
Citation: Farag, W.A.; Barakat, J.M.H.

Utilizing Probabilistic Maps and

Unscented-Kalman-Filtering-Based

Sensor Fusion for Real-Time Monte

Carlo Localization. World Electr. Veh. J.

2024, 15, 5. https://doi.org/10.3390/

wevj15010005

Academic Editors: Liguo Zang and

Leilei Zhao

Received: 14 October 2023

Revised: 9 December 2023

Accepted: 12 December 2023

Published: 21 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Utilizing Probabilistic Maps and Unscented-Kalman-Filtering-
Based Sensor Fusion for Real-Time Monte Carlo Localization
Wael A. Farag * and Julien Moussa H. Barakat

College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
julien.barakat@aum.edu.kw
* Correspondence: wael.farag@aum.edu.kw

Abstract: An autonomous car must know where it is with high precision in order to maneuver
safely and reliably in both urban and highway environments. Thus, in this paper, a reliable and
relatively precise position estimation (localization) technique for autonomous vehicles is proposed
and implemented. In dealing with the obtained sensory data or given knowledge about the vehicle’s
surroundings, the proposed method takes a probabilistic approach. In this approach, the involved
probability densities are expressed by keeping a collection of samples selected at random from them
(Monte Carlo simulation). Consequently, this Monte Carlo sampling allows the resultant position
estimates to be represented with any arbitrary distribution, not only a Gaussian one. The selected
technique to implement this Monte-Carlo-based localization is Bayesian filtering with particle-based
density representations (i.e., particle filters). The employed particle filter receives the surrounding
object ranges from a carefully tuned Unscented Kalman Filter (UKF) that is used to fuse radar
and lidar sensory readings. The sensory readings are used to detect pole-like static objects in the
egocar’s surroundings and compare them to the ones that exist in a supplied detailed reference
map that contains pole-like landmarks that are produced offline and extracted from a 3D lidar
scan. Comprehensive simulation tests were conducted to evaluate the outcome of the proposed
technique in both lateral and longitudinal localization. The results show that the proposed technique
outperforms the other techniques in terms of smaller lateral and longitudinal mean position errors.

Keywords: UKF; ADAS; autonomous driving; particle filter; Monte Carlo; localization; Kalman Filter;
sensor fusion

1. Introduction

The technological challenges that need to be solved to attain complete autonomy
are divided into four areas by designers and researchers in the autonomous driving field:
perception, localization, path planning, and controls [1]. Perception is concerned with the
task of detecting where objects like cars [2], trucks [3], bikes [4], and pedestrians are [5];
which lane the egocar is driving in [6]; where its boundaries are [7]; and so on. The
solutions to these perception subtasks are researched using machine learning techniques
that co-ordinate various sensors to accurately detect the surroundings of the egocar [8].
Sonar, radar, lidar, cameras, and other sensors are among them [9]. Further, there is also an
additional layer of complexity here: certain objects do not move (static elements), while
others do (dynamic elements), and it is critical to distinguish between the two [10].

On the other hand, localization is a vital function for self-driving cars [11], allowing
them to locate their position within centimeters on a reference map [12]. This high degree
of precision is necessary and allows a self-driving car to comprehend its surroundings and
form an understanding of the road itself, road objects, and lane structures [13].

Additionally, the path-planning task is concerned with how an autonomous car drives
from one point on the map (the initial position for the trip) to the final goal (the final
position for the trip) [14]. It is divided into two subtasks: global path planning, which

World Electr. Veh. J. 2024, 15, 5. https://doi.org/10.3390/wevj15010005 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj15010005
https://doi.org/10.3390/wevj15010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0002-9191-1824
https://orcid.org/0000-0002-6736-0583
https://doi.org/10.3390/wevj15010005
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj15010005?type=check_update&version=1


World Electr. Veh. J. 2024, 15, 5 2 of 26

is the high-level path on the map for the desired trip, and local path planning, which
generates a trajectory profile and a velocity profile for the egocar to maneuver across its
environment while avoiding any obstacles, changing lanes, passing other vehicles, etc. The
path-planning module receives information from both the perception and the localization
modules and sends its generated trajectory to the control module [15].

Moreover, the controls task in autonomous cars is concerned with the automatic appli-
cation of force on the car actuators to achieve the reference-trajectory tracking goals [16].
In self-driving cars, the controllers’ output is exerted on three actuators: steering, throttle,
and brake systems [17]. The input information to these controllers takes several forms: the
reference trajectory received from the egocar path-planning module, the egocar speed and
acceleration signals, and the speed and acceleration of the preceding car [18].

