. However, these approaches need a good knowledge of the studied system’s
model. Furthermore, they are sensitive to the variations in the system’s parameters. More-
over, they need a robust fault-detection threshold, which makes them complicated to elabo-
rate. Signal-based OC fault-detection methods present a good alternative to model-based
ones. They are attractive especially since they do not require either highly computational
resources or extra hardware. Data-driven approaches have the advantage of being only
dependable on recorded data obtained from measured quantities instead of specific com-
plex mathematical models. The main concerns of such algorithms are their complexity
and the need for large-scale data for feature extraction, training, and validation. These
requirements make real-time implementation difficult.

Therefore, by combining signal-based methods with those based on data, this scheme
may achieve high-accuracy fault detection and fault localization results. Consequently,
this paper proposes a bidirectional long short-term memory (BiLSTM)-based algorithm to
diagnose open-circuit power semi-conductor faults in a three-phase PWM voltage source
inverter for an induction-motor drive system. The main contribution of the proposed
approach can be summarized as follows:
√

The proposed method can achieve an accurate diagnosis of single and multiple open-
circuit faults without any extra hardware requirements. Only already measured
induction-motor stator currents are used.√
A new, robust current-normalization approach is developed to keep the motor currents
free from load-torque and motor-speed transient variations.√
The normalized currents are then combined in order to generate three OC fault
indicators. Then, the fault-detection variables are introduced to a BiLSTM network
to identify the faulty switch(es). The BiLSTM network does not need to set any
fault-detection threshold, which increases the accuracy and the effectiveness of the
proposed approach.

The rest of the paper is organized as follows: Section 2 presents the fault-detection
variables and analysis of the fault features. Section 3 describes the BiLSTM network
and the fault-diagnosis algorithm. The performance of the proposed OC fault-diagnosis
algorithm is analyzed through simulations in Section 4 and evaluated through experiments
in Section 5. Finally, conclusions are drawn in Section 6.

2. Fault Features Analysis

The structure of the three-phase induction-motor drive system is depicted in Figure 1.
The two-level VSI is composed of six IGBTs (T1 → T6) and their anti-parallel diodes. Under
healthy operation conditions, the induction-motor stator currents are expressed as:

ia(t) = Im sin(ωt)
ib(t) = Im sin(ωt − 2π

3 )

ic(t) = Im sin(ωt − 4π
3 )

(1)

where Im is the induction-motor stator current amplitude and ω is the synchronous electri-
cal pulsation.
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Figure 1. Structure of 2L-3Φ VSI-fed IM system. 
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Figure 1. Structure of 2L-3Φ VSI-fed IM system.

When an open-circuit fault occurs, it produces a distortion of the stator currents with
an increase in their amplitude, electromagnetic torque oscillations, and excess heat, which
can lead to motor failures [27].

The motor currents can provide accurate signatures to ensure an effective diagnosis
of OC faults. However, motor currents are sensitive to the load torque and motor-speed
variations. To reduce the dependency of the OC fault signatures on load-torque and/or
motor-speed variations, it is necessary to normalize the motor currents. In this way, several
approaches discussed in the literature have been proposed as normalization tools: Park’s

vector modulus
∥∥∥idq

∥∥∥ =
√

i2d + i2q in [23], the maximum absolute value of the motor-phase
currents max{|ia|, |ib|, |ic|} in [27], and the average absolute values of the motor-phase
currents ⟨|in|⟩n={a,b,c} in [28]. Although these methods provide good results, they also
require additional computational effort and prior knowledge of the motor parameters to
ensure a real-time normalization of diagnosis variables, which increases computation time
and decreases the performance of the OC fault methods.

In this work, a new motor current-normalization approach is introduced. The main
idea consists of applying the sigmoid function to the motor currents for the normalization
process. The sigmoid function of the real variable x, F(x), is defined as:

F(x) =
2

1 + e−λx − 1 (2)

where λ is a positive real. In Figure 2, the sigmoid function of the sinusoidal variable x is
presented. It can be seen that F(x) varies by ±1 and has the same period as the variable x,
apart from its maximum value xm. The impact of the positive real λ on the dynamic of F(x)
is depicted in Figure 2. A greater λ value is higher and more F(x) variation is faster.
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However, the motor currents do not have a pure sine waveform due to the impact of
sampling, PWM, and measurement noises. As a result, the chattering problem appears in
the normalized function and can be seen during the zero crossing of the current signal, as
shown in Figure 3a.

