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Abstract: With the increasing use of lithium-ion (Li-ion) batteries in electric vehicles (EVs), accurately
measuring the state of charge (SoC) has become crucial for ensuring battery reliability, performance,
and safety. In addition, EVs operate in different environmental conditions with different driving
styles, which also cause inaccurate SoC estimation resulting in reduced reliability and performance
of battery management systems (BMSs). To address this issue, this work proposes a new hybrid
method that integrates a gated recurrent unit (GRU), temporal convolution network (TCN), and
attention mechanism. The TCN and GRU capture both long-term and short-term dependencies and
the attention mechanism focuses on important features within input sequences, improving model
efficiency. With inputs of voltage, current, and temperature, along with their moving average, the
hybrid GRU-TCN-Attention (GTA) model is trained and tested in a range of operating cycles and
temperatures. Performance metrics, including average RMSE (root mean squared error), MAE (mean
absolute error), MaxE (maximum error), and R? score indicates the model is performing well, with
average values of 0.512%, 0.354%, 1.98%, and 99.94%, respectively. The proposed model performs
well under both high and low noise conditions, with an RMSE of less than 2.18%. The proposed
hybrid approach is consistently found to be superior when compared against traditional baseline
models. This work offers a potential method for accurate SoC estimation in Li-ion batteries, which
has an important impact on clean energy integration and battery management systems in EVs.

Keywords: battery; EV; GRU; Huber loss; Li-ion battery; state of charge estimation; SoC; TCN

1. Introduction

The growing market share of battery electric vehicles (EVs) and the increasing demand
for renewable energies have highlighted the importance of efficient and reliable battery
technologies [1,2]. EVs’ energy storage systems are increasingly relying on lithium-ion
(Li-ion) batteries as their primary power source, given their exceptional attributes such
as high energy density, high power density, long lifecycle, and environmentally sustain-
able characteristics [3,4]. Developing accurate methods for estimating the state of charge
(SoC) of EV batteries is crucial for maximizing their performance, lifespan, and overall
efficiency [5,6]. The BMS is essential to monitor the state of the battery based on real-time
data and protect the battery from overcharge and over-discharge to ensure the safety
and reliability of EV operation [6,7]. In this rapidly growing field, there is a need for
advanced techniques to precisely measure the status of the battery. The complexities of
battery chemistry, temperature, and aging make this a complex and challenging task [8].
Moreover, the accurate estimation of SoC is essential for optimizing the deployment of
renewable energies and enhancing grid stability [9]. Battery SoC means how long the
battery can last without being recharged [10,11]. SoC can only be evaluated indirectly using
factors like current. voltage and temperature [12]. Up till now, there have been five general
methodologies for estimating SoC: look-up table methods, Coulomb counting, model-based
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approaches, data-driven approaches, and hybrid approaches [2,5,13,14]. However, those
models can only work under strict conditions, and the traditional machine learning-based
model cannot capture the sequence properly. That is why it is important to adopt new
advanced technology and approaches to estimate SoC properly.

Individual SoC estimation methods can be classified into four categories based on
the battery model and the estimation algorithms: ampere-hour counting, model-based
approaches, filter-based techniques, and data-driven methods. By integrating current
over time, the ampere-hour counting approach determines SoC variation based on the
assumption of a precise initial SoC [2,15]. Ampere-hour counting for battery SoC estimation
relies on an accurate initial SoC assumption, leading to cumulative errors and the inability
to consider self-discharge [16]. As an open-loop method, this approach may experience
limited accuracy in current sampling, leading to a degradation of estimates over time.
Zheng et al. [17] show that ampere-hour counting gives around 5% current drift of 5 mA
over 100 h.

Model-based methods are widely preferred for SoC estimation as they use voltage
signals to establish a relationship between voltage and SoC. Among these, the open-
circuit voltage (OCV) is a reliable indicator used in various modeling techniques such as
electrochemical models (EMs) [18], equivalent circuit models (ECMs), and fractional-order
models (FOMs) [19]. OCV curves are often employed to provide an initial estimate for
parameter tuning in model-based approaches. Electrochemical models, which simulate the
internal mechanisms of the battery, are used for SoC estimation through a method known
as electrochemical model-based SoC estimation [20]. The estimation of battery SoC using
electrochemical models remains challenging due to computational complexity, the need for
precise parameterization, and difficulties in adjusting to actual operating circumstances
and battery aging dynamics [21]. ECMs are simplified electrical representations used to
estimate battery SoC based on voltage and current measurements, offering simplicity and
computational efficiency compared with other models [22]. ECMs frequently face problems
in representing transient and nonlinear behavior because of their sensitivity to accurate
parameter variations [19]. Zheng et al. [17] found an overall 5% SoC estimation error for
1 mV yield in voltage simulation. Fractional-order models provide improved accuracy
for battery SoC estimation, incorporating complex dynamics such as the Butler—Volmer
equation and fractional calculus, crucial for electric vehicle management systems [23].
Fractional-order models for battery SoC estimation may suffer from increased voltage
prediction error during large current pulses and computational burden, limiting their
effectiveness in real-time applications [24]. Overall, model-based methods for battery SoC
estimation can be sensitive to parameter variations and may require accurate knowledge of
the battery’s characteristics [25].

Filter-based methods for battery SoC estimation employ algorithms to enhance
performance [13,26]. Popular methods include Kalman filters [27], extended Kalman
filters [28,29], the cubature Kalman filter [30], and particle filters [31], providing efficient
and robust SoC predictions. Filter-based methods for battery SoC estimation can be compu-
tationally intensive and complex, requiring careful tuning of parameters for optimal perfor-
mance [15]. Li et al. [32] show a comparison between three different types of state-of-the-art
filter-based approaches and found that SoC error can reach up to 7.3%.

As artificial intelligence has developed, a significant amount of study has been carried
out on data-driven methods for analyzing the SoC of batteries [33]. Data-driven methods,
including machine learning techniques, offer promising avenues for battery SoC estimation
by utilizing large datasets. These approaches include various strategies such as Gaussian
process regression (GPR), support vector machines (SVMs), recurrent neural networks
(RNNs), and convolutional neural networks (CNNs), each suited to different types of
data and modeling requirements [34-37]. GPR offers a robust framework for battery SoC
estimation, providing a reliable estimation of uncertainty and enhancing the accuracy up to
95%, increasing SoC predictions’ reliability. However, GPR for battery SoC estimation may
encounter scalability and computational complexity issues due to kernel function selection
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and hyperparameter optimization [38]. The SVM offers a robust and adaptable solution for
accurately estimating battery SoC in real-world conditions, making it a valuable and reliable
strategy for electric vehicle battery management systems [39]. Anton et al. [40] proposed
SVM-based SoC estimation approaches with support vectors and found that mean absolute
error (MAE) is less than 4% but the maximum error is up to 6% due to its limitation of
handling nonlinearity. Nevertheless, SVMs for battery SoC estimation may suffer from
limitations in handling nonlinearities and may require significant computational resources
for training [41].

CNN models offer promising solutions for battery SoC estimation by utilizing their
ability to capture spatial dependencies in battery data, enhancing accuracy and robust-
ness in prediction tasks [42]. The 1D-CNN effectively captures Li-ion battery data fea-
tures but shows lower SoC estimation precision than other neural network structures.
Bhattacharjee et al. [43] used the 1D-CNN-based model to estimate battery SoC and showed
that the MAE of estimation is around 4.72%. Meanwhile, temporal convolutional networks
(TCNs), designed for time series data, exhibit lower SoC estimation reliability than other
methods [44]. Hannan et al. [45] proposed a multi-layer time-domain convolution layer
based on TCNs, which achieved a MSE of around 0.85%. On the other hand, RNNs, in-
cluding architectures like long short-term memory (LSTM) and the gated recurrent unit
(GRU), have demonstrated effectiveness in battery SoC estimation by capturing long-term
dependencies and nonlinear relationships in battery data [33,46]. However, LSTM models
for battery SoC estimation may face challenges with overfitting when trained with nu-
merous input parameters, potentially compromising generalization ability in real-world
scenarios [47]. Using GRU model parameters reduces and increases prediction accuracy,
which leads to reducing overfitting issues, but cannot fully solve the vanishing gradient
issue when the model parameters are large [48]. Xiao et al. [49] proposed a GRU-based
model and found that it can achieve a MAE of up to 0.49% for the FUDS driving cycle.
Nowadays, some research is being conducted in the area of advanced algorithms like
transfer learning and hybrid models for SoC estimation. Bain et al. [50] proposed an LSTM
encoder-decoder-based hybrid model that can capture the long-term sequence and estimate
future directions. The proposed model can estimate battery SoC with an MAE value of
1.07%. On the other hand, hybrid models like CNN-LSTM for battery SoC estimation
have proven useful in measuring and precisely capturing nonlinear relationships among
factors such as voltage, current, and temperature, consistently providing effective perfor-
mance [46]. Song et al. [9] proposed a CNN-LSTM model with a root mean squared error
(RMSE) of 1.31%. A TCN-LSTM SoC estimation model was proposed by Hu et al. [51] with
a MAE and RMSE of 0.70% and 0.60%, respectively. In addition, the TCN-LSTM model
combines the robustness of the TCN with the ability of long short-term memory (LSTM) to
capture long-term dependence in input data and shows considerable promise for accurately
estimating battery SoC [52]. A CNN-GRU-based model was proposed by Huang et al. [53]
where CNN and GRU models are connected in series, with an RMSE of 1.54% and MAE of
1.26%. Li et al. [54] used the TCN, GRU, and attention in series with moving averages to
estimate SoC more accurately. In their study, they found that the model is capable of SoC
estimation with an RMSE of 0.96% and an MAE of 0.80%.

