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Abstract: While IL has been successfully applied in RL-based approaches for autonomous driving,
significant challenges, such as limited data for RL and poor generalization in IL, still need further
investigation. To overcome these limitations, we propose in this paper a novel approach that
effectively combines IL with DRL by incorporating expert demonstration data to control AV in
roundabout and right-turn intersection scenarios. Instead of employing CNNs, we integrate a ViT
into the perception module of the SAC algorithm to extract key features from environmental images.
The ViT algorithm excels in identifying relationships across different parts of an image, thereby
enhancing environmental understanding, which leads to more accurate and precise decision making.
Consequently, our approach not only boosts the performance of the DRL model but also accelerates its
convergence, improving the overall efficiency and effectiveness of AVs in roundabouts and right-turn
intersections with dense traffic by a achieving high success rate and low collision compared to RL
baseline algorithms.

Keywords: autonomous driving; deep reinforcement learning; vision transformer; imitation learning

1. Introduction

Autonomous vehicles have garnered substantial attention from different stakeholders,
namely, governments, industries, academia, and car manufacturers, primarily due to
their potential to revolutionize transportation through advancements in AI and computer
hardware [1]. The deployment of AVs is aimed at reducing traffic accidents [2,3], enhancing
road safety [4,5], and improving mobility in densely populated urban areas [6]. Current
vehicle control systems rely on two primary paradigms: IL [7] and RL [8].

IL techniques involve collecting data from expert human drivers and training DL to
replicate the expert’s actions given specific states [9]. While IL can be effective, it requires
vast amounts of data encompassing all possible driving situations [10,11]. On the other
hand, RL enables an agent to learn decision making by interacting with its environment,
utilizing past experiences to guide future actions [12]. RL has demonstrated impressive
results, particularly in autonomous navigation, by employing CNNs to process sensor
data from AVs, such as laser scans or visual images [13]. However, RL faces challenges,
including data inefficiency and slow convergence, especially in complex scenarios like
controlling AVs in dense traffic. Additionally, using CNNs in RL may result in the loss of
critical environmental information, leading to suboptimal decision making.

Recently, self-attention-based methods, particularly Transformers, have emerged as
the preferred models in natural language processing [14]. The computer vision community
has adapted the standard Transformer architecture for image processing, leading to the
development of the ViT [15]. The ViT has shown promising results across various fields,
including robotic manipulation, due to its ability to handle image inputs effectively [16].
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Unlike CNNs, which primarily focus on local features through convolutional filters, a ViT
leverages self-attention mechanisms to capture global relationships across the entire image.
This capability is particularly advantageous for complex tasks like understanding traffic
scenes in autonomous driving. For instance, in scenarios involving multi-lane roundabouts
or intersections, the ability to model long-range dependencies enables the ViT to analyze
the entire environment holistically. By capturing patterns dispersed throughout the image,
the ViT offers a more comprehensive understanding of the scene, which is crucial for
accurate decision making in autonomous driving.

To address the limitations of existing approaches, we propose a novel method that
combines both IL and RL, utilizing the ViT model in place of the traditional CNN. Our
experiments were conducted in a roundabout and right-turn intersection scenarios with
high traffic mobility. Initially, we collected data from expert human drivers and trained a
policy network to minimize the distance between states and actions. We then integrated
a pre-trained model and expert demonstration replay buffer into our RL framework to
enhance the learning of real-world driving skills. The results demonstrate that our approach
accelerates the learning process and achieves low collisions in dense traffic, outperforming
RL baseline algorithms. The contributions of this work are listed as follows:

1. We propose a novel approach that combines RL and IL to control pAVs in roundabouts
and right-turn intersection with high mobility.

2. We integrate a demonstration data buffer into the SAC algorithm to learn driving
skills from expert human drivers.

3. We replace the CNN with a ViT to extract the most important features from the
visual state and combine them with the goal vector, enabling the model to better
understand the environment. The results demonstrate significant improvement in
learning, with the model achieving a high success rate in various traffic densities
within the roundabout and right-turn intersection scenarios, surpassing baseline RL
algorithms.