To analyze this feature, the positive-current half-period is taken as an example. The cur-
rent can be divided into a chattering zone, where the current is small, and a non-chattering
area, due to an adequate current drop. The oscillations of the sigmoid function due to the
chattering zone reduce the performance of the motor current-normalization approach. To
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fix this issue and to reduce the chattering effect of the sigmoid function, the normalization
function of the induction-motor stator current is modified; this is expressed below:

F(x) =

{
0 i f x ∈ [−xh, xh]

2
1+e−λx − 1 else

(3)

where xh is the minimum value of signal x(t) that avoids the chattering problem. Figure 3b
shows the output of the modified normalization function, where it is forced to be zero
during the zero-crossing of the current signal. It should be noticed that, when the fault
occurs in the non-chattering zone [t3; t4], it can be immediately detected. However, if it
occurs when |x(t)| ≤ xh, [t1; t2], it cannot be detected, and we should wait for the next cycle.
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By applying Equation (3) to the induction-motor stator currents, we obtain the varia-
tions of the sigmoid variables Fa, Fb and Fc of the motor currents ia, ib and ic, respectively,
as presented in Figure 4a. It can be seen that Fa, Fb and Fc have the same period as
their corresponding motor currents and vary by ±1, which makes them free from load-
torque variations and motor-speed transient variations. Thereafter, three fault-diagnosis
indictors—χa, χb and χc—are defined as follows:

χa = 2Fa − Fb − Fc

χb = 2Fb − Fc − Fa

χc = 2Fc − Fa − Fb

(4)

The variations in the fault-diagnosis indicators for one period of motor currents are
depicted in Figure 4b. During the healthy mode of the induction-motor drive, the fault-
detection variables exhibit similar behavior to the motor stator currents with the same
period, and there is a phase shift between them equal to 2π/3. Moreover, they vary by ±4.
It should be noted that the variations in the fault-detection variables are also independent
of motor speed or load torque.

When an open-switch fault occurs, it affects the stator currents waveforms, as well
as the Fa, Fb and Fc and χa, χb and χc waveforms. Figure 5a describes the stator currents
and variations in the detection variables χa, χb and χc in the case of an open-switch fault of
IGBT T1 applied at time t = 0.6 s. Instantly, the behavior of χa, χb and χc is not the same as
in the healthy operation mode. Indeed, χa loses its positive sequence, whereas χb and χc
vary between 4 and −3.

A similar analysis was conducted for an open-switch fault of T1 and T2 applied at
time t = 0.6 s, (open phase fault), as presented in Figure 5b. χa becomes equal to 0, and χb
and χc are opposite and vary between 3 and −3. A third fault case is analyzed considering
an open-switch fault of T1 and T4, as shown in Figure 5c. In this case, χa loses its positive
sequence, χb loses its negative sequence, and χc varies between 3 and −3. The analysis
of these three faults scenarios has shown for each open-switch fault that the detection
variables χa,b,c have a specific feature. This feature makes them suitable to be used to
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achieve a robust and reliable open-switch fault-detection algorithm for the studied electric
drive system.
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3. LSTM Approach for Fault Diagnosis
3.1. LSTM Structure

LSTM is an improved version of a recurrent neural network (RNN), which has
achieved satisfactory performance in sequence learning and temporal modeling [38].

LSTM has a special structure, which allows for solving the challenge of gradient
vanishing or explosion in a simple RNN since it replaces the iterative transformation with
addition in the calculation of hidden state [45]. The structure of an LSTM unit is illustrated
in Figure 6.
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LSTM mainly consists of three gates: a forget gate ft, an input gate it, and an output
gate ot. The forget-gate layer ft determines which information should be forgotten. The
equation of the forget-gate layer can be expressed as:

ft = σ(w f .[ht−1, Xt] + b f ) (5)

where Xt and ht−1 represent, respectively, the input at the current time and the output at
the previous time of the LSTM network. W f and b f represent the weight and the bias of the
forget-gate layer. σ is the sigmoid function and [ ] represents the concatenate operation.

The input-gate layer it updates the cell state based on the input at the current time
Xt and the output at the previous time ht−1. The equations of the input gate can be
described as:

it = σ(wi.[ht−1, Xt] + bi) (6)

c̃t = tanh(wc.[ht−1, Xt] + bc) (7)

where Xt and ht−1 represent, respectively, the input at the current time and the output
at a previous time. Wi and bi are the weight and the bias of the sigmoid function in the
input-gate layer. tanh is a hyperbolic tangent function, Wc and bc are the weight and the
bias of the tanh function in the input-gate layer.