The SoC estimation relies on various measured parameters, including voltage, current,
and temperature. These measurements are inherently susceptible to noise, manifesting as
both bias and variance in sensor data, which can significantly impact estimation accuracy.
While high-quality sensors and proper shielding can minimize such noise in controlled
laboratory environments, real-world applications present numerous challenges. These in-
clude electromagnetic interference, suboptimal data acquisition algorithms, environmental
factors, and improper sensor calibration [55]. Although existing research has proposed
algorithms for noise detection and elimination [56], few Al models can effectively process
noisy data without preliminary noise filtering techniques. Moreover, existing AI models
often struggle to maintain consistent performance with acceptable error margins in SoC
estimation under different operational conditions. To address these limitations, this study
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presents a novel GRU-TCN-Attention (GTA) model for improving battery SoC estimation
accuracy. The model integrates the TCN and GRU to capture sequential patterns, while the
attention mechanism between layers enhances the model’s sequence learning capabilities.
Additionally, the implementation of moving averages for feature processing enables more
effective capture of long-term trends and helps in noise immunity. The model’s robustness
is validated through comprehensive testing under various drive cycles, temperature condi-
tions, and noisy conditions, with performance benchmarked against attention-based TCN
(A-TCN) and attention-based GRU (A-GRU) models. The important contributions are:

1.  The proposed architecture combines the TCN and GRU to effectively capture long
sequence dependencies in battery SoC data. Integrating these models enhances
temporal flexibility, reduces overfitting, and improves noise resistance. Adding self-
attention between the GRU and TCN layers further refines the model, allowing it to
focus on key input features for better feature extraction. Finally, it also takes advantage
of both CNN and RNN feature extraction processes and automated noise-resilient
capabilities.

2. The Huber loss function is used to ensure stable model training by avoiding the
transient and noise impacts of voltage and current during model training. To cap-
ture the overall trends, the Huber loss function is utilized in conjunction with the
moving average of voltage, current, and temperature. This procedure improves the
model’s ability to track long-term trends as well as protect it from noise, anomalies,
and transients.

3. The model’s performance is examined under a variety of temperature conditions and
driving cycles to prove its generalization capabilities. Furthermore, a comparison with
A-TCN and A-GRU models demonstrates how the proposed technique maintains and
improves SoC estimation accuracy by utilizing TCN performance while leveraging
the GRU'’s advantages in capturing lengthy sequences of SoC data.

4. Proposed model performance is tested under different noisy conditions to ensure that
the model is noise resistant.

The rest of the paper is structured as follows. Section 2 focuses on the construction of
the model and the processing of datasets to efficiently capture the SoC. Section 3 discusses
the findings of this study and compares the model’s performance with other models and
recent studies. The conclusion of this study is drawn in Section 4.

2. Methodology
2.1. Dataset Description

For a data-driven approach to the proposed method and the related complexity and
uncertainty of the loading condition of Li-ion batteries, a publicly available LG18650 Li-ion
battery dataset, provided by McMaster University, is used for training the model [57]. In this
dataset, a brand-new LG18650 Li-ion battery is tested in a controlled thermal chamber with
a 75 amp, 5 V universal battery tester channel with voltage and current measuring error
rates less than 0.1% [58]. The dataset records the variation of voltage, current, temperature,
and capacitance of the battery in electric vehicles at temperatures varying from —20 °C to
40 °C, with a data resolution of 0.01 s. The dataset includes common operating conditions
such as Mixed 1-8, Urban Dynamometer Driving Schedule (UDDS), LA92 Dynamometer
Driving Schedule (LA92), Highway Fuel Economy Driving Schedule (HWFET), and US06
Supplemental FTP Driving Schedule (US06).

Different charging and discharging driving cycles are included in the test from these
driving cycles at different temperatures. From these driving cycles, UDDS, LA92, HWFET,
and US06 are considered for model testing at temperatures including 0 °C, 10 °C, and 25 °C,
and under the same temperature conditions Mixed 1-8 is used for training the model.
From the training dataset, 10% of the data is used for validation at the time of training.
LA92 represents the urban driving conditions in Los Angeles, which typically consist of
moderate speeds with frequent stops and starts. Therefore, the current and voltage profile
contains frequent fluctuation due to sudden acceleration and deceleration. On the other



World Electr. Veh. ]. 2024, 15, 562

50f 26

hand, HWFET represents highway driving conditions where speed is kept steady for a
long period, which causes the voltage and current to become more stable compared with
others. At the same time, UDDS represents urban driving conditions where speed is kept
less steady compared with HWFET as there are repeated cycles of acceleration, steady-state
cruising, and deceleration, which are also reflected in the current and voltage profile. Lastly,
US06 represents an aggressive driving style where very fast acceleration and deceleration
are happening and the fluctuation of the voltage and current profile is comparatively high
and frequent. Battery main specifications are described in Table 1. The training process was
conducted on a custom-built desktop PC equipped with an AMD Ryzen 5 5600X, 128 GB of
DDR4 RAM operated in 3200 MHz, powered by an NVIDIA GeForce RTX 4090 graphics
processing unit with 24 GB of GDDR6X memory.

Table 1. Battery specifications.

Parameters Value

Chemistry Li[NiMnCo]O, (H-NMC)/Graphite + SiO
Nominal voltage 3.6V

Discharge 2V (end voltage), 20 A (max continuous current)
Nominal capacity 3 Ah

Nominal discharge current 3A

2.2. Noise Addition and Data Preprocessing

Systematic noise injection was implemented in the training data to evaluate and
enhance the model’s resilience to sensor noise, incorporating both bias and variance compo-
nents. Although sensor bias typically exhibits temporal variation in practical applications,
this study employs a constant bias assumption for simplicity. The noise model is expressed
through Equation (1), where AV, Al, and AT represent the constant bias terms for voltage,
current, and temperature measurements, respectively. At the same time, 6V, 61, and 6T
denote their corresponding random noise components. The random noise components
are modeled as independent and identically distributed (i.i.d.) variables with zero mean
and constant variance (¢), as defined in Equation (2). Figure 1 shows the impact of noise
addition in the battery measured data and Table 2 contains the parameters that are used to
add noise in the training data.

Vin = Viprue — AV — 6V,

It = It prye — AL — 1 1)
Tim = Tpprue — AT — 8T
E(6V) =0,02(6V) = 0%

E(I) = 0,02(d1) = 07 2)
E(6T) = 0,0%(T) = o2

To ensure a comprehensive capture of the dataset’s long-term trends, primary features
such as instantaneous voltage, current, and temperature are utilized, alongside their respec-
tive moving averages. This moving average calculation is crucial for capturing long-term
trends and immunity from transient values, using Equation (3), where y,,, represents the
moving average and y1, y2, y3 denote individual entries, with a fixed window size of 600.
The selected features are then normalized using the min-max normalization approach,
as described in Equation (4), where x represents the original value and Xmin, and xmax
indicate the minimum and maximum values for the relevant feature. The scaling ranges
between 0 and 1. This normalization procedure has the advantage of minimizing the impact



World Electr. Veh. ]. 2024, 15, 562 6 of 26

of outliers. After that, data are segmented into fixed window sizes of 75, which are then
allocated into train, validation, and test datasets.
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Figure 1. Impact of noise addition on (a) voltage, (b) current, and (c) temperature at 0 °C.

Table 2. Noise parameters.

Parameter Value
AV 01V
Al 03 A
AT 0.5°C
o5 0.04
o? 05
o 0.09

2.3. Model Description

In the proposed architecture, the model is a combination of a TCN and GRU with an
attention mechanism, which is used for sequence capture while keeping focus on important
sequence elements. The model consists of three TCN blocks and three GRU blocks, with an
attention block placed between each pair. Following that, the TCN and GRU outputs are
concatenated and passed through a fully connected dense layer. Table 3 provides a full
model description, and Figure 2 depicts the architectural plan.

Table 3. Hyper-parameters of the proposed model.

Parameters Values
Kernel size 9

No. of filters 64

Learning rate 0.001-0.00001
Loss function Huber
Optimizer Adam
Training epochs 300

Window size 75
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Figure 2. Proposed architecture.

2.3.1. Attention Temporal Convolution Network (A-TCN)

Though the TCN is used for image classification [59], it can be used for sequence
modeling with the help of causal convolution, dilated convolution, and residual connec-
tion [60,61]. It provides parallel computation, low memory consumption, and flexible
perceptual field size, making it more robust than other methods [62]. The TCN consists
of three main parts: causal convolution, dilation, and the residual connection between
input and output. In causal convolution, the output only depends on the current and
past elements of the input, which prevent data leakage from future value, and the dilation
helps the model increase the receptive field exponentially without increasing the depth
of the model, which helps the model capture the sequence more effectively. The residual
connection allows layers to learn modification to the identity mapping rather than the
entire transformation, which helps the network be more stable.