This paper mainly focuses on localization and how to improve its accuracy, as it allows
the autonomous car to better comprehend its surroundings and form an understanding of
the road and lane structures (e.g., when a lane forks or merges, schedule lane changes and
determine lane routes even when markers are obscured) [19].

Sensors play a key role in autonomous vehicle localization, with vehicles being typ-
ically equipped with a combination of GPS, IMU, cameras, lidar, radar, and odometry
sensors. These sensors provide data about the vehicle’s surroundings and its own motion,
forming the foundation for accurate localization. Sensor fusion is a crucial technique that
integrates data from multiple sensors to enhance accuracy and reliability. By combining
information from sources like GPS, IMU, and lidar, a vehicle can compensate for the lim-
itations of individual sensors, improving overall localization performance. Odometry is
another important component estimating the vehicle’s position based on changes in motion,
such as wheel speed and steering angle. While useful, odometry tends to accumulate
errors over time, prompting its use in conjunction with other localization methods. Map
matching involves comparing sensor data with pre-existing maps of the environment,
aiding in the identification of the vehicle’s location. This technique is particularly beneficial
in environments with recognizable landmarks, contributing to precise localization. Particle
filters, a probabilistic method, maintain a set of potential vehicle poses based on sensor
measurements and motion models. As the vehicle moves, this set of poses is updated to
converge toward the most likely position, enhancing the accuracy of localization.

The 3D pose of an autonomous car inside a high-definition (HD) map, comprising
3D location, 3D orientation, and associated uncertainty, is provided using localization [20].
Unlike the usage of a navigation map with GPS, which only requires a few meters of
precision, the localization of a self-driving car requires a far greater level of accuracy
relative to the map, generally in the range of centimeters and a few tenths of degree [20].

A landmark-based reference map represents a balanced approach between no-map
(SLAM) techniques and detailed high-definition mapping techniques and is thus adopted
in this study. Moreover, as a contribution, this work does not depend on a single sensor
(lidar), with its high resolution but well-known limitations (e.g., limited reach; severely
affected by fog, snow, or dust [21]), but fuses it with radar (e.g., long reach, not affected by
fog, but with low resolution [22]) to strengthen both methods and obtain the best out of
them. Additionally, by using a carefully tailored UKF as the employed fusion technique,
pole-like landmarks can be detected with greater precision and robustness. As an additional
contribution, this paper addresses the uncertainties in the detected pole-like landmark
co-ordinates. They are represented on the reference map in a probabilistic form. This
allows Bayesian inference, applied using a tailored version of a particle filter, to estimate
the egocar pose.

2. Literature Review

Satellite-based localization has been available for decades and has undergone var-
ious upgrades. Newer systems, such as RTK-GPS [23] or DGPS [24], provide efficient
options since they attain centimeter-level precision without the use of any extra techniques.
Nonetheless, there are significant uncertainties concerning their consistency. Structures



World Electr. Veh. J. 2024, 15, 5 3 of 26

or other towering road obstacles that obscure the line of sight between the car and the
satellites can reduce precision by some meters [25] in metropolitan areas [26]. Moreover,
the latency for acquiring the signals usually comes with errors, which is a critical issue that
needs to be addressed [27] by filtration, noise cancelation, and compensating for missing
readings [28].

As an alternative to the RTK-GPS and according to [15], lidar approaches were shown
to be the most promising in terms of performance for the localization of self-driving vehicle
applications. Nevertheless, they demand high processing and computational power, in
addition to their high cost. Thus, they are rendered to be impracticable in terms of com-
mercialization and cost-affordability. Therefore, greater lidar technology enhancement or
alternative methodologies like vision-based localization or ground-penetrating radar local-
ization within lidar maps may open the door for more feasible systems from a commercial
point of view. Nevertheless, before these systems can be mass-deployed, further study will
be needed to evaluate their robustness, validate their performance across a range of driving
circumstances, and refine operation settings.

Accordingly, using reference-dense maps [20] could provide a more reliable localiza-
tion option [29]. These maps may take several forms like point clouds [30], grid maps [31],
or polygon meshes [32]. Nevertheless, map-based systems have the fundamental disadvan-
tage of requiring a substantial amount of memory, which quickly becomes pricey when
larger-scale maps are employed [33]. To address this issue, “landmark maps” have sparked
significant attention [11]. These maps contain only a very limited number of recognizable
and designated features that have been extracted from huge volumes of raw sensory data
(collected from cameras, radars, and lidars) and condensed [34], which, in return, reduces
the needed memory use by several orders of magnitude.