The output-gate layer ot selects information that should be the next output, which
depends on the cell state ct. The equation of the output-gate layer can be expressed as
Equation (8); wo and bo are the weight and the bias of the output-gate layer.

ot = σ(wo.[ht−1, Xt] + bo) (8)

The cell state and the output (hidden) state at time step t are described by the follow-
ing equations:

ct = ft × ct−1 + it × c̃t (9)

ht = tanh(ct)× ot (10)
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3.2. Stacked LSTM (MLSTM)

A stacked LSTM is a deep LSTM that consists of multiple LSTM layers, where each
layer contains multiple memory cells. The inputs of the first LSTM layer are the sequence
data, and the input of other LSTM layers is the hidden state of the previous LSTM layer.
Therefore, the stacked LSTM hidden layers make the model deeper and more accurate.
This type of network becomes a powerful method for challenging sequence prediction
problems. The structure of a stacked LSTM with n hidden layers is shown in Figure 7.
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3.3. Bidirectional LSTMs (BiLSTM)

BILSTM is an emerging approach to address fault-diagnosis problems [46–50]. This
technique has been shown to provide more accurate results than other classical methods
and LSTM [50,51]. In this study, the BiLSTM network is used to identify and locate multiple
open-circuit faults in a three-phase, two-level voltage source inverter for an induction-
motor drive system. Compared with LSTM, BiLSTM can procure information from both
earlier and later segments in sequence [51]. The BiLSTM structure consists of a forward
LSTM layer and a backward LSTM layer, which reverses the direction of the input sequence
flow [51,52]. Applying the LSTM twice makes the prediction results more integrated
and leads to improving the accuracy of the model. Furthermore, it should be mentioned
that BiLSTM is a much slower model and requires more time for training. The BiLSTM
architecture is presented in Figure 8.
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3.4. Evaluation Metrics

After building prediction models, several metrics can be used to evaluate the perfor-
mance of models and compare them.
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3.4.1. Root-Mean-Square Error (RMSE)

The root-mean-square error (RMSE) is the most commonly used performance measure
for prediction tasks. The RMSE can be calculated by using (11).

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (11)

where ŷi and yi are the prediction and the real output value, and n is the number of data.

3.4.2. Mean Absolute Error (MAE)

The MAE is the other criterion used to evaluate the model performance. The MAE is
expressed as (12).

MAE =
1
n

n

∑
i=1

|yi − ŷi| (12)

3.4.3. Mean Absolute Percentage Error (MAPE)

The MAPE is one of the most common metrics used to measure the prediction accuracy
of a model and it is described as (13).

MPAE(%) =
1
n

n

∑
i=1

|yi − ŷi|
yi

× 100 (13)

The summation ignores observations where yi = 0. In general, the lower the MAPE
value is, the more accurate the model is.

The last metric used in this paper to evaluate the performance of the proposed algo-
rithm is the accuracy of the prediction model, which is expressed as:

Accuracy(%) = 100 − MPAE (14)

3.5. Diagnostic Network Implementation and Validation

The proposed diagnosis method consists of the BiLSTM network with one hidden
layer. The BiLSTM-based network is adopted for the fault diagnosis, using the normalized
diagnosis variables χa, χb and χc of the current-sensor signals as input. Firstly, two-phase
current signals are collected by the sensors installed between the inverter and the motor,
respectively. Then, a normalization process is applied to extract suitable features. Finally,
the normalized input sensor data [χa χb χc] are put into the BiLSTM network.

The output of the BiLSTM network is a concatenation of the forward and backward
hidden states. The final output of the network contains six flags [T1 T2 T3 T4 T5 T6], which
represent the healthy or faulty state of each power switch of the inverter that controls the
IM. Each flag can take either the value 1 to indicate that the desired power switch is infected,
or the value 0 to indicate that the desired switch is healthy. The proposed BILSTM enables
us to predict and identify 21 open-circuit faulty states and 1 normal state. The structure of
the fault-diagnosis method based on the BiLSTM network is illustrated in Figure 9.

To train the BiLSTM network to work efficiently, the system requires normal and
faulty feature data. For this, we generated all possible single and multiple open-circuit
fault scenarios. Thirty thousand samples are used as training data for each class of default,
with a sampling time of 10−4 s. The cost function used in the training process is the
root-mean-square error (RMSE).

After many trials ranging from 10 to 100, as shown in Figure 10, the size of the hidden
layer of BiLSTM network is set as 100 units to make a tradeoff between accuracy and
computation time.

The maximum training epoch is set as 1000 to ensure that the error after training is
small enough. The BiLSTM model is trained using the LSTM MATLAB toolbox vR2020b.

The parameters of the BiLSTM models are summarized in Table 1.
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Table 1. BiLSTM parameter.

Parameter Value
Max training epochs 1000
Loss function optimizer (solver) Adam
Initial learning rate 0.001
Loss function RMSE
Gradient threshold 0.001
Hidden units 100

The principle of the proposed BiLSTM-based fault-diagnosis method considering the
data detailed above is shown in Algorithm 1.

Algorithm 1: BiLSTM-based Fault-Diagnosis Algorithm

Step 1: Data set collection.

−Fault-detection variables [χa χb χc].
−Fault flags [T1 T2 T3 T4 T5 T6].

Step 2: Parameter initialization.
Step 3: Set the BiLSTM model.