The fundamental layer of the TCN is the convolution layer, but it uses a spatial
convolution named dilated causal convolution. In this work, the causal convolution layer
contains three convolution layers, which are shown in Figure 3. The main difference
between causal convolution and traditional convolution is that input is calculated using
only the past and present values of the previous layer, which prevents data leakage from
future values. That means the output of time ¢ is calculated using the elements from the
t — 1 and ¢ of the previous layer, which ensures that the model does not violate the natural
temporal order by peaking into the future. With the help of unidirectional data flow and
causal connections, the TCN becomes a strictly time-dependent model. For a causal layer
with a filter size k, input sequence x(n), i-th with output y(n) define as:

K
y(n) = kz x(k)h(n — k) ®)
-1

The filter output at each given time (1) depends solely on the current and previous
input values (x(k) for k < n). This is because the summation only takes into account
shifted filter values (h(n — k)) for k < n. Future input values (k > n) do not affect the
current output.
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Figure 3. Causal convolution.

By using only causal convolution it is hard to capture sequences, and to resolve this
issue dilation is used. In the TCN, sequence dilation alleviates this constraint and ensures
that sequential dependencies are captured completely. Dilation includes increasing the
space between filter elements after each layer, which expands the network’s receptive
field. A dilation factor, indicated as d, increases the space between filter elements by d
times, hence expanding the receptive field by d times. This deliberate use of dilation allows
TCNs to record greater temporal contexts and dependencies across numerous time steps,
hence improving the network’s capacity to extract meaningful features and patterns from
sequential data. If the dilation factor is d then output y(n) is -

k-1
Yn=)_ (i) *x¢_qi (6)
i=0

In the proposed model, the dilation rate is set as 2", where n ranges from 0 to 2, with g(i)
denoting the i-th element of the filter. The dilated causal and only dilated convolution is
shown in Figure 4. However, as the number of layers increases during training, neural
networks often encounter the vanishing gradient effect. To mitigate this issue, skip connec-
tions or residual connections are introduced in the TCN network [63]. These connections
ensure the efficient transfer of information across layers. Specifically, the output of the TCN
layer after a residual connection is defined as -

yn = A(g(x) + ConvD(x)) )

A1 V2 V3 Va V5 e e s e s Vi-1 Wt

©000000000000080
egoegogooe oi%o
POCOOGOOGOOOTS b e

Figure 4. (a) Dilated convolution, (b) dilated causal convolution.
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In this configuration, y, denotes the final output of the TCN block, where x represents
the input to the TCN block. The outputs of g(x) and ConvD(x) are concatenated and
subsequently passed through an activation function, A, specifically ReLU in this instance.
Figure 5a illustrates a single TCN block, while Figure 5b showcases the overall TCN
architecture with an incorporated attention mechanism.
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‘Weight
normalization
Dropout

ol =
=] =
45 xR
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=
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(a)

TCN block
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TCN block
Concatenation
Attention
TCN block
TCN block
TCN block
Concatenation
Attention
TCN block
TCN block
TCN block
Concatenation
Attention

(b)
Figure 5. (a) Single TCN block, (b) TCN arrangement.

2.3.2. Attention Gated Recurrent Unit (A-GRU)

In terms of capturing extended sequences, the gated recurrent unit (GRU) outperforms
classic recurrent neural network (RNN) and long short-term memory (LSTM) models [64].
Additionally, the GRU has benefits that include faster training with fewer parameters,
a simpler structure, and adaptability to the vanishing or exploding gradient problem [65].
The GRU uses two gating methods when estimating the SoC: the update gate and the reset
gate. The update gate controls the flow of information from the previous hidden state,
determining whether data are maintained and passed on in subsequent cycles by using
Equation (8). Meanwhile, the reset gate determines how much past information is needed
to forget and creates a new vector for the candidate hidden state using Equation (9). To gen-
erate the new candidate hidden state vector in Equation (10), a hyperbolic tangent (tanh)
activation function is applied to the input information vector and the reset gate output.
The vector from the update gate and the candidate hidden state vector are then combined
to produce the new hidden state vector using Equation (11). The model architecture is
shown in Figure 6.

zt = 0(Wz - [hy—1, x¢]) 8)
re =0 (W - [hy_1, x¢]) 9)
hy = tanh(Wj, - [r © hy_1, x4]) (10)
hi=(1-2z)Oh1+2zOhy (11)

where W, W;, and W, are the weights for the update gate, reset gate, and candidate hidden
state, respectively. Whereas, I1;_; is the output of the previous GRU unit and x; is the input
at time ¢.

2.3.3. Attention

The attention mechanism is a special type of sequence-to-sequence modeling task
that translates a source sequence into a target sequence. It is inspired by the human
vision attention by which it finds the most important features of the input sequence [66].
Compared with traditional sequence modeling where the entire sequence is converted into
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a fixed-sized context vector, attention creates a new vector where each feature is weighted
dynamically depending on its importance [67]. The basic attention architecture is shown in
Figure 7. The hidden state output (/;) and the optimized output of the attention layer are
calculated as -

Uy = tanh(Whht + b) (12)
w; = softmax (v ;) (13)
M
ye =) ahy (14)
=1

where W), (W), € RKw*Kw) is defined as the weight matrix, b (b € RKw) is the biased term of
the attention mechanism, and a; is the probability distribution [68]. The attention mecha-
nism significantly enhances feature extraction by focusing on the most relevant aspects of
the input data and capturing long-range dependencies critical for SoC estimation. By com-
puting weighted representations, it prioritizes important features such as the relationships
between input values, while filtering out noise and redundancy. Integrated after each GRU
and TCN block, the attention layers refine temporal and hierarchical features, enabling a
multiscale representation with improved contextual representation. This dynamic adjust-
ment of feature importance ensures an effective fusion of outputs, enhancing the model’s
robustness and accuracy across varying operating conditions.

Attention

(a) (b)
Figure 6. (a) Single GRU block, (b) GRU block with attention.
- ~
o)
%)
AREARERRE
£ & % §
~ <
2 >
5
< >
I\ J

Figure 7. Attention mechanism.

2.4. Qverall Model Architecture

To accurately estimate battery SoC under varying operating conditions and sensor
noise, this work proposes a parallel hybrid combination-based model that combines the
feature extraction capabilities of RNNs and CNNs with an attention mechanism to enhance
the identification of critical features. The model architecture, illustrated in Figure 2, consists
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of two main components: the multiscale feature extraction block and the terminal block.
The multiscale feature extraction block utilizes the TCN and GRU to capture both long-
term and short-term dependencies and effectively utilizes the strengths of RNNs and
CNNis to improve accuracy. A self-attention mechanism is integrated between the TCN
and GRU layers to prioritize and refine the most relevant patterns, further enhancing the
feature extraction process. The terminal block plays a crucial role in mapping the rich,
high-dimensional features extracted by the multiscale feature extraction block to the final
SoC estimation output. This block is designed to simplify and interpret the learned features
into a comprehensible and actionable output by employing a fully connected dense layer.
The dense layer aggregates and processes the input features, ensuring the model retains the
most critical information for SoC estimation while discarding irrelevant details. To improve
robustness, this block includes dropout layers to reduce overfitting, as well as an activation
function to introduce nonlinearity and ensure the model adapts effectively to complex
patterns in battery behavior. By focusing on efficient feature mapping and maintaining
computational efficiency, the terminal block ensures the final SoC predictions are both
accurate and reliable. This seamless integration of feature extraction and mapping enhances
the overall robustness of the proposed model.

2.5. Huber Loss Function

The Huber loss function is is robust loss function for regression tasks that is resilient to
outliers or sensor noise and ensures stable model training [69]. It combines the advantages
of MSE and MAE by adjusting tunable parameters called delta () [70]. The process is
a piecewise function that switches operating conditions based on error rate and can be
expressed by Equation (15), where & (Ytrue — Yprea) Tepresents the error rate and L (a) is
the loss. When « is less than ¢ it acts like the MSE and greater than ¢ it acts like the MAE.
On the other hand, for small J it is less sensitive to large errors that are penalized linearly
rather than quadratically and more sensitive to outliers where the loss is higher because
more residuals fall within the quadratic region. For this study, ¢ is chosen as 1.75. This
value is found using grid search techniques where different J values are tested and the &
value of 1.75 is found to be the most optimal value.

L a2 for |a] <9, 15
() = 5.(|a|—%5> for |a| > 6, (15)

2.6. Evaluation Metrics

Three distinct evaluation metrics are used to assess the performance of the proposed
approach. Those are MAE, RMSE, and maximum error (MaxE). MAE indicates how
accurately the model is estimating the value compared with the real value, RMSE indicates
the robustness of the model, and MaxE indicates the largest error model provided during
the testing period. Finally, the R? score is evaluated on how well the values predicted by
the model fit with the actual value by using Equation (19). For the total n number of entities,
the formulas of MAE, RMSE, MaxE, and R? score are defined as -

18 R
MAE = — Y lvi— il (16)
i—1
1 & .
RMSE = [ ) (yi — 9i)? (17)
i—1
MaxE = m’élx lyi — 9l (18)
=
R2 =1— ?:1(%‘ - ]7)2 (19)
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where y; is the true SoC value from the experiments, ; is the SoC value estimated by the
proposed model, and 7 is the mean of the true SoC.

3. Results and Discussion

With the rising adoption of EVs and battery storage systems, accurate estimation of
battery SoC becomes increasingly critical. To address this challenge, this study proposes
a hybrid RNN and CNN-based approach, utilizing the TCN and GRU with inter-layer
attention mechanisms. The model’s ability is evaluated across diverse drive cycles and
temperature conditions, followed by a comparative analysis with attention-based TCN
and GRU models. In addition, model performance is also evaluated under different noisy
conditions. Subsequently, the proposed model’s performance is compared with recent
studies, showing its better accuracy and efficiency. As the effect of battery internal resistance
is varied by SoC level, for better analysis of the proposed model performance overall the
SoC curve is divided into three parts: region 1 (1 to 0.8), region 2 (0.8 to 0.2), and region 3
(0.2to0 0).