The remainder of this paper is organized as follows. In Section 2, we review the
existing literature, analyzing the strengths and weaknesses of each study and underscoring
the novelty of our proposed approach. Section 3 provides an overview of RL, IL, and
ViTs. In Section 4, we present our ViT-SAC algorithm, detailing the state, action, and
reward structures. Section 5 describes our experimental setup, and Section 6 discusses the
experimental results. Finally, Section 7 summarizes our findings and conclusions.

2. Related Work

Due to their strong ability to represent high-dimensional states and their superior data
efficiency, DRL algorithms are attracting growing interest within the robotics community.
Previous research has shown that model-free DRL approaches hold considerable promise
for autonomous motion control strategies, leading to significant focus on DRL-based
methods.

Huang et al. [17] proposed a novel framework integrating human prior knowledge
into DRL for achieving human-like autonomous driving, significantly improving sample
efficiency and simplifying reward function design, validated in simulated urban driving
scenarios. Perez et al. [18] used DRL, specifically a DQN and DDPG, in AV control using
the CARLA simulator, achieving efficient navigation with the DDPG outperforming DQN.
Ben et al. [19] presented a DQN approach for guiding AVs through intersections with dense
traffic and various road users. In a subsequent study [20], the authors extended their work
by training the model under a diverse daytime and weather conditions, using the same
intersection scenario.

In order to improve the control of the AV, Liu et al. [21] proposed an RL-based control
method that generates both steering and acceleration commands simultaneously using the
SAC algorithm and integrates ResNet and DenseNet for improving feature transmission
between layers, which helps in capturing and utilizing high-level features. In [22], the
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authors used a CNN to extract the main feature in the SAC algorithm to control the AV to
enter roundabouts.

ViT-based architecture has demonstrated its dominance in enhancing scene represen-
tation and analysis, driving progress in computer vision and robotics. Driving in complex
urban environments requires complex decision making, which can be enhanced using ViT
networks. In [23], a ViT was utilized to process birds-eye-view images and improve scene
understanding and decision making by leveraging its attention mechanism, leading to
faster and more effective learning compared to traditional ConvNet-based methods.

In [24], a scene representation Transformer was presented to boost RL for autonomous
driving by capturing complex scene interactions and predicting future scenarios. This
model efficiently learns from data and makes better decisions by focusing on relevant
information.

Huang et al. [25] proposed an approach called the Goal-Guided Transformer to
navigate an AV toward various destinations. Their model incorporates a ViT within the
perception module and is pre-trained using expert demonstrations to accelerate the training
of the RL model

However, several previous works have not utilized expert demonstrations to accelerate
the training of an RL model or to leverage expert driving skills. Additionally, some studies
focused on navigating the AV without accounting for dynamic obstacles.

In this study, we selected the ViT instead of a CNN because of its superior ability
to capture global relationships in images through self-attention mechanisms, which is
particularly beneficial for complex tasks like understanding traffic scenes in autonomous
driving. Unlike CNNs, which focus primarily on local features through convolutional filters,
the ViT can model long-range dependencies across an entire image, making it more effective
for analyzing complex environments such as multi-lane roundabouts or intersections. This
ability to capture global context gives the ViT an edge in identifying patterns that are
spread out across the image, which is critical in autonomous driving scenarios, where
understanding the entire scene rather than just localized objects is essential for accurate
decision making.

In light of the existing literature, the preceding works have focused on using the CNN
model to capture the main feature of the environment, and some of them used a ViT to
control the AV in a simple scenario without taking into account other road users. To our
best knowledge, no current work combines a ViT with RL techniques to control AVs to
enter roundabouts and turn right in the intersection while existing with other road users,
such as other vehicles, cyclists, and motorcycles.