−Forward hidden layer output h f
t : h f

t = σ(w f
x Xt + w f

xh f
t−1 + b f

h ).
−Backward hidden layer output hb

t : hb
t = σ(wb

xXt + wb
hhb

t−1 + bb
h).

−The model output yt: yt = w f
y h f

t + wb
yhb

t + by.

Step 4: Train the BiLSTM model.
Step 5: Return the network model (w, b).
Step 6: Test model. If the evaluation metrics are not satisfactory, then adjust network parameters
and go to Step 3.
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After training, the performance and efficiency of our network were tested in a situation
in which open-circuit switch faults occur simultaneously in T5 and T6 at t = 1 s. The
simulation results are shown in Figure 11a,b.
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It can be seen from Figure 11b that the validation error value varies between −0.05 and
0.05, with a little increase when the fault begins to occur (t = 1 s); this result demonstrates
the efficiency of the proposed model in the prediction of default class and the time at which
the fault occurs.

4. Simulation Results

The performance of the proposed open-switch fault-detection approach is first an-
alyzed through simulations using MATLAB/Simulink Software vR2020b for a variable-
speed three-phase induction-motor drive. In this section, the robustness of the proposed
method under speed/load-torque variations is studied first. Then, the effectiveness of the
proposed approach in detecting single and multiple open-switch faults is presented.

4.1. Robustness under Operating Point Variations

The performances of the proposed fault-diagnosis approach under motor-speed and
load-torque variations are presented in Figures 12 and 13, respectively. Figure 12 presents
variations in stator current, motor speed, detection variables, and the output of the BiLSTM
network (T1→T6 fault flags) when the motor speed varies from 1200 to 1500 rpm at time
t = 1 s with no load. The detection variables maintain the same behavior during steady-state
operation as well as during a transient state. Finally, all fault flags remain at low levels,
equal to 0. Figure 13 describes the same variables in the case of torque-load change from
0 N·m to 3 N·m at time t = 1 s with motor speed equal to 1000 rpm. Here, again, all fault
flags remain at a value of 0, and no false alarm is triggered.

4.2. Open-Switch Fault Detection

In Figure 14, the stator currents for an OC fault in the upper switch T1 of phase a,
with 4 N·m as the load torque and 800 rpm as the rotor speed, are presented. When the
open-switch fault of IGBT T1 is applied at t = 1 s, the positive half-cycle of the current ia is
deleted. Therefore, the lost variable χa is a positive sequence and varies between the values
−4 and 0, whereas both the other diagnostic variables, χb and χc, vary between values
−3 and 4. Hence, the T1 fault flag increases instantly to 1 after 4 ms of fault appearance,
relevant to 10% of the stator current’s fundamental period.
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The performance of the proposed approach relating to the diagnosis of an open-phase
fault is shown in Figure 15. Primarily, a single OC fault in power switch T1 occurred at time
t = 1 s, where the motor is running at the speed of 1400 rpm and the load torque is equal to
3 N·m. The faulty power switch is identified when the T1 fault flag increases to 1 at time
t = 1.003 s, equal to 14% of the motor current’s fundamental period. At t = 1.5 s, the fault in
IGBT T2 is added, and the behavior of the fault-diagnosis variables automatically changes.
Regarding all diagnosis variables in this failure situation (open-phase fault), the diagnosis
variable χa becomes equal to 0, but the other variables, χb and χc, take the values of −3
and 3. Then, the open-phase fault is distinguished when both T1 and T2 fault flags take the
value 1, 4 ms after fault occurrence, equal to 19% of the motor current’s fundamental period.
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The steady-state performance of the proposed AI approach for both open-switch faults
in the VSI is presented in Figure 16. Firstly, an OC fault in IGBT T1 appears at t = 1 s, under
the operating speed of 1200 rpm and with 3 N·m as the load torque. The infected IGBT is
localized by switching the T1 fault-flag value to 1 at t = 1.004 s, with 10% of the fundamental
period as a delay. At t = 1.5 s, the second fault in T4 is added, and the first diagnostic
variable χa maintains its negative sequence. However, the second diagnostic variable χb
changes its behavior by losing its negative sequence, varying between 0 and 4, whereas χc
varies between −3 and 3. For this state, the T4 fault flag needs 3.5 ms as a time delay to take
the value 1, which would denote that an open-circuit fault has occurred in power switch
T4. The detection time of this fault is equal to 8.75% of the current’s fundamental period.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 15 of 26 
 

 

Figure 15. Simulation results for a fault in T1 and T2 under a speed of 1400 rpm and a load torque of 

3 N.m. 

  

 

Figure 16. Simulation results for a fault in T1 and T4 under a speed of 1200 rpm and a load torque of 

3 N.m. 

5. Experimental Results 

The performances of the proposed open-circuit fault-diagnosis method were exam-

ined using a 3 kW induction-motor drive prototype. The experimental test bench, shown 

in Figure 17, comprises a three-phase voltage source inverter (SEMIKRON), fed by a 3 kW 