3.1. Model Performance Under Noise-Free Condition

The overall performance of the model is evaluated across four distinct driving cy-
cles: LA92, UDDS, US06, and HWFET, and under three different temperature conditions
(0°C, 10 °C, and 25 °C) without any additional noise. The evaluation results for the pro-
posed model across the LA92, US06, UDDS, and HWEFET driving cycles are illustrated in
Figures 8-11 and the statistical analysis is shown in Table 4.

Table 4. Proposed model performance evaluation.

Drive Temperature RMSE MAE MaxE R? Score
Cycle °O) (%) (%) (%) (%)

0 0.612 0.418 4.7 99.95
LA92 10 0.29 0.24 1.3 99.98
25 0.45 0.36 1.75 99.97
0 0.28 0.22 1.06 99.98
USs06 10 0.26 0.21 0.9 99.99
25 0.89 0.77 2.8 99.88
0 0.74 0.47 5.54 99.92
UDDS 10 0.55 0.4 2.98 99.96
25 0.33 0.27 0.8 99.98
0 1.08 0.85 4.25 99.84
HWEFET 10 0.16 0.11 0.4 99.99
Avg. - 0.512 0.354 1.98 99.94

For the HWFET drive cycle, characterized by steady and high-speed conditions leading
to rapid battery SoC depletion, the model demonstrates optimal performance due to fewer
fluctuations in current and voltage. Consequently, there are minimal current and voltage
transients, enabling the model to operate efficiently, shown in Figure 8. Notably, at 10 °C,
the model achieves its best results, boasting the lowest RMSE, MAE, MaxE, and R? scores
of 0.16%, 0.11%, 0.4%, and 99.99%, respectively, as depicted in Figure 11. Conversely,
the LA92 drive cycle exhibits frequent current fluctuations, with the moving average
aiding the model in efficiently capturing these sequences. Across varying temperature
conditions (0 °C, 10 °C, and 25 °C), the model maintains an average error below 2%,
with very few higher error rates, as illustrated in Figure 9. Notably, at 0 °C, the MaxE,
RMSE, and MAE reach 4.7%, 6.12%, and 0.418%, respectively, while, at 10 °C, the model
achieves its best performance with a RMSE, MAE, and MaxE of 0.29%, 0.24%, and 1.3%,
respectively, alongside a maximum R? score of 99.98%.
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Figure 8. Performance of model for drive cycle HWFET at (a) 0° C, (b) 10 °C.
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Figure 9. Performance of model for drive cycle LA92 at (a) 0 °C, (b) 10 °C, and (c) 25 °C.

In drive cycle UDDS, speed is kept less steady compared with HWFET, which causes
frequent changes in current with transients. So, the model is facing some difficulties
compared with other drive cycles. A maximum MaxE of 5.54% is found in this drive cycle.
In terms of temperature conditions, the best result is found for 25 °C temperature, with
RMSE, MAE, MaxE, and R2 scores of 0.33%, 0.27%, 0.8%, and 99.98%, respectively. In the
case of the US06 drive cycle, over the different temperature conditions the model performs
well compared with LA92 and UDDS, which is shown in Figure 10. The best performance
is found at the temperature of 10 °C, with RMSE, MAE, MaxE, and R? scores of 0.26%,
0.21%, 0.9%, and 99.99%, respectively.
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Figure 11. Performance of model for drive cycle UDDS at (a) 0 °C, (b) 10 °C, and (c) 25 °C.

From Figures 8-11, it is evident that the model’s error rate varies across different SoC
levels, with notable deviations in region 3, where the highest errors are observed. These
errors primarily stem from changes in the battery’s internal resistance, which significantly
impact voltage and current measurements. Across various drive cycles, region 3 consis-
tently exhibits the highest error rates, with the MaxE often occurring in this region. In
addition, this results in higher deviation in this region compared with other regions. In re-
gion 2, the error rate is generally stable, with only occasional spikes. However, an exception
is noted in the HWFET drive cycle at 10 °C, where frequent fluctuations are observed,
deviating from the otherwise consistent performance in this region. In region 1, the error
rates are moderate but occasionally feature large spikes. For instance, significant deviations
are observed in the LA92 drive cycle at 0 °C and 25 °C, as well as in the HWFET drive cycle
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Density

at 0 °C. These variations highlight the sensitivity of the model’s performance to changes
in internal resistance, particularly at lower SoC levels. Since internal resistance strongly
depends on the battery’s SoC, its variation disproportionately affects the model’s accuracy
at low SoC levels compared with higher SoC levels, where the error rates tend to be lower
and more consistent. Figures 12 and 13 present the error distributions for SoC estimation
under different drive cycles and temperature conditions, showcasing the performance
and robustness of the proposed method. For the US06 drive cycle (Figure 13a), the error
distribution at 0 °C and 10 °C is highly concentrated below 0.3%, indicating remarkable
accuracy, even at lower temperatures. At 25 °C, the error spread increases slightly, but most
errors remain below 1%, demonstrating the model’s consistent performance at higher
temperatures. Similarly, for the HWFET drive cycle (Figure 13b), the errors at 0 °C are
primarily concentrated below 1%, with a few outliers extending up to 4%. At 10 °C, the er-
ror distribution becomes even more compact, with most values below 0.1%, highlighting
the model’s exceptional precision under moderate conditions. For the LA92 drive cycle
(Figure 12a), the error distributions across 0 °C, 10 °C, and 25 °C remain tightly packed,
with the majority of errors falling below 1%. While the 0 °C condition shows slightly higher
deviations, the overall accuracy remains commendable. The UDDS drive cycle (Figure 12b)
exhibits a slightly more dispersed error pattern at 0 °C, with errors extending up to 2%.
However, at 10 °C and 25 °C, the errors are concentrated below 1%, reflecting the model’s
ability to maintain consistent performance across varying conditions.
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Figure 12. SoC estimation error (%) distribution for drive cycles (a) LA92 and (b) UDDS.

In Table 4, the overall model performance is shown in terms of different drive cycles
and temperature conditions. The average model performance in terms of RMSE, MAE,
MaxE, and R2 scores of 0.512%, 0.354%, 1.98%, and 99.94%, respectively, shows that the
proposed model can estimate SoC with high accuracy and more efficiently. For the tem-
perature condition of 0 °C, the proposed model performance is found with larger RMSE,
MAE, MaxE, and lower R? scores than other temperature conditions. For almost all the
drive cycles, its error rate is found to be high, except with US06. In the case of the US06
drive cycle, the error rates are found in between the maximum and minimum values. This
indicates that the model has some limitations in the low-temperature region. Regarding the
temperature level of 10 °C, the proposed model performs best, based on low RMSE, MAE,
MaxE, and high R? scores compared with other temperature conditions. An exception
is found in the drive cycle of UDDS; in this case, the error rate and R? score are found
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in between the maximum and minimum values. So, the model is most efficient at this
temperature level. At the temperature level of 25 °C, the model shows mixed performance.
For LA92, model performance is in between the maximum and minimum values, for drive
cycle US06, its performance is the least, and, for drive cycle UDDS, its performance is the
best. So, the model performance is said to be average for this temperature level. Those
findings indicate that the model is optimized for 10 °C, model performance is moderate
at 25 °C, and model performance is lowest at 0 °C. Though there are some limitations in
region 3, the model can capture both short-term and long-term sequences with low error
rates. In this approach, the TCN helps the model to capture the long dependencies using
dilation, whereas the GRU enhances the capturing capability of short-term dependencies
using its gating mechanism, which allows it to dynamically control the information, making
it responsive to immediate changes in the sequence. In addition, this use of the attention
mechanism helps the model to focus on the important data points, improving the accuracy.
Those capabilities enhance the model sequence prediction capabilities in different time
spans, which leads to more accurate and stable estimations. On the other hand, while the
TCN excels in capturing long-term sequences and providing a stable foundation for overall
trends, the GRU’s ability to adjust its memory based on recent data allows for fine-tuning
predictions in shorter time spans. This combination enhances the model’s generalization
and robustness, reducing overfitting and improving its performance across a variety of
scenarios. In addition, this use of moving averages helps the model to become immune
from the transient effect of voltage and current.
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Figure 13. SoC estimation error (%) distribution for drive cycles (a) US06 and (b) HWFET.