Subsequently, several efforts have been made in recent research to tackle the challenge
of car localization by the employment of lidar point clouds from which pole-like markers
are identified. This issue is separated into two sub-problems. The first sub-problem is
concerned with the detection of poles and the estimation of their positions, while the second
one is concerned with the estimation of the egocar pose based on the position of the detected
poles. For example, a pole detector is created by Weng et al. [35] by dividing the region
around the egocar and counting the reflected-scan points in each voxel. The detection
of poles is accomplished by recognizing the stacks of voxels that are vertically linked
and all surpass a predefined threshold. Additionally, the detector employs the RANSAC
algorithm [36] to fit all of the points associated with the discovered stacks of voxels to a
cylindrical shape. When it comes to the egocar pose estimation, the nearest-neighborhood
data association is utilized and paired with a particle filter.

Furthermore, the main emphasis of the Sefati et al. pole-detection approach is to
eliminate the ground plane from the point cloud generated by the sensors [37]. A horizontal
regular grid is then constructed from the projection of the remaining point-cloud points.
The occupancy and height parameters are used to cluster the neighboring cells, and a
cylinder is fitted to each of the resulting clusters. Similarly, for the egocar pose estimation,
the nearest-neighborhood data association is also employed and paired with a particle filter.

Kummerle et al. improved on the previous work by fitting planes to point-cloud-
constructed building facades and also fitting lines to lane markings extracted from stereo
camera images [34]. The previous improvements enhance the pole detection, which conse-
quently improves the pose estimation by employing a Monte Carlo method to tackle the
data association stage and a nonlinear least-squares optimization technique to refine the
finally computed pose.

A more comprehensive work was conducted by Schaefer et al. [38] as they propose
three phases to construct a full localization system based on landmark detection. The
first phase is the pole extractor, the second one is the mapping, and the third one is
the localization. The method used for pole detection considers both the endpoint of
the laser beams as well as the available open space between the lidar and those beam
endpoints. Therefore, based on a map of only pole landmarks, the presented method



World Electr. Veh. J. 2024, 15, 5 4 of 26

demonstrates precise and consistent car localization for large time scales. Experiments are
carried out for 35 hours over the course of 15 months going through different circumstances
like construction zones, weather and seasonal variations, different routes, and hordes of
moving objects.

Several attempts have been made to remove the dependency on reference maps and
only depend on the mounted sensors on the egocar. These endeavors focus on construct-
ing a map and computing localization simultaneously in what is called simultaneous
localization and mapping (SLAM) techniques [39]. However, these techniques are compu-
tationally much more expensive than the ones that depend on reference maps. Therefore,
they usually rely on approximations to speed up processing and create a functional out-
come [40]. Consequently, the lack of precision in these techniques hinders their applicability
to autonomous driving.

The research gap addressed by this paper lies in the need for a nuanced and versatile
mapping technique that strikes a balance between simultaneous localization and mapping
(SLAM) methods, which lack mapping information, and high-definition mapping tech-
niques, which can be overly detailed. In contrast to existing approaches, this work adopts a
landmark-based reference map, providing a more comprehensive mapping solution.

Furthermore, the existing literature often relies on a single high-resolution sensor, such
as lidar, which, despite its advantages, has well-known limitations, including restricted
reach and vulnerability to environmental factors like fog, snow, or dust. This paper
contributes by adopting a fusion approach, combining lidar with radar. While radar offers a
longer reach and is less affected by adverse weather conditions, it has lower resolution. The
integration of these complementary sensors is designed to capitalize on their individual
strengths and mitigate their weaknesses.

Additionally, the paper introduces a carefully tailored Unscented Kalman Filter (UKF)
as the fusion technique, enhancing precision and robustness in detecting pole-like land-
marks. This aspect represents a research gap in sensor fusion techniques for landmark-
based mapping.

Moreover, the paper addresses a crucial research gap by acknowledging and handling
uncertainties in the detected pole-like landmark co-ordinates. Unlike existing methods,
this study represents uncertainties in a probabilistic form on the reference map, enabling
Bayesian inference. The application of a tailored particle filter allows for the estimation of
egocar pose while considering uncertainties, contributing to the overall robustness and
reliability of the localization system. This unique approach to handling uncertainties in
landmark-based mapping represents a novel contribution to the existing body of research
in autonomous vehicle localization.

3. Overview of the Proposed Localization Algorithm

This work proposes a Real-Time Monte Carlo Localization (RTMCL) algorithm for
driverless vehicles. The details and the workflow of this algorithm are shown below in
Figure 1.

The information required as input by the RTMCL algorithm can be categorized into
four groups as follows:

(1) Global position information: this information mainly comes from the GPS. If an IMU
unit is also installed in the egocar, then a fusion between the GPS and IMU signals is
implemented, resulting in a single output (initial egocar pose) that is used at a later
stage by the particle filter. The fusion helps to correct errors that accumulate out of
the dead reckoning [41] in periods with missing GPS position deliveries.