3. Preliminaries
3.1. Reinforcement Learning

RL aims to develop an effective strategy (known as a policy) by engaging with the
controlled environment. This interaction can be modeled as a discrete-time MDP, which is
characterized by a set of elements: (S ,A,R,P). At each time step t, the RL agent receives
information about the current state of the environment, represented by the state variable st,
from the set of all possible states S . In response, the agent takes a control action at from the
set of available actions A. Following the agent’s action, the environment provides a reward
signal rt ∈ R. The environment then changes its state according to the state transition
dynamics P , moving from the current state st to a new state st+1 [26].

In this context, the objective is to identify a policy π : S ×A → [0, 1] that, at any time

step t, selects an action at ∼ π(·|st) to maximize the discounted cumulative reward
∞
∑

t=0
γtrt,

where γ ∈ (0, 1] is the discount factor.
RL is a model-free approach that learns optimal policies directly from interaction with

the environment without requiring a probabilistic model. This makes RL highly adaptable
to unfamiliar and uncertain environments, a critical advantage in autonomous driving. RL
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typically consists of two phases: exploration to discover the environment and exploitation
to leverage learned knowledge for optimal behavior.

DRL algorithms can be categorized into discrete (e.g., DQN double DQN [27]) and
continuous (e.g., A3C, DDPG [28], PPO [29]) types. Many continuous algorithms use
the actor–critic framework, where an actor network predicts actions based on the current
state, and a critic network evaluates the quality of those actions. A DDPG is a prominent
continuous DRL algorithm that combines the elements of a DQN and policy gradients. It
learns a deterministic policy using off-policy data and the Bellman equation [30].

3.2. Imitation Learning

IL is based on a behavior cloning technique that tries to train the policy π(a|s; θ) to
mimic the expert’s policy πE(a|s) using a supervised learning method [31]. Based on
demonstration data, which are collected from an expert human driver as a set of image
state-action pairs, DE =

{
⟨sE

i , aE
i ⟩
}N

i=1, where N is the number of samples. Therefore, the
objective of supervised learning is to reduce the distance between action ai and function
approximation of neural networks F (si, θ):

arg min
θ

N

∑
i=1
L
(
F (si, θ), aE

i

)
(1)

where L represents the loss function, and aE is an action from the expert human driver.

3.3. Vision Transformer

The Transformer architecture, introduced by Vaswani et al [14], has become a dominant
model in NLP. Building on the effectiveness of self-attention-based deep neural networks,
Dosovitskiy et al. [15] introduced the ViT for image classification. This model processes
images by dividing them into patches and treating each embedded patch similarly to how
words are handled in NLP. Self-attention mechanisms are employed to capture relationships
between these embedded patches. The ViT takes the input image X ∈ RH×W×C and
reshapes it into of sequence of (X1, X2, . . . , Xn), where H is height; W, width; and C, the
number of channels of the image X. Xn ∈ RN×(P2×C) denotes flattened patches, where
(P, P) is the size of each patch, and N = H·W

P2 is the number of patches and the input
sequence length.

Therefore, the input of the ViT encoder is obtained by adding position embeddings
Epos ∈ R(N+1)×D to D-dimensional flattened 2D patches:

Z0 = [X0; LP(X1); LP(X2); · · · ; LP(Xn)] + Epos (2)

where LP is a linear projection, and X0 ∈ R1×D is an additional learnable embedding
known as the class token. By inputting the embedded patches into the standard Transformer
encoder, we can obtain multi-head self-attention (MSA) through the SA mechanism.

MSA(Q, K, V) = LP([Atten1(Q, K, V); Atten2(Q, K, V); · · · ; Attenk(Q, K, V)]) (3)

Here, k represents the k-th head, and Atten refers to the SA mechanism. As shown
in [14], SA is computed using the query Q, keys K, and values V.