3.2. Model Performance Under Noisy Conditions

As the model performance can be affected by sensor noises, in this section the perfor-
mance is evaluated under varying noise conditions to ensure its robustness and applicability
in real-world scenarios. Two distinct noise environments are considered: low noise con-
ditions with a signal-to-noise ratio (SNR) ranging from 50 dB to 60 dB, and high noise
conditions with an SNR range of 20 dB to 30 dB. To test model performance in noisy
conditions, RMSE is used as the evaluation metric due to its sensitivity to larger errors,
providing a clear indication of how well the proposed method minimizes deviations from
the true values under noisy conditions. The statistical comparison of model performance
under these conditions is presented in Table 5.
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The results demonstrate that the model maintains a stable performance and exhibits a
low RMSE across different temperatures and drive cycles, even in the presence of noise.
For low noise conditions, the estimation error is consistently below 1.5%, with average
errors of 1.056%, 0.74%, and 0.78% for temperatures of 0 °C, 10 °C, and 25 °C, respectively.
Similarly, under high noise conditions, the estimation error remains below 2.18%, with av-
erage errors of 1.68%, 1.59%, and 1.44% for the respective temperatures. Figures 14 and 15
showcase the SoC estimation error distributions across four standard drive cycles—US06,
HWEFET, LA92, and UDDS—under varying ambient temperatures (0 °C, 10 °C, and 25 °C).
In urban scenarios like the LA92 cycle, 85% of errors at 0 °C are below 1%, while warmer
conditions (25 °C) push this to 95%, with minimal errors exceeding 1%. The UDDS cycle,
simulating stop-and-go driving, shows consistent results, with over 80% of errors below
2% at 0 °C and more than 90% below 1.5% at 25 °C. For the US06 cycle, at 0 °C, over 80% of
errors are below 1%, with a sharp peak around 0.5%. At 10 °C, 70% of errors are within 2%,
while at 25 °C the accuracy improves further, with nearly 90% of errors confined below 1%.
Similarly, in the HWFET cycle, representing highway driving, more than 85% of errors at
0 °C remain below 2%, while at 25 °C nearly all errors are under 1.5%, with a peak near
0.3%. This statistical error distribution shows that noisy conditions result in slightly higher
variability, particularly at lower temperatures, but remain within acceptable limits.
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Figure 14. SoC estimation error (%) distribution for drive cycles (a) LA92 and (b) UDDS under high
noise conditions.

Notably, the model’s noise resilience improves with an increase in temperature, as ob-
served from the reduced RMSE values. This indicates that the system becomes less sensitive
to noise at higher operating temperatures, enhancing its reliability. Additionally, the in-
corporation of techniques such as the moving average and the Huber loss function plays
a pivotal role in improving the model’s robustness. These techniques help mitigate the
impact of noise by smoothing out fluctuations and reducing the influence of outliers in
the data. The model’s ability to limit the estimation error to such low levels, even under
high noise conditions, underscores its suitability for practical applications. In real-world
battery management systems, where measurement noise is inevitable, the proposed model
demonstrates significant potential to deliver accurate and reliable predictions.
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Table 5. Model performance under noisy conditions (RMSE (%)).
Temg)eé;lture Drive Cycle Noise Free Low Noise High Noise
LA92 0.612 0.985 1.56
USo6 0.28 0.619 1.01
0
UDDS 0.74 1.11 1.98
HWEFET 1.08 1.52 2.18
LA92 0.29 0.67 1.36
USo6 0.26 0.75 1.77
10
UDDS 0.55 1.04 2.01
HWFET 0.16 0.51 1.24
LA92 0.45 0.68 1.47
25 USo6 0.89 1.07 1.64
UDDS 0.33 0.614 1.21
1.0
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Figure 15. SoC estimation noise distribution for drive cycles (a) US06 and (b) HWFET under high
noise conditions.

3.3. Model Performance Comparison

To investigate the proposed model’s effectiveness in battery SoC estimation, its per-
formance is compared with other RNN and CNN-based models, including A-TCN and
A-GRU. Both A-TCN and A-GRU models contain three hidden layers and are fed with
similar data. The performance, stability, and error rates of these models are compared
against the proposed model to evaluate its effectiveness.

For the LA92 drive cycle, all models can follow the downward trends with oscillations,
as shown in Figure 16. The A-GRU model exhibits a large deviation at 0 °C, with deviations
decreasing as the temperature increases. The A-TCN model follows trends with less
deviation but experiences frequent oscillations. The proposed GTA model performs the
best among the three, demonstrating minimal deviation and oscillation. The GTA model
effectively captures the sequence with high accuracy and stability. In region 1, both the
A-TCN and A-GRU models show oscillations, while the GTA model maintains stability.
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In regions 2 and 3, the A-GRU model shows high deviation and oscillation, whereas the
GTA model exhibits less oscillation and deviation. Although the A-TCN model shows
less deviation, its oscillation is higher compared with the GTA model. Overall, for the
LA92 drive cycle, all models exhibit higher error rates at low temperatures and lower error
rates at higher temperatures. However, the GTA model stands out for its more stable and
accurate performance.
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Figure 16. Model performance comparisons with A-TCN and A-GRU for drive cycle LA92 at (a) 0 °C,
(b) 10 °C, and (c) 25 °C.

In the case of the US06 drive cycle, all three models perform well with minimal
oscillation and deviation. As depicted in Figure 17, the A-GRU model exhibits higher
oscillation across all temperature conditions compared with the other models. However,
there is a slight deviation from the true value at the end of regions 2 and 3. While the
A-TCN model displays less oscillation than the A-GRU model, it also experiences deviation
in region 1 at 0 °C and 25 °C. Conversely, across all three temperature conditions, the GTA
model demonstrates the highest stability and lowest error across regions 1, 2, and 3. On
the contrary, for the UDDS drive cycle, the A-GRU model performs the worst, exhibiting
significant deviations across regions 1, 2, and 3. Although the A-TCN model shows less
deviation, it also presents higher oscillation rates than the GTA model. Figure 18 illustrates
the GTA model’s exceptional stability, with minimal oscillations. Notably, all models
exhibit their best performance for the HWFET drive cycle, as shown in Figure 19. However,
both the A-TCN and A-GRU models demonstrate frequent oscillations in regions 1 and 3.
Additionally, a minor deviation is observed in region 3 at a temperature of 10 °C for the
GRU model. Conversely, the GTA model consistently delivers optimal performance across
both temperature conditions. In most scenarios, the A-TCN and A-GRU models exhibit
some deviation and oscillations in regions 1 and 3, whereas the GTA model consistently
provides stable and low-error results across all regions. This underscores the better stability
of the proposed model compared with other models.

In Table 6, it is found that the GTA model performs better compared with the A-TCN
and A-GRU models under each temperature condition. At the temperature of 0 °C, the
best RMSE, MAE, and MaxE are 0.28%, 0.22%, and 1.06% for drive cycle US06, whereas, for
the same conditions, A-TCNs and A-GRUs (RMSE, MAE, and MaxE) are 1.48% and 1.82%,
1.16% and 1.3%, and 4.11% and 7.23%, respectively. So, the GTA model performs better
under this temperature condition. Similarly, the highest error rates found for the GTA
models are an RMSE, MAE, and MaxE of 1.08%, 0.85%, and 4.25%, respectively. This shows
that the proposed model’s performance is better than the A-TCN and A-GRU models at a
temperature of 0 °C. In the same way, the GTA model’s lowest RMSE is found to be 0.16%,
whereas the best RMSE values for A-TCN and A-GRU are 0.21% and 0.2%, respectively.
If we consider the highest RMSE value for the GTA, A-TCN, and A-GRU models, it is found
to be 0.55%, 1.46%, and 3.6%, respectively. For temperature condition 25 °C, the lowest
value of the RMSE is 0.33% for the GTA model, 1.59% for the A-GRU model, and 0.73%
for the A-TCN model. The highest RMSE values are 1.59%, 2.43%, and 1.2% for the GTA,
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A-GRU, and A-TCN, respectively. So, under all three temperature conditions, the proposed
model outperforms the A-GRU and A-TCN models, which demonstrates that the proposed
model is better than the other two models. Table 7 shows the comparison of the model
performance with the baseline machine learning model with the statistical models. The table
compares the performance of the LSTM, GRU, and GTA models in predicting outcomes
across different drive cycles (HWFET, LA92, UDDS, and US06) and temperature conditions
(0°C,10°C, and 25 °C). Among the three, the GTA model stands out, consistently achieving
the lowest RMSE and MAE values in every scenario. This indicates that it is significantly
more accurate and reliable than both LSTM and the GRU. Notably, all models perform
better as the temperature increases, with GTA showing the most substantial improvement.
For instance, in the HWFET cycle at 0 °C, GTA records an RMSE of just 1.08% compared
with 4.63% for LSTM and 4.68% for the GRU. Similarly, in the LA92 cycle, GTA delivers an
RMSE of 0.61% at 0 °C, outperforming LSTM and the GRU, which have errors exceeding
5%. This trend continues across the UDDS and US06 cycles, where GTA maintains its
accuracy regardless of temperature. While LSTM generally performs slightly better than
the GRU, both models fall short when compared with the GTA, especially in terms of
consistency. Overall, the GTA model proves to be the most effective, making it the ideal
choice for applications that require precise predictions across various conditions.
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Figure 17. Model performance comparisons with A-TCN and A-GRU for drive cycle US06 at (a) 0 °C,

(b) 10 °C, and (c) 25 °C.
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Figure 18. Model performance comparisons with A-TCN and A-GRU for drive cycle UDDS at (a) 0 °C,
(b) 10 °C, and (c) 25 °C.
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Figure 19. Model performance comparisons with A-TCN and A-GRU for drive cycle HWFET at
(a) 0 °Cand (b) 10 °C.

Table 6. Performance comparison between GTA and A-TCN.