PV array, and an induction motor coupled with a permanent magnet synchronous gener-

ator (PMSG). A digital signal processor (DSP-Dspace1104) is used for the motor drive sys-

tem control. The SEMIKRON inverter is composed of three IGBT modules 

(SKM50GB12T4) and a 1100µF DC capacitor supporting 750VDC. The switching fre-

quency was set to 5 kHz, and the sampling period was 100µs. Two Hall-effect current 

sensors (LEM LA55P) were used for sensing motor-phase currents. A Keithley (DT9834) 

data acquisition module with a 16-bit resolution analog input and a sample rate of 500 

Figure 16. Simulation results for a fault in T1 and T4 under a speed of 1200 rpm and a load torque of
3 N·m.

5. Experimental Results

The performances of the proposed open-circuit fault-diagnosis method were examined
using a 3 kW induction-motor drive prototype. The experimental test bench, shown in
Figure 17, comprises a three-phase voltage source inverter (SEMIKRON), fed by a 3 kW PV
array, and an induction motor coupled with a permanent magnet synchronous generator
(PMSG). A digital signal processor (DSP-Dspace1104) is used for the motor drive system
control. The SEMIKRON inverter is composed of three IGBT modules (SKM50GB12T4)
and a 1100µF DC capacitor supporting 750VDC. The switching frequency was set to 5 kHz,
and the sampling period was 100 µs. Two Hall-effect current sensors (LEM LA55P) were
used for sensing motor-phase currents. A Keithley (DT9834) data acquisition module with
a 16-bit resolution analog input and a sample rate of 500 kS/s throughput was used for
recording the test results. A fault-gate generator box was used to generate an IGBT opening
fault. The idea is to switch the PWM signal input of the gate driver to zero in the fault case.
The mechanical load could be established with the help of the PMSG coupled to the PD3
rectifier and a variable resistive load. The OC fault was introduced by removing the gate



World Electr. Veh. J. 2024, 15, 53 15 of 23

command signal of the considered faulty IGBT. The parameters of the IM are shown in
Table 2.
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Table 2. IM parameters.

Parameter Symbol Value Parameter Symbol Value
Rated Power Pa 3000 W Stator Resistance Rs 2.26 Ω
Rated Voltage V 380 V Rotor Resistance Rr 1.45 Ω
Rated Current In 6.2 A Stator Inductance Ls 0.249 H
Rated Frequency F 50 Hz Rotor Inductance Lr 0.249 H
Rated Speed Ω 1430 rpm Mutual Inductance Lm 0.237 H
Rated Torque Te 20 N·m Moment of Inertia J 6.84 × 10−3 Kg·m2

Pair of Poles P 2 Friction Coefficient f 3.745 × 10−4 N·m·s/rad

5.1. Robustness under Operating Point Variations

The experimental results, reported in Figure 18, show the time-domain waveforms
of the phase currents and the IGBT fault flags used for open-circuit fault diagnosis in the
VSI. In this evaluation, a fast transient process was conducted using a speed step from
700 to 1000 rpm under no load for the first test and a rated load torque under 60% for the
second test. Figure 19 provides the experimental results when the 3Φ-IM operates at a
mechanical rotor speed equal to 1000 rpm. The transient states consist of applying two-step
transitions of the load torque to the IM: the rated load torque from 0 to 60% and then the
rated load torque from 60% to 0%. For the diagnostic variables, even though transient states
are observed, they present the same behavior, which corresponds to a healthy operation
mode of the VSI. Regarding the outputs of the BiLSTM network, all fault flags remain at
their 0 values. The obtained results confirm the high performance and robustness of the
proposed FDI approach under load and speed change.
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5.2. Open-Switch Fault Detection

To further examine the practicality of the proposed method, several tests were per-
formed under fault conditions. The first test was conducted when the fault occurred in
phase b, resulting from an open-switch fault of IGBT T4. In this test, the operating point
of the motor was fixed, respectively, at Ω = 780 rpm and Tem = 50% of rated load torque.
The time-domain waveforms of three-phase stator currents; the diagnostic variables χabc;
and the T1. . .6 fault-flag behavior are reported in Figure 20. First, before the introduction
of the OC fault, the behavior of the fault-detection variables χa, χb and χc corresponds to
the healthy operation of the VSI. At t = 3.605 s, an open-circuit fault occurs in IGBT T4
of the second inverter leg by fixing its switching signal in the « 0 » state. As a result, the
negative half-cycle of the current ib is cut and is now limited to only flowing in the positive
direction, while other currents (ia and ic) undergo a light deformation and flow in negative
and positive directions. Consequently, the behavior of three diagnostic variables (χa,b,c) is
not yet the same as in the healthy operation mode. Indeed, χb loses its negative sequence,
varying between 0 and 4, whereas χa and χc vary between −4 and 3. As a result, the fault
flag corresponding to the faulty IGBT T4 immediately takes the value of 1 at t = 3.609 s, and
there is a time delay equal to 12% of the current’s fundamental period.