Atten(Q, K, V) = softmax
(

QKT
√

dk

)
V (4)

[Q, K, V] = LP(Z)

Here, Z refers a set of embedded patches, and dk is a scaling factor.
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4. Framework: Reinforcement Learning with Vision Transformer

The primary objective of this work is to accelerate the training process of RL, specif-
ically the SAC model, by incorporating a replay buffer filled with data from an expert
human driver as shown in Figure 1. This approach enables the RL model to acquire driving
skills directly from the expert’s experience. Additionally, we replace the traditional CNN
with a ViT model, which excels in recognizing relationships across different parts of an
image. This enhancement is crucial for AVs as it allows them to better understand their
environment and make more informed decisions.

CARLA Environment

Motion control

𝒔𝒕

𝒂𝒕

𝒔𝒕+𝟏 𝒓𝒕

(𝒔𝒕, 𝒂𝒕, 𝒔𝒕+𝟏, 𝒓𝒕)

𝒔𝒕
𝑬

𝒔𝒕+𝟏
𝑬  𝒓𝒕

𝑬

𝒂𝒕
𝑬

Manual control

(𝒔𝒕
𝑬, 𝒂𝒕

𝑬, 𝒔𝒕+𝟏
𝑬 , 𝒓𝒕

𝑬)

Decision Making

Decision
Imitation

Learning

Expert Priors buffer
Agent buffer

Human expert
RL agent

Human

Decision

ViT Architecture

𝒅{𝒈𝒐𝒂𝒍,𝒕}

Figure 1. Overview of the ViT SAC with expert demonstration: The input images, st, are fed into the
ViT to extract relevant latent features, which are then concatenated with the goal vector, dgoal,t. This
combined vector guides the AV toward its target destination. The final vector is passed to the policy
network to determine the action at.

In the rest of this section, we describe the state, action, and reward used in our
approach.

4.1. State Space

Our model’s input consists of two main components: visual states in the form of RGB
images and a destination vector. Specifically, we use 84× 84 RGB images captured with
a camera, selecting a stack of the four most recent frames. These images are divided into
patches, each with a size of 14× 14 pixels. The patches are then flattened, resulting in
embedded tokens. These tokens are fed into a Transformer encoder, which includes layer
normalization, multi-head attention, and a Multi-Layer Perceptron (MLP). Finally, we reach
a fully connected layer that is a vector with dimension Ht ∈ R1×256, as shown in Figure 2.
We can represent this as function FViT , where

FViT(st) = Ht (5)
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𝑯𝒕

Input 

Tokens

Embedded 

Tokens

Figure 2. The architecture of the ViT network splits images into patches and feeds them to a
Transformer encoder to obtain the main features of the environment.

Here, st ∈ R4×84×84 and Ht ∈ R1×256.
In order to guide our AV to reach its destination, we introduce a goal vector

dgoal ∈ R1×2. This goal vector is defined as [Xgoal − XAV , Ygoal − YAV ], where Xgoal and
Ygoal represent the X and Y coordinates of the goal position, while XAV and YAV are the
corresponding coordinates of the AV at each time step t. We concatenate the result vector Ht
from Equation (5) with goal vector dgoal . Therefore, function 5 can be updated as follows:

FViT+goal(st, dgoal) = Dt, Dt ∈ R1×258 (6)

4.2. Action Space

The SAC algorithm, a continuous DRL approach, requires continuous actions. Conse-
quently, at each time step t, the agent chooses action at by sending the control signal to the
AV, which includes ranges of acceleration [0, 1], steering [−1, 1], and braking [0, 1].

4.3. Reward Function

We carefully designed our reward to ensure that our model converges based on [32].
More specifically, the reward combines between five components as follows:

Rt = RV + Rd + Rc + Ror + Rol + Rg (7)

For simplicity, we define the current distance to the destination as dcu and the pre-
vious distance as dpre. The AV’s forward speed is represented by vspeed, while indicators
for whether the AV is off-road or in another lane are denoted by Moffroad and Motherlane,
respectively. In the event of a collision, a penalty labeled Ccollision is applied, which adjusts
the reward (Rc) accordingly.