Drive Temperature del RMSE MAE MaxE
Cycle Q) Mode (%) (%) (%)
A-GRU 35 311 9.3
0 A-TCN 0.96 0.68 5.9
GTA 0.612 0.418 47
A-GRU 2.9 2.14 9.81
LA92 10 A-TCN 117 091 496
GTA 0.29 0.24 13
A-GRU 243 2.03 6.09
25 A-TCN 0.73 0.57 2.54
GTA 0.45 0.36 1.75
A-GRU 1.82 13 7.23
0 A-TCN 148 1.16 411
GTA 0.28 0.22 1.06
A-GRU 1.57 1.16 6.28
US06 10 A-TCN 1.46 12 5.37
GTA 0.26 0.21 0.9
A-GRU 1.59 1.14 5.71
25 A-TCN 12 0.97 337
GTA 0.89 0.77 2.8
A-GRU 142 402 10.34
0 A-TCN 117 0.89 5.61
GTA 0.74 0.47 5.54
A-GRU 3.6 3.16 9.95
UDDS 10 A-TCN 0.7 0.55 3.01
GTA 0.55 0.4 2.98
A-GRU 2.22 1.86 5.65
25 A-TCN 0.84 0.6 2.8
GTA 0.33 0.27 0.8
A-GRU 142 1.05 7.19
0 A-TCN 12 1.06 3.07
GTA 1.08 0.85 425
HWEFET A-GRU 0.2 0.14 0.7
10 A-TCN 0.21 0.18 0.6

GTA 0.16 0.11 0.4
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Table 7. Performance comparison with traditional models.
Drive Temperature RMSE MAE
Model

Cycle ©0) ode (%) (%)
LST™M 4.63 4.00

0 GRU 4.68 3.97

GTA 1.08 0.85

HWEET LSTM 4.93 423
10 GRU 5.01 4.21

GTA 0.16 0.11

LSTM 5.64 4.92

0 GRU 5.72 5.08

GTA 0.61 0.41

LSTM 6.67 5.96

LA9?2 10 GRU 6.01 5.81
GTA 0.29 0.24

LSTM 5.56 4.89

25 GRU 5.75 5.06

GTA 0.45 0.36

LSTM 6.14 5.37

0 GRU 5.41 4.49

GTA 0.74 0.47

LSTM 5.85 5.02

UDDS 10 GRU 6.55 5.65
GTA 0.55 0.40

LSTM 5.56 4.82

25 GRU 5.86 4.99

GTA 0.33 0.27

LSTM 4.97 4.18

0 GRU 5.41 421

GTA 0.28 0.22

LSTM 4.91 4.37

Uso6 10 GRU 487 428
GTA 0.26 0.21

LSTM 4.93 3.93

25 GRU 5.01 411

GTA 0.89 0.77

The model’s performance is evaluated through a comparative analysis with recent
studies in the field, as shown in Table 8, focusing on RMSE, MAE, and MaxE metrics.
Results indicate a notable enhancement in model accuracy compared with previous re-
search, reflecting improved performance across various evaluation criteria. Despite these
limitations, it is worth noting that the proposed approach regularly beats the A-TCN across
a variety of scenarios, demonstrating its dependability and effectiveness in SoC estimates.
This highlights the model’s design, which incorporates the features of the GRU and TCN
architectures, providing improved capabilities for efficiently capturing sequences and
increasing estimation accuracy.

The reason behind the better performance of the proposed GTA model can be at-
tributed to several key factors that distinguish it from the A-TCN and A-GRU models and
other recent studies. Firstly, the new approach of using the GRU and TCN in parallel with
inter-layer attention improves the capturing capacity of complex, nonlinear patterns of SoC
variations, which traditional models often struggle with. The A-TCN model can follow
the long-term sequence but suffers in the short-term sequence as it exhibits oscillations,
and A-GRU can capture the short-term sequence but shows a deviation in the long-term
sequence. Therefore, when those two models are used in parallel, both models balance the
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global trends and provide a more stable SoC estimation. On the other hand, with features
extracted from both networks, the proposed models gain a richer representation of input
data, which enhances SoC estimation accuracy. Additionally, the proposed model is gen-
eralized under different drive cycles and temperature conditions. Though there are some
limitations in the lower temperature range, the GTA model provides a more accurate and
stable SoC estimation, making it a potential solution for battery SoC estimation.

Table 8. Performance comparison with the latest study.

Methods RMSE (%) MAE (%) MaxE (%)
LSTM encoder—decoder [50] - 1.07 4.62
TCN-LSTM [51] 0.81 0.70 2.6
QTGA [54] 0.96 0.80 3.12
Proposed 0.512 0.354 1.98

4. Conclusions

This paper proposed a hybrid method with the help of the GRU, TCN, and attention
mechanism to estimate battery SoC with high accuracy at different temperatures and in
different drive cycles. With the ability to capture the long-term trend by the TCN and
dynamically handle the short-term sequence by the GRU, the proposed model improves
the model estimation accuracy and temporal flexibility, and reduces overfitting. The use
of attention enhances the model’s efficiency and moving averages aid immunity to the
transient effect of voltage and current. Furthermore, the proposed model is tested under
different drive cycles and temperature conditions. The performance of the GTA model
is better than the traditional A-TCN and A-GRU models, where both RMSE and MAE
are less than 1.08% and 0.85%, respectively, whereas MaxE is less than 5.54%. The model
fitness score (R? score) is found to be more than 99.84%, which denotes that the model
is more generalized as it can estimate a more stable SoC with high accuracy in different
drive cycles and temperature ranges. In the case of the noisy input model, this also shows
a stable SoC estimation capability, and overall estimation error is kept less than 2.5% in
high noise conditions, showing the noise-resilient capability of the proposed model. On the
other hand, the model performance is compared with A-TCN and A-GRU models and it is
found that the model performance is better than other models. While the proposed model
outperforms existing approaches, further investigation is needed for extreme temperature
conditions (e.g., below 0 °C or above 40 °C). In these scenarios, rapid changes in aging
effects and electrolyte viscosity significantly impact capacity and introduce measurement
errors, affecting SoC estimation accuracy. Exploring these challenges could offer valuable
insights into the model’s adaptability and robustness under more demanding operating
environments.

Author Contributions: Conceptualization, M.S.N.; Methodology, M.S.N.; Software, M.S.N.; Vali-
dation, M.S.N.; Formal analysis, M.S.N. and M.M.R.; Investigation, M.S.N.; Data curation, M.L],;
Writing—original draft, M.S.N.; Writing—review & editing, M.M.R. and M.1].; Visualization, M.M.R;
Supervision, Y.M.].; Project administration, Y.M.]. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea Government (MSIT) (No. 2022R1A2C1007884).

Data Availability Statement: The original data presented in the study are openly available in Mendeley
data at https:/ /data.mendeley.com/datasets /cp3473x7xv/3 (accessed on 7 November 2024).

Conflicts of Interest: The authors declare no conflicts of interest.


https://data.mendeley.com/datasets/cp3473x7xv/3

World Electr. Veh. ]. 2024, 15, 562 24 of 26

References

1. Li, E; Zuo, W,; Zhou, K,; Li, Q.; Huang, Y. State of charge estimation of lithium-ion batteries based on PSO-TCN-Attention neural
network. |. Energy Storage 2024, 84, 110806. [CrossRef]

2. Shrivastava, P.; Soon, TK.; Idris, M.Y.L.B.; Mekhilef, S. Overview of model-based online state-of-charge estimation using Kalman
filter family for lithium-ion batteries. Renew. Sustain. Energy Rev. 2019, 113, 109233. [CrossRef]

3. Shao, Y.; Zheng, Y.; Zhang, ].; Han, X.; Jin, B.; Sun, Y. A cloud capacity estimation method for electric vehicle lithium-ion battery
independent of cloud SOC. ]. Energy Storage 2024, 85, 110998. [CrossRef]

4. Huang, Q.; Li, J.; Xu, Q.; He, C.; Yang, C.; Cai, L.; Xu, Q.; Xiang, L.; Zou, X,; Li, X. State of Charge Estimation in Batteries for
Electric Vehicle Based on Levenberg-Marquardt Algorithm and Kalman Filter. World Electr. Veh. ]. 2024, 15, 391. [CrossRef]

5. Wu, L,; Lyu, Z.; Huang, Z.; Zhang, C.; Wei, C. Physics-based battery SOC estimation methods: Recent advances and future
perspectives. J. Energy Chem. 2023, 89, 27-40. [CrossRef]

6. Ren, X;Liu, S; Yu, X,;; Dong, X. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. Energy
2021, 234, 121236. [CrossRef]

7. Feng, Y,; Xue, C.; Han, E; Cao, Z.; Yang, R.J. State-of-Charge and State-of-Health Estimation in Li-Ion Batteries Using Cascade
Electrochemical Model-Based Sliding-Mode Observers. Batteries 2024, 10, 290. [CrossRef]

8.  Zhao, ]; Hu, Z.; Wang, H.; Yu, K,; Zou, W,; Pan, T.; Mao, L. A multi-scale SOC estimation method for lithium-ion batteries
incorporating expansion force. |. Energy Storage 2024, 82, 110481. [CrossRef]

9.  Song, X.; Yang, F.; Wang, D.; Tsui, K.L. Combined CNN-LSTM network for state-of-charge estimation of lithium-ion batteries.
IEEE Access 2019, 7, 88894-88902. [CrossRef]

10. Sesidhar, D.; Badachi, C.; Green II, R.C. A review on data-driven SOC estimation with Li-Ion batteries: Implementation methods
& future aspirations. . Energy Storage 2023, 72, 108420. [CrossRef]

11. Chang, Y; Li, R; Sun, H.; Zhang, X. Estimation of SOC in Lithium-Iron-Phosphate Batteries Using an Adaptive Sliding Mode
Observer with Simplified Hysteresis Model during Electric Vehicle Duty Cycles. Batteries 2024, 10, 154. [CrossRef]