World Electr. Veh. J. 2024, 15, 53 17 of 23World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 18 of 26 
 

  

 

Figure 20. Experimental results for a fault in T3 under a speed of 780 rpm and 50% of rated torque. 

The second test corresponds to an open-phase fault involving two IGBTs in the same 

inverter leg (T1 and T2). Figure 21 presents the experimental results of the output-inverter 

currents together with the diagnostic variables used for FDI in the VSI and the outputs of 

the BiLSTM network. However, the motor speed and the load torque are, respectively, 

fixed at Ω = 990 rpm and Tem = 50% of the rated load torque. The fault is introduced into 

the first inverter leg at t = 1.378s by keeping the switching signals of both IGBTs simulta-

neously in the « OFF » state. In this case, current ia becomes equal to zero over the whole 

current cycle, while the other currents maintain their sinusoidal shapes but oscillate in 

phase opposition between −4 A and 4 A. As soon as the fault occurs, the diagnostic variable 

χa takes the value of zero, and the other diagnostic variables χb and χc are opposite and 

vary between 3 and −3. As learned in offline conditions, the diagnostic algorithm based on 

the BiLSTM network decides that the fault is an open phase involving the first inverter 

leg. As a result, open-phase fault identification is achieved at t = 1.387 s when both T1 and 

T2 fault flags switch from 0 to 1, and there is a time delay equal to 30% of the current’s 

fundamental period. 

The last test, which presents the performance of the proposed algorithm regarding 

the diagnosis of a double fault in the power switches T2 and T4, is depicted in Figure 22. In 

this case of faulty condition, the 3Φ-IM runs under a speed of 1000 rpm and no load. The 

fault is applied between t = 2.54 s and t = 6.4s. During this time, current ia loses its negative 

half-cycle and current ib loses its positive half-cycle, whereas current ic is slightly deformed 

but maintains its sinusoidal form. Immediately, diagnostic variables χa and χb lose their 

negative and positive sequences, respectively, while variable χc varies between −3 and 3. 

As a consequence, the FDI approach replies immediately—the T2 and T3 fault flags take 

the value of 1 between times 2.544 s and 6.405 s. The detection time of the fault condition 

corresponds to 16% of the motor current’s fundamental period. 

Figure 20. Experimental results for a fault in T3 under a speed of 780 rpm and 50% of rated torque.

The second test corresponds to an open-phase fault involving two IGBTs in the same
inverter leg (T1 and T2). Figure 21 presents the experimental results of the output-inverter
currents together with the diagnostic variables used for FDI in the VSI and the outputs
of the BiLSTM network. However, the motor speed and the load torque are, respectively,
fixed at Ω = 990 rpm and Tem = 50% of the rated load torque. The fault is introduced
into the first inverter leg at t = 1.378 s by keeping the switching signals of both IGBTs
simultaneously in the « OFF » state. In this case, current ia becomes equal to zero over the
whole current cycle, while the other currents maintain their sinusoidal shapes but oscillate
in phase opposition between −4 A and 4 A. As soon as the fault occurs, the diagnostic
variable χa takes the value of zero, and the other diagnostic variables χb and χc are opposite
and vary between 3 and −3. As learned in offline conditions, the diagnostic algorithm
based on the BiLSTM network decides that the fault is an open phase involving the first
inverter leg. As a result, open-phase fault identification is achieved at t = 1.387 s when
both T1 and T2 fault flags switch from 0 to 1, and there is a time delay equal to 30% of the
current’s fundamental period.
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The last test, which presents the performance of the proposed algorithm regarding
the diagnosis of a double fault in the power switches T2 and T4, is depicted in Figure 22.
In this case of faulty condition, the 3Φ-IM runs under a speed of 1000 rpm and no load.
The fault is applied between t = 2.54 s and t = 6.4 s. During this time, current ia loses its
negative half-cycle and current ib loses its positive half-cycle, whereas current ic is slightly
deformed but maintains its sinusoidal form. Immediately, diagnostic variables χa and χb
lose their negative and positive sequences, respectively, while variable χc varies between
−3 and 3. As a consequence, the FDI approach replies immediately—the T2 and T3 fault
flags take the value of 1 between times 2.544 s and 6.405 s. The detection time of the fault
condition corresponds to 16% of the motor current’s fundamental period.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 20 of 27 
 

 

  

 

 
Figure 22. Experimental results for a double fault in T2 and T3 under a speed of 1000 rpm and no 
load. 