Additionally, if the AV moves closer to the goal (dpre > dcu), it receives an increased
reward (Rd) to encourage progress toward the destination. The AV’s speed should not
exceed the limit of 3 (derived from 30 divided by 10), which is enforced by Rv.

To ensure that the AV stays in its lane, minor penalties are applied if the AV travels in
an unauthorized lane or off-road, represented by Ror and Rol . Finally, if the AV successfully
reaches its intended destination, it is rewarded with Rg = 100. The reward function can be
represented as follows:
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reward =



Rc = −100
Rd = dpre − dcu

Rv =
vvelocity

10 vvelocity ∈ [0, vlimit]
Ror = −0.05×Moffroad
Rol = −0.05×Motherlane
Rg = 100

(8)

Next, using the latent features Dt extracted from ViT-SAC at a given timestep t, the
SAC algorithm learns the decision policy π(at | Dt) according to the previously mentioned
reward function. A widely adopted technique in the SAC algorithm is the use of double
Q-networks to address the problem of overestimation. Consequently, the parameters of the
critic network in ViT-SAC are optimized by minimizing the mean Bellman squared error
(MBSE) loss function.

L(θi) = Est∼P ,at∼π

∥∥∥Qπ
θi
(st, at)−

(
rt + γ · Q̂π

)∥∥∥
2

(9)

where Q̂π is the state-action value of the next step from the double target Q-networks,
which is computed as follows:

Q̂π = Est+1∼P ,at+1∼π

(
min
i=1,2

Qtarget,i(st+1, at+1)− α log π(at+1|st+1)

)
(10)

Here, α represents a temperature parameter that balances the trade-off between the
randomness of the optimal policy and the state-action value. Consequently, the actor
network adjusts its parameters by maximizing the soft state-action function:

L(ϕ) = Est∼P ,at∼πϕ(·|st)

[
α log πϕ(st | at)−min

i=1,2
Qπ(st, at)

]
(11)

To better understand the implementation of our approach, including the expert demon-
stration buffer, we provide Algorithm 1.

Algorithm 1 Vision Transformer Soft Actor-Critic with Imitation Learning

1: Initialize the parameters for the actor network ϕ and the critic network θ.
2: Set the initial value of α.
3: Define the batch size N and initialize an empty replay buffer DA and expert demon-

stration buffer DE.
4: Initialize the target network parameters: θtarget ← θ.
5: Time to update critic networks: Timecri
6: Time to update actor networks: Timeact
7: Time to update target networks: Timetar
8: for episode e = 1 to Ep do
9: Start with an initial image state st ∼ Env

10: Set an initial goal vector dgoal ∼ Env
11: for each time step t from 1 to Nsteps do
12: Dt ← FViT(st, dgoal)
13: Choose an action at ∼ πϕ(at|Dt)
14: Execute the action in the environment:
15: Receive the next observation st+1, reward rt, and updated the goal d(goal,t+1)
16: Add the tuple to the replay buffer:
17: D ← D ∪ (st, d(goal,t), at, rt, st+1, d(goal,t+1))
18: if Timecri then
19: Chose a batch (si

t, di
(goal,t), ai

t, ri
t, si

t+1, di
(goal,t+1))

N
i=1 from DA ∪DE

20: Calculate the critic loss L(θ) using Equation (9)
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Algorithm 1 Cont.

21: Update the parameters θ
22: end if
23: if Timeact then
24: Chose a batch (si

t, d(goal,t), ai
t, ri

t, si
t+1, di

(goal,t+1))
N
i=1 from DA ∪DE

25: Compute the actor loss L(ϕ) using Equation (11)
26: Update the parameters ϕ
27: if automatic entropy adjustment is active then
28: Update α
29: end if
30: end if
31: if Timetar then
32: Update the target network: θtarget ← θ
33: end if
34: end for
35: end for

5. Experiments

In this section, we describe our simulation, including the simulator used to train and
test our approach. We also present a thorough analysis of the results achieved during our
experiment.