12.  Qian, C; Guan, H,; Xu, B.; Xia, Q.; Sun, B.; Ren, Y.; Wang, Z. A CNN-SAM-LSTM hybrid neural network for multi-state estimation
of lithium-ion batteries under dynamical operating conditions. Energy 2024, 294 , 130764. [CrossRef]

13. Wang, Y,; Tian, J.; Sun, Z.; Wang, L.; Xu, R.; Li, M; Chen, Z. A comprehensive review of battery modeling and state estimation
approaches for advanced battery management systems. Renew. Sustain. Energy Rev. 2020, 131, 110015. [CrossRef]

14. Hassan, M.U,; Saha, S.; Haque, M.E.; Islam, S.; Mahmud, A.; Mendis, N. A comprehensive review of battery state of charge
estimation techniques. Sustain. Energy Technol. Assess. 2022, 54, 102801. [CrossRef]

15. Hossain, M.; Haque, M.; Arif, M.T. Kalman filtering techniques for the online model parameters and state of charge estimation of
the Li-ion batteries: A comparative analysis. J. Energy Storage 2022, 51, 104174. [CrossRef]

16. Tian, J.; Chen, C.; Shen, W,; Sun, E; Xiong, R. Deep Learning Framework for Lithium-ion Battery State of Charge Estimation:
Recent Advances and Future Perspectives. Energy Storage Mater. 2023, 61, 102883. [CrossRef]

17.  Zheng, Y.; Ouyang, M.; Han, X,; Lu, L.; Li, J. Investigating the error sources of the online state of charge estimation methods for
lithium-ion batteries in electric vehicles. J. Power Sources 2018, 377, 161-188. [CrossRef]

18. Lin, C,; Tang, A; Xing, J. Evaluation of electrochemical models based battery state-of-charge estimation approaches for electric
vehicles. Appl. Energy 2017, 207, 394-404. [CrossRef]

19. Lai, X.; Zheng, Y.; Sun, T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion
batteries. Electrochim. Acta 2018, 259, 566-577. [CrossRef]

20. Corno, M.; Bhatt, N.; Savaresi, S.M.; Verhaegen, M. Electrochemical model-based state of charge estimation for Li-ion cells. IEEE
Trans. Control Syst. Technol. 2014, 23, 117-127. [CrossRef]

21. Zhou, W,; Zheng, Y,; Pan, Z.; Lu, Q. Review on the battery model and SOC estimation method. Processes 2021, 9, 1685. [CrossRef]

22. He, H,; Xiong, R.; Fan, J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an
experimental approach. Energies 2011, 4, 582-598. [CrossRef]

23. Xiong, R;; Tian, J.; Shen, W.; Sun, F. A novel fractional order model for state of charge estimation in lithium ion batteries. IEEE
Trans. Veh. Technol. 2018, 68, 4130-4139. [CrossRef]

24. Tian,],; Xiong, R.; Shen, W.; Wang, J.; Yang, R. Online simultaneous identification of parameters and order of a fractional order
battery model. J. Clean. Prod. 2020, 247, 119147. [CrossRef]

25. How, D.N.; Hannan, M.; Lipu, M.H.; Ker, PJ. State of charge estimation for lithium-ion batteries using model-based and
data-driven methods: A review. IEEE Access 2019, 7, 136116-136136. [CrossRef]

26. Marti-Florences, M.; Cecilia, A.; Clemente, A.; Costa-Castell6, R. SoC Estimation in Lithium-Ion Batteries with Noisy Measure-
ments and Absence of Excitation. Batteries 2023, 9, 578. [CrossRef]

27. Wang, W.; Mu, J. State of charge estimation for lithium-ion battery in electric vehicle based on Kalman filter considering model
error. IEEE Access 2019, 7,29223-29235. [CrossRef]

28. Lee,].; Nam, O.; Cho, B. Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering. J. Power
Sources 2007, 174, 9-15. [CrossRef]

29. Guo, Y,; Tian, J.; Li, X,; Song, B.; Tian, Y. State of charge estimation of lithium-ion batteries based on vector forgetting factor

recursive least square and improved adaptive cubature kalman filter. Batteries 2023, 9, 499. [CrossRef]


http://doi.org/10.1016/j.est.2024.110806
http://dx.doi.org/10.1016/j.rser.2019.06.040
http://dx.doi.org/10.1016/j.est.2024.110998
http://dx.doi.org/10.3390/wevj15090391
http://dx.doi.org/10.1016/j.jechem.2023.09.045
http://dx.doi.org/10.1016/j.energy.2021.121236
http://dx.doi.org/10.3390/batteries10080290
http://dx.doi.org/10.1016/j.est.2024.110481
http://dx.doi.org/10.1109/ACCESS.2019.2926517
http://dx.doi.org/10.1016/j.est.2023.108420
http://dx.doi.org/10.3390/batteries10050154
http://dx.doi.org/10.1016/j.energy.2024.130764
http://dx.doi.org/10.1016/j.rser.2020.110015
http://dx.doi.org/10.1016/j.seta.2022.102801
http://dx.doi.org/10.1016/j.est.2022.104174
http://dx.doi.org/10.1016/j.ensm.2023.102883
http://dx.doi.org/10.1016/j.jpowsour.2017.11.094
http://dx.doi.org/10.1016/j.apenergy.2017.05.109
http://dx.doi.org/10.1016/j.electacta.2017.10.153
http://dx.doi.org/10.1109/TCST.2014.2314333
http://dx.doi.org/10.3390/pr9091685
http://dx.doi.org/10.3390/en4040582
http://dx.doi.org/10.1109/TVT.2018.2880085
http://dx.doi.org/10.1016/j.jclepro.2019.119147
http://dx.doi.org/10.1109/ACCESS.2019.2942213
http://dx.doi.org/10.3390/batteries9120578
http://dx.doi.org/10.1109/ACCESS.2019.2895377
http://dx.doi.org/10.1016/j.jpowsour.2007.03.072
http://dx.doi.org/10.3390/batteries9100499

World Electr. Veh. ]. 2024, 15, 562 25 of 26

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.
58.

Peng, J.; Luo, J.; He, H.; Lu, B. An improved state of charge estimation method based on cubature Kalman filter for lithium-ion
batteries. Appl. Energy 2019, 253, 113520. [CrossRef]

Tulsyan, A.; Tsai, Y.; Gopaluni, R.B.; Braatz, R.D. State-of-charge estimation in lithium-ion batteries: A particle filter approach.
J. Power Sources 2016, 331, 208-223. [CrossRef]

Li, J.; Barillas, ] K.; Guenther, C.; Danzer, M.A. A comparative study of state of charge estimation algorithms for LiFePO4 batteries
used in electric vehicles. J. Power Sources 2013, 230, 244-250. [CrossRef]

Lipu, M.H.; Hannan, M.; Hussain, A.; Ayob, A.; Saad, M.H.; Karim, T.F.; How, D.N. Data-driven state of charge estimation
of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends. . Clean. Prod. 2020, 277, 124110.
[CrossRef]

Oji, T.; Zhou, Y.; Ci, S.; Kang, F; Chen, X; Liu, X. Data-driven methods for battery soh estimation: Survey and a critical analysis.
IEEE Access 2021, 9, 126903-126916. [CrossRef]

Lai, X;; Yi, W,; Cui, Y.; Qin, C,; Han, X.; Sun, T.; Zhou, L.; Zheng, Y. Capacity estimation of lithium-ion cells by combining
model-based and data-driven methods based on a sequential extended Kalman filter. Energy 2021, 216, 119233. [CrossRef]
Khaleghi, S.; Hosen, M.S.; Karimi, D.; Behi, H.; Beheshti, S.H.; Van Mierlo, ].; Berecibar, M. Developing an online data-driven
approach for prognostics and health management of lithium-ion batteries. Appl. Energy 2022, 308, 118348. [CrossRef]

Cai, L.; Meng, J.; Stroe, D.L; Peng, J.; Luo, G.; Teodorescu, R. Multiobjective optimization of data-driven model for lithium-ion
battery SOH estimation with short-term feature. IEEE Trans. Power Electron. 2020, 35, 11855-11864. [CrossRef]

Sahinoglu, G.O.; Pajovic, M.; Sahinoglu, Z.; Wang, Y.; Orlik, P.V.; Wada, T. Battery state-of-charge estimation based on
regular/recurrent Gaussian process regression. IEEE Trans. Ind. Electron. 2017, 65, 4311-4321. [CrossRef]

Hu, J.; Hu, J,; Lin, H.; Li, X,; Jiang, C.; Qiu, X.; Li, W. State-of-charge estimation for battery management system using optimized
support vector machine for regression. J. Power Sources 2014, 269, 682—-693. [CrossRef]

Anton, J.C.A,; Nieto, PJ.G.; Viejo, C.B.; Vilan, J.A.V. Support vector machines used to estimate the battery state of charge. IEEE
Trans. Power Electron. 2013, 28, 5919-5926. [CrossRef]

Klass, V.; Behm, M.; Lindbergh, G. A support vector machine-based state-of-health estimation method for lithium-ion batteries
under electric vehicle operation. J. Power Sources 2014, 270, 262-272. [CrossRef]

Fan, X.; Zhang, W.; Zhang, C.; Chen, A.; An, F. SOC estimation of Li-ion battery using convolutional neural network with U-Net
architecture. Energy 2022, 256, 124612. [CrossRef]