5.3. Performance Evaluation and Comparison 
The proposed fault-diagnosis method is applied to a 3Φ-induction-motor system for 

certain faults: T1, T2, T3, T4, T5, T6, T1 and T2, T3 and T4 and T5 and T6. About 1500 testing 
samples of each fault were used to validate the performance of the proposed BiLSTM-
based method and other comparison methods, including standard LSTM, stacked LSTM 
(MLSTM), and feed-forward neural network (FFNN). These network structures are en-
gaged as comparison methods to prove the efficiency and robustness of the proposed 
method. The FFNN and LSTM are trained with 100 units in 1 hidden layer, while the 
MLSTM models are trained with 50 units in each hidden layer. The training parameters 

Figure 22. Experimental results for a double fault in T2 and T3 under a speed of 1000 rpm and
no load.

5.3. Performance Evaluation and Comparison

The proposed fault-diagnosis method is applied to a 3Φ-induction-motor system for
certain faults: T1, T2, T3, T4, T5, T6, T1 and T2, T3 and T4 and T5 and T6. About 1500 testing
samples of each fault were used to validate the performance of the proposed BiLSTM-
based method and other comparison methods, including standard LSTM, stacked LSTM
(MLSTM), and feed-forward neural network (FFNN). These network structures are engaged
as comparison methods to prove the efficiency and robustness of the proposed method. The
FFNN and LSTM are trained with 100 units in 1 hidden layer, while the MLSTM models are
trained with 50 units in each hidden layer. The training parameters of the BiLSTM model
were considered for the other network structures. The different methods were tested in
a situation where an OC fault occurs at t = 0.5 s. Table 3 presents the RMSE, MAE, time
detection, and accuracy of each model.

Figure 23 shows MAE evolution in a situation when an open-circuit switch fault
happens in T1 and T2 at t = 0.5 s. This metric is illustrated for the BiLSTM and the other
comparison methods.

Figure 24 shows the RMSE evolution for each fault (T1, T2, T3, T4, T5, T6) in a situation
when an open-circuit fault happens in T1 and T2 at t = 0.5 s. The RMSE is illustrated for the
BiLSTM and the other comparison methods.

According to Table 3, the RMSE and MAE values of the BiLSTM method converge
towards 0, which explains its high prediction accuracy in fault detection and identification
(98.07%). This percentage is better than the accuracy reported by the FFNN and classic
LSTM networks. Moreover, the BiLSTM’s detection time of fault conditions varies between
2.5 ms and 6 ms, which corresponds to 12–30% of the motor current’s fundamental pe-
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riod. Consequently, the BiLSTM approach can identify and predict various fault scenarios
accurately and quickly.
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Moreover, appending additional layers for a classic LSTM network does not greatly
improve the performance of the detection model since the LSTM and the MLSTM have the
same accuracy—97%. However, it increases the calculation time. In addition, there is not a
big difference in the fault-detection time, which can reach up to 24 ms.

On the other hand, the FFNN is the fastest for fault detection because the detection
time is around 1 ms, but it has the lowest accuracy—48%. To prove the robustness of
the BiLSTM network, the proposed method is tested on several faults at different oper-
ating points by varying the motor speed and the rated torque. The results are shown in
Figures 18–22. In all cases, the method based on BiLSTM ensures the best performance.
This again demonstrates the effectiveness and the robustness of the proposed method.

Consequently, the BiLSTM model can be used for effective open-circuit fault detection
in a 3Φ-induction-motor-based drive system.

Table 4 presents a comparative analysis of the proposed fault-diagnosis technique,
specifically for OC faults, against techniques previously used for IGBT faults, with a
particular emphasis on detection time, accuracy, and implementation effort. The detection
time is evaluated in relation to the current’s fundamental period. The data in Table 4
clearly show that most of the techniques based on signal or/and model approaches present
a low detection time that does not exceed the fundamental period for diagnosis, with
little implementation effort. On the other hand, the fault-diagnosis techniques based on
the artificial intelligence approach present a higher detection time and implementation
effort but an accuracy near 100%. Compared to the two types of OC fault-diagnosis
techniques, the proposed method based on the BiLSTM neural network demonstrates
strong performance across the evaluated parameters. Considering various fault modes,
including multiple IGBT open-circuit faults, the tests show that the proposed method
balances the diagnostic speed and accuracy well: the fault-detection time is lower than 30%
of one current’s fundamental period; the accuracy value is equal to 98.08%; and there is a
low implementation effort, which outperforms state-of-the-art learning algorithms.
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Table 3. Performance evaluation for each method.