5.1. Expert Demonstration

To mimic the behavior of an expert human driver, we control the AV using our
laptop keyboard, guiding it through a roundabout and turning right in the intersection
and avoiding collisions with other road users. We collect a total of 13, 542 samples of
data in the form of tuples (st, d(goal,t), at, rt, st+1, d(goal,t+1)), which are stored in the expert
demonstration buffer DE. Additionally, we selected state-action pairs

{
⟨sE

i , aE
i ⟩
}

for IL,
which were split into training and validation sets for training the actor network. Once
the model was trained, we integrated the pre-trained model into the actor network of our
RL model. This approach reduces the discrepancy between states and actions, thereby
accelerating the training and convergence of the RL model.

5.2. Simulation Experiments

The simulation experiments in this work conducted training using a laptop computer
equipped with an 11th Gen Intel (R) Core (TM) i7-11800h 2.30 GHz CPU, 16 GB of RAM, and
NVIDIA GeForce RTX 3050 laptop GPU hardware. We utilized the CARLA simulator [33]
as our simulation environment, where the autonomous vehicle was assigned the task of
navigating safely and efficiently through a roundabout and turning right with multiple
intersections in an urban setting, as depicted in Figures 3 and 4. While the starting and
destination points were consistent, the traffic conditions varied across different training
episodes. The ego vehicle was initially spawned randomly within the starting area and
had to follow the designated route to the destination, all while avoiding collisions with
other vehicles in the dense traffic. The roundabout and the intersection contained various
road participants, including cyclists, motorcycles, and other vehicles. For this traffic, we
chose 120 vehicles moving in randomly, including motorcycles, cyclists, and four-wheeled
vehicles, all controlled by the autopilot of CARLA.

The simulator started by capturing images at a resolution of 800× 600 pixels. We
captured 5 frames per second (fps) during our simulation in order to reduce data overload.
The episodes concluded under the following conditions: (1) the AV collides with any object
or with any road participants; (2) the AV reaches its goal position; (3) the maximum number
of episodes Nsteps is reached.
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(a) (b)

(c) (d)

Figure 3. (a) represents the traffic scenarios used to train and test our model, including various road
users. (b) illustrates the predefined route of the AV from the starting location to the goal position.
(c,d) present additional complex simulations that the AV must generate in order to navigate its
environment effectively. Adapted from Ref. [22].

(a) (b)

Figure 4. (a) The scenario represents a right-turn intersection with the presence of other vehicles.
(b) The AV must navigate the right-turn intersection while avoiding collisions.

5.3. ViT SAC Training

In our model, we employ two networks: a policy network and a critic network. The
policy network uses a ViT as the feature extractor. It produces outputs corresponding to
the mean and standard deviation of a Gaussian distribution through three fully connected
layers with 258, 128, and 32 hidden units, respectively. This results in actions represented
as at ∼ N (µθ(st), σθ(st)). The critic network shares the same ViT architecture as the policy
network. The other parameter of our training model are listed in Table 1.

We compared the SAC and ViT-SAC algorithms in terms of training time, processing
time, memory consumption, and training speed over 600 episodes, as shown in Table 2.
Notably, ViT-SAC demonstrates faster training and processing times compared to the SAC
algorithm. However, the ViT-SAC algorithm consumes more memory than SAC.
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Table 1. Parameters used in the simulation.

Notation Meaning Value

vmax Velocity limit (m/s) 30

γ Discount rate 0.99

Nbuffer Agent buffer capacity 200,000

NA Mini-batch size for agent 32

NE Mini-batch size for expert 32

α Learning rate for actor and critic 3× 10−4

Block Number of ViT blocks 2

Head Number of ViT heads 1

Nsteps Training steps 1100

Npatches Patch size 14× 14

lr Learning rate of actor and critic 0.0003

Table 2. Computational efficiency.