Bhattacharjee, A.; Verma, A.; Mishra, S.; Saha, T.K. Estimating state of charge for XEV batteries using 1D convolutional neural
networks and transfer learning. IEEE Trans. Veh. Technol. 2021, 70, 3123-3135. [CrossRef]

Zhang, D.; Zhong, C.; Xu, P; Tian, Y. Deep learning in the state of charge estimation for li-ion batteries of electric vehicles: A
review. Machines 2022, 10, 912. [CrossRef]

Hannan, M.A.; How, D.N,; Lipu, M.H; Ker, PJ.; Dong, Z.Y.; Mansur, M.; Blaabjerg, F. SOC estimation of li-ion batteries with
learning rate-optimized deep fully convolutional network. IEEE Trans. Power Electron. 2020, 36, 7349-7353. [CrossRef]

Cui, Z.; Wang, L.; Li, Q.; Wang, K. A comprehensive review on the state of charge estimation for lithium-ion battery based on
neural network. Int. |. Energy Res. 2022, 46, 5423-5440. [CrossRef]

Hong, J.; Wang, Z.; Chen, W.; Wang, L.Y.; Qu, C. Online joint-prediction of multi-forward-step battery SOC using LSTM neural
networks and multiple linear regression for real-world electric vehicles. |. Energy Storage 2020, 30, 101459. [CrossRef]

Zhao, F; Guo, Y.; Chen, B. A Review of Lithium-Ion Battery State of Charge Estimation Methods Based on Machine Learning.
World Electr. Veh. J. 2024, 15, 131. [CrossRef]

Xiao, B; Liu, Y.; Xiao, B. Accurate state-of-charge estimation approach for lithium-ion batteries by gated recurrent unit with
ensemble optimizer. I[EEE Access 2019, 7, 54192-54202. [CrossRef]

Bian, C.; He, H.; Yang, S.; Huang, T. State-of-charge sequence estimation of lithium-ion battery based on bidirectional long
short-term memory encoder-decoder architecture. J. Power Sources 2020, 449, 227558. [CrossRef]

Hu, C; Cheng, F; Ma, L.; Li, B. State of charge estimation for lithium-ion batteries based on TCN-LSTM neural networks.
J. Electrochem. Soc. 2022, 169, 030544. [CrossRef]

Guo, S.; Ma, L. A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation.
Energy 2023, 263, 125872. [CrossRef]

Huang, Z.; Yang, F.; Xu, F; Song, X.; Tsui, K.L. Convolutional gated recurrent unit-recurrent neural network for state-of-charge
estimation of lithium-ion batteries. IEEE Access 2019, 7, 93139-93149. [CrossRef]

Li, H.; Fu, L,; Long, X,; Liu, L.; Zeng, Z. A hybrid deep learning model for lithium-ion batteries state of charge estimation based
on quantile regression and attention. Energy 2024, 294 , 130834. [CrossRef]

Wei, Z.; Zhao, D.; He, H.; Cao, W.; Dong, G. A noise-tolerant model parameterization method for lithium-ion battery management
system. Appl. Energy 2020, 268, 114932. [CrossRef]

Lin, X. Theoretical analysis of battery SOC estimation errors under sensor bias and variance. IEEE Trans. Ind. Electron. 2018,
65,7138-7148. [CrossRef]

Kollmeyer, P; Vidal, C.; Naguib, M.; Skells, M. LG 18650HG2 Li-ion Battery Data; Kaggle: San Francisco, CA, USA, 2023. [CrossRef]
Vidal, C.; Kollmeyer, P.; Naguib, M.; Malysz, P.; Gross, O.; Emadi, A. Robust xev battery state-of-charge estimator design using a
feedforward deep neural network. SAE Int. ]. Adv. Curr. Pract. Mobil. 2020, 2, 2872-2880. [CrossRef]


http://dx.doi.org/10.1016/j.apenergy.2019.113520
http://dx.doi.org/10.1016/j.jpowsour.2016.08.113
http://dx.doi.org/10.1016/j.jpowsour.2012.12.057
http://dx.doi.org/10.1016/j.jclepro.2020.124110
http://dx.doi.org/10.1109/ACCESS.2021.3111927
http://dx.doi.org/10.1016/j.energy.2020.119233
http://dx.doi.org/10.1016/j.apenergy.2021.118348
http://dx.doi.org/10.1109/TPEL.2020.2987383
http://dx.doi.org/10.1109/TIE.2017.2764869
http://dx.doi.org/10.1016/j.jpowsour.2014.07.016
http://dx.doi.org/10.1109/TPEL.2013.2243918
http://dx.doi.org/10.1016/j.jpowsour.2014.07.116
http://dx.doi.org/10.1016/j.energy.2022.124612
http://dx.doi.org/10.1109/TVT.2021.3064287
http://dx.doi.org/10.3390/machines10100912
http://dx.doi.org/10.1109/TPEL.2020.3041876
http://dx.doi.org/10.1002/er.7545
http://dx.doi.org/10.1016/j.est.2020.101459
http://dx.doi.org/10.3390/wevj15040131
http://dx.doi.org/10.1109/ACCESS.2019.2913078
http://dx.doi.org/10.1016/j.jpowsour.2019.227558
http://dx.doi.org/10.1149/1945-7111/ac5cf2
http://dx.doi.org/10.1016/j.energy.2022.125872
http://dx.doi.org/10.1109/ACCESS.2019.2928037
http://dx.doi.org/10.1016/j.energy.2024.130834
http://dx.doi.org/10.1016/j.apenergy.2020.114932
http://dx.doi.org/10.1109/TIE.2018.2795521
http://dx.doi.org/10.34740/KAGGLE/DSV/5906084
http://dx.doi.org/10.4271/2020-01-1181

World Electr. Veh. ]. 2024, 15, 562 26 of 26

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.
70.

Lea, C; Vidal, R.; Reiter, A.; Hager, G.D. Temporal convolutional networks: A unified approach to action segmentation. In
Proceedings of the Computer Vision—-ECCV 2016 Workshops, Amsterdam, The Netherlands, 8-10 October and 15-16 October
2016; pp. 47-54. [CrossRef]

Bai, S.; Kolter, ].Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.
arXiv 2018, arXiv:1803.01271. [CrossRef]

Lara-Benitez, P.; Carranza-Garcia, M.; Luna-Romera, ].M.; Riquelme, ].C. Temporal convolutional networks applied to energy-
related time series forecasting. Appl. Sci. 2020, 10, 2322. [CrossRef]

Yan, J.; Mu, L.; Wang, L.; Ranjan, R.; Zomaya, A.Y. Temporal convolutional networks for the advance prediction of ENSO. Sci.
Rep. 2020, 10, 8055. [CrossRef]

Yang, X.; Hu, J.; Hu, G.; Guo, X. Battery state of charge estimation using temporal convolutional network based on electric
vehicles operating data. J. Energy Storage 2022, 55, 105820. [CrossRef]

Chen, J.; Zhang, Y.; Li, W,; Cheng, W.; Zhu, Q. State of charge estimation for lithium-ion batteries using gated recurrent unit
recurrent neural network and adaptive Kalman filter. J. Energy Storage 2022, 55, 105396. [CrossRef]

Wang, Y.X.; Chen, Z.; Zhang, W. Lithium-ion battery state-of-charge estimation for small target sample sets using the improved
GRU-based transfer learning. Energy 2022, 244, 123178. [CrossRef]

Tian, Y; Lai, R;; Li, X.; Tian, J. State-of-charge estimation for lithium-ion batteries based on attentional sequence-to-sequence
architecture. . Energy Storage 2023, 62, 106836. [CrossRef]

Tang, A.; Jiang, Y; Yu, Q.; Zhang, Z. A hybrid neural network model with attention mechanism for state of health estimation of
lithium-ion batteries. |. Enerqy Storage 2023, 68, 107734. [CrossRef]

Li, H;; Min, M.R;; Ge, Y; Kadav, A. A Context-aware Attention Network for Interactive Question Answering. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘17, New York, NY, USA,
13-17 August 2017; pp. 927-935. [CrossRef]

Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
Meyer, G.P. An alternative probabilistic interpretation of the huber loss. In Proceedings of the IEEE/CVF Conference on
Computer Vision And Pattern Recognition, Nashville, TN, USA, 19-25 June 2021; pp. 5261-5269. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1007/978-3-319-49409-8_7
http://dx.doi.org/10.48550/arXiv.1803.01271
http://dx.doi.org/10.3390/app10072322
http://dx.doi.org/10.1038/s41598-020-65070-5
http://dx.doi.org/10.1016/j.est.2022.105820
http://dx.doi.org/10.1016/j.est.2022.105396
http://dx.doi.org/10.1016/j.energy.2022.123178
http://dx.doi.org/10.1016/j.est.2023.106836
http://dx.doi.org/10.1016/j.est.2023.107734
http://dx.doi.org/10.1145/3097983.3098115
http://dx.doi.org/10.48550/arXiv.1911.02088

	Introduction
	Methodology
	Dataset Description
	Noise Addition and Data Preprocessing
	Model Description
	Attention Temporal Convolution Network (A-TCN)
	Attention Gated Recurrent Unit (A-GRU)
	Attention

	Overall Model Architecture
	Huber Loss Function
	Evaluation Metrics

	Results and Discussion
	Model Performance Under Noise-Free Condition
	Model Performance Under Noisy Conditions
	Model Performance Comparison

	Conclusions
	References