Faulty
Switch

FFNN LSTM MLSTM (3 Layers) BiLSTM
RMSE MAE Td (ms) Accuracy (%) RMSE MAE Td (ms) Accuracy (%) RMSE MAE Td (ms) Accuracy (%) RMSE MAE Td (ms) Accuracy (%)

T1 0.2073 0.1268 1 32.9996 0.0142 0.0093 11.5 97.8281 0.0150 0.0101 11 97.5032 0.0135 0.0095 3.45 98.2613
T2 0.2002 0.1241 1.1 34.4586 0.0209 0.0128 21 96.5231 0.0207 0.0137 23 95.7970 0.0192 0.0128 5.2 96.5596
T3 0.1915 0.1222 1 34.8000 0.0186 0.0116 23 96.5823 0.0174 0.0094 24 96.8548 0.0178 0.0116 6 97.3394
T4 0.1977 0.1241 1 33.5121 0.0160 0.0105 16 97.3179 0.0157 0.0102 13.5 97.5014 0.0146 0.0099 4.88 97.9273
T5 0.1983 0.1235 1 33.8192 0.0167 0.0107 21 97.3560 0.0192 0.0121 24 95.1774 0.0158 0.0098 2.5 98.1525
T6 0.2061 0.1242 1 33.6194 0.0162 0.0102 12 97.4939 0.0149 0.0092 13 97.0993 0.0132 0.0089 4.02 97.8641

T1 & T2 0.1369 0.0935 1 74.1148 0.0250 0.0109 14 98.5637 0.0300 0.0132 17 98.1124 0.0220 0.0105 2.57 98.8193
T3 & T4 0.1242 0.0775 1 75.8453 0.0244 0.0112 24 98.2274 0.0270 0.0126 19 96.8244 0.0253 0.0109 4.66 98.3066
T5 & T6 0.1304 0.0796 1 76.2560 0.0302 0.0092 10 99.3372 0.0278 0.0101 16 99.2203 0.0302 0.0101 3.75 99.4112
Mean 0.1769 0.1108 1.0111 47.7139 0.0202 0.0107 16.94 97.6922 0.0208 0.0111 17.83 97.1211 0.019 0.0104 4.11 98.07

The bold values represent optimum evaluation metrics.

Table 4. Comparative study with other methods.

Method Research Plant Faulty Modes Detection Parameter Detection
Time * Accuracy Implementation

Effort
System model-based Sliding-Mode Observer

(SMO) [13]
PWM VSI-fed sensorless IM

drive IGBT open-switch fault Current signals, speed signals
and IM model 20% -- Medium

Output line voltage residuals [17] IM drive IGBT open-switch fault Three-phase currents 5–83% -- Low
Predictive current errors and Fuzzy Logic

approach [23] PMSM drive IGBT open-circuit fault Predictive current errors 12–75% -- Medium

Online data-driven Random vector functional link
(RVFL) [31] PWM VSI-fed IM drive IGBT open-circuit fault and

current-sensor faults
Three-phase currents and speed

signals 110% 98.83% High

Machine learning-based transferrable data-driven
method [33] Three-phase inverter IGBT open-circuit fault Three-phase currents 100% 96.76% Medium

Wavelet Convolutional Neural Network (WCNN) [36] PMSM drive IGBT open-circuit fault Three-phase currents 1000% 100% High
Classification of open-circuit faults based on Wavelet

Packet and LSTM network [40]
Five-level nested NPP

converter
IGBT open- and short-circuit

switch faults
Current flying capacitor and

voltages switch 120% 99.58% High

Proposed approach (Prediction of open-circuit faults
based on BiLSTM network) PWM VSI-fed IM drive IGBT open-circuit fault Three-phase currents 12–30% 98.08% Low

*: % of the current’s fundamental period.
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6. Conclusions

This paper proposes a new BiLSTM-based approach that aims to detect and localize
open-circuit faults in three-phase, two-level VSIs for induction-motor drive systems. The
proposed method uses only the measured induction-motor stator currents. To keep the
proposed fault-diagnosis approach free from load-torque and/or motor-speed variations,
an innovative approach is presented for motor-stator current normalization through the
sigmoid function. Then, three detection variables—χa, χb and χc—are defined and sent to
the BiLSTM network to localize the faulty switch(es). The performances of the proposed
algorithm have been analyzed through simulations and experiments and have shown:

i. The robustness of the proposed fault-diagnosis algorithm to load-torque and motor-
speed variations, and all switches’ fault flags remain at their respective low levels.

ii. The accuracy and capability of the proposed algorithm to diagnose single and multiple
open-circuit power-switch faults. Moreover, the detection time is acceptable since it is
less than the stator current’s period.

The proposed work provides evidence of practical viability through extensive simu-
lations and experimental results, demonstrating real-world applicability and robustness.
Therefore, the proposed work represents a more promising and effective solution for
the fault diagnosis of single and multiple open-circuit faults without extra hardware for
three-phase electric speed drives.

Our team’s next step is to investigate the ability of the proposed method to detect
current-sensor faults and to discriminate them from open-circuit faults.
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