Algorithm Train (h) Processing Time (s) Memory
Consumption (GB)

ViT-SAC 8.19 0.085 0.04832

SAC 10.82 0.22 0.0243

6. Analysis of Experiment Results

To demonstrate the efficacy of the proposed ViT-SAC model in a roundabout scenario,
we compared our approach with the work of [22].

Figure 5 illustrates the average reward obtained by our ViT-SAC model compared
to several RL baselines, including SAC, DQN, and PPO in roundabout scenario. Our
model demonstrates faster convergence and superior performance throughout the episodes,
achieving a high reward value of approximately 96.5, surpassing the other baselines. In
contrast, SAC reaches a reward value of 91.9. Notably, the ViT-SAC model stabilizes from
episode 1000 to the end, showcasing the efficiency of integrating a replay buffer with
expert demonstrations. This integration accelerates the training process and significantly
reduces the time required for convergence. Figure 6 illustrates the average reward of the
ViT-SAC model compared to the SAC model in an intersection scenario. The ViT-SAC
model achieves a significantly higher reward of approximately 96.5, outperforming the
SAC model, which attains a reward of 75.9. This result highlights the superior performance
of our model, even in the challenging task of navigating a right-turn intersection.

To evaluate the performance of our model, we employed the same metrics as in our
previous work [22]. This allowed us to compare the effectiveness of ViT-SAC with other RL
baselines, including SAC, DQN, and PPO.

We used the average success rate as the primary metric to fairly evaluate the perfor-
mance of the proposed framework across different scenarios, each defined by the number of
AV present in the environment. Specifically, we chose four density levels for our evaluation:
Veh = 120, Veh = 140, Veh = 160, and Veh = 210.
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Figure 5. The mean reward of ViT-SAC compared to RL baselines in roundabout. Adapted from
Ref. [22].

Figure 6. The mean reward of ViT-SAC compared to SAC in right-turn intersection.

In addition to the main metric, we incorporated several supplementary metrics during
the testing phase, including collision rate, mean duration, mean velocity, mean traveled
distance, mean steps, and mean reward:

• Success Rate (Succ %): This metric measures the percentage of episodes in which the
AV successfully reaches its destination out of 50 episodes tested.

• Collision Rate (Coll %): This calculates the percentage of episodes in which the AV
collides with other vehicles, reflecting critical safety performance.

• Mean Duration (Mean Dur. (s)): This measures the average time taken by the AV to
reach its destination across 50 episodes.

• Mean Velocity (Mean Vel. m/s): This reflects the average speed of the AV during the
episodes.

• Mean Traveled Distance (Mean. Dis m): This denotes the average distance traveled
by the AV from its starting location to its destination.

• Mean Steps (Mean Steps): This represents the average number of steps required for
the AV to reach its destination.

Table 3 presents a quantitative comparison of the ViT SAC model against other RL al-
gorithms utilizing CNN models. The results clearly demonstrate the superior performance
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of the ViT SAC model across all metrics. Notably, ViT SAC achieves a consistently high
average reward across all traffic densities in the roundabout and right-turn intersection,
even in the challenging fourth density characterized by high mobility.

Table 3. The results of the proposed algorithm are compared with the baseline methods in the
roundabout and right-turn intersection. The good results in bold indicate superior performance.

Roundabout Scenario

Model Dens. Mean. Re Mean Dur. Mean Vel. Mean. Dis Mean. Steps Succ. Coll.

ViT-SAC

Veh = 120 100.00 5.95 4.21 31.40 25.74 100% 0
Veh = 140 100.00 6.84 4.16 31.26 25.92 100% 0
Veh = 160 100.00 6.95 4.18 31.30 25.84 100% 0
Veh = 210 100.00 6.73 4.19 31.53 25.94 100% 0

SAC [22]

Veh = 120 93.01 6.70 3.77 31.58 31.64 98% 2
Veh = 140 92.99 7.48 3.78 31.70 32.91 98% 2
Veh = 160 91.79 8.50 3.64 31.72 35.06 96% 2
Veh = 210 85.07 10.36 3.75 31.63 30.80 94% 6

PPO

Veh = 120 62.1 7.01 3.60 32.51 36.01 88% 12
Veh = 140 60.8 8.02 3.68 32.63 37.20 86% 14
Veh = 160 57.2 8.70 3.55 32.72 38.10 83% 17
Veh = 210 50.1 10.5 3.70 32.51 36.20 80% 20

DQN

Veh = 120 35.74 7.89 3.58 33.48 47.13 70% 30
Veh = 140 24.98 9.28 3.52 33.35 47.81 64% 36
Veh = 160 29.40 8.63 3.45 33.57 49.0 66% 34
Veh = 210 1.86 10.88 3.63 33.54 47.69 52% 48

Right-Turn Intersection

Model Dens. Mean. Re Mean Dur. Mean Vel. Mean. Dis Mean. Steps Succ. Coll.

ViT-SAC

Veh = 120 95.66 4.97 3.43 20.29 21.48 100% 0
Veh = 140 94.20 5.92 3.42 20.32 22.63 100% 0
Veh = 160 94.93 6.35 3.46 20.40 21.54 96% 4%
Veh = 210 94.24 8.08 3.45 21.02 21.46 96% 4%

SAC [22]

Veh = 120 55.01 7.24 2.58 21.08 31.78 72% 14%
Veh = 140 56.76 9.40 2.39 21.12 35.89 72% 14%
Veh = 160 55.86 9.01 2.50 21.31 32.62 70% 30%
Veh = 210 54.20 12.50 2.57 22.01 32.04 68% 32%

Moreover, the success rate of the ViT SAC model is outstanding, maintaining a 100%
success rate across all densities, with a collision rate of zero in the roundabout. This high-
lights the efficiency and robustness of the proposed model, outperforming other algorithms
such as SAC, PPO, and DQN. For right-turn intersections, ViT-SAC achieves a 100% suc-
cess rate and a collision rate of 0% at lower densities. At higher densities, it maintains
a 96% success rate with a 4% collision rate, outperforming SAC, which achieves success
rates of 72% and 68%, along with collision rates of 14%, 30%, and 32% at corresponding
density levels.

Additionally, the ViT SAC model exhibits exceptional performance in all four test
scenarios, indicating its resilience to variations in traffic density. Consequently, the ViT SAC
model is well suited for real-world situations where traffic density can fluctuate, ensuring
that the autonomous vehicle can maintain safety in varying conditions.

7. Conclusions

This paper introduces a novel approach that combines IL and DRL to enhance vehicle
control in AVs navigating roundabout and right-turn intersection scenarios. Specifically,
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we integrated an expert demonstration buffer into the SAC algorithm to enable the model
to learn driving skills from a human expert. Furthermore, we utilize a ViT model instead
of a CNN to extract key features from visual input, ensuring the retention of long-range
information during driving. These features are then combined with a goal vector to guide
the AV toward its destination. We trained and tested our model using the CARLA simulator
to demonstrate its performance in an environment closely resembling the real world. The
results highlight the effectiveness of our proposed approach, achieving a 100% success rate
with zero collisions in the roundabout scenario, as well as in the first two density levels of
the right-turn intersection. For the last two density levels of the right-turn intersection, our
approach maintains a high performance with a 96% success rate and a 4% collision rate.
These outcomes surpass the performance of baseline RL algorithms, including SAC, PPO,
and DQN.

For future work, we aim to train and test our model in other scenarios, such as left-turn
intersections with dense traffic or other complex scenario.
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