(2) Odometry measurements: the algorithm requires the readings of the egocar speed
and the steering angle (to calculate the yaw rate). Both will be used to update the
particle filter state after filtering from high noise.

(3) Object-detection sensory output: these are mainly lidar, radar, and camera data. Since
the camera is not used in this work, only radar and lidar data are collected and fused
using the tailored UKF, whose output is clustered using the GB-DBSCAN algorithm



World Electr. Veh. J. 2024, 15, 5 5 of 26

to detect potential pole-like static objects. The velocity measurements (the Doppler
signal) received from the radar will help screen out dynamic objects.

(4) Reference landmarks map: this map must be developed in a way to contain pole-like
landmarks with full co-ordinates, which will be extracted in an offline process from 3D
point-cloud lidar data. The map pole-like landmarks will be aligned with the detected
pole-like landmarks (by GB-DBSCAN) through the “data association” process. The
Iterative Closest Point (ICP) technique is employed to perform this “data association”,
which is a very critical step to achieving accurate localization [42].

The above categories of input signals are used by the tailored PF (which will be
presented later in more detail [43]) to search for the most accurate egocar pose. The PF is
initialized using the output signal of the GPS and IMU fusion and produces a much more
precise pose with the help of the identified pole-like landmarks and the reference map.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 5 of 26 
 

 
Figure 1. The RTMCL workflow. 

The information required as input by the RTMCL algorithm can be categorized into 
four groups as follows: 
(1) Global position information: this information mainly comes from the GPS. If an IMU 

unit is also installed in the egocar, then a fusion between the GPS and IMU signals is 
implemented, resulting in a single output (initial egocar pose) that is used at a later 
stage by the particle filter. The fusion helps to correct errors that accumulate out of 
the dead reckoning [41] in periods with missing GPS position deliveries. 

(2) Odometry measurements: the algorithm requires the readings of the egocar speed 
and the steering angle (to calculate the yaw rate). Both will be used to update the 
particle filter state after filtering from high noise. 

(3) Object-detection sensory output: these are mainly lidar, radar, and camera data. Since 
the camera is not used in this work, only radar and lidar data are collected and fused 
using the tailored UKF, whose output is clustered using the GB-DBSCAN algorithm 
to detect potential pole-like static objects. The velocity measurements (the Doppler 
signal) received from the radar will help screen out dynamic objects. 

(4) Reference landmarks map: this map must be developed in a way to contain pole-like 
landmarks with full co-ordinates, which will be extracted in an offline process from 
3D point-cloud lidar data. The map pole-like landmarks will be aligned with the de-
tected pole-like landmarks (by GB-DBSCAN) through the “data association” process. 
The Iterative Closest Point (ICP) technique is employed to perform this “data associ-
ation”, which is a very critical step to achieving accurate localization [42]. 
The above categories of input signals are used by the tailored PF (which will be pre-

sented later in more detail [43]) to search for the most accurate egocar pose. The PF is 

Figure 1. The RTMCL workflow.

4. Overview of the UKF

The KF is an equation-based system that works as a predictor–update cyclic optimum
estimator that minimizes the estimated error covariance [44]. Given the measurement
z ∈ Rm of a discrete-time-controlled process described by a set of linear stochastic difference
equations, the Kalman filter predicts the state x ∈ Rn.

Inapplicably, because KF is restricted to linear processes, it is incompatible with the
radar measurement process, which is fundamentally nonlinear. To solve this restriction,
the UKF was developed [45]. The UKF is a deterministic sampling-based derivative-free
alternative to the extended Kalman filter [46]. The UKF also employs the predict–update
two-step procedure, but it has been supplemented with additional processes such as sigma
point production and prediction, as presented in Figure 2.



World Electr. Veh. J. 2024, 15, 5 6 of 26

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 6 of 26 
 

initialized using the output signal of the GPS and IMU fusion and produces a much more 
precise pose with the help of the identified pole-like landmarks and the reference map. 

4. Overview of the UKF 
The KF is an equation-based system that works as a predictor–update cyclic optimum 

estimator that minimizes the estimated error covariance [44]. Given the measurement 𝑧 ∈𝑅  of a discrete-time-controlled process described by a set of linear stochastic difference 
equations, the Kalman filter predicts the state 𝑥 ∈ 𝑅 . 

Inapplicably, because KF is restricted to linear processes, it is incompatible with the 
radar measurement process, which is fundamentally nonlinear. To solve this restriction, 
the UKF was developed [45]. The UKF is a deterministic sampling-based derivative-free 
alternative to the extended Kalman filter [46]. The UKF also employs the predict–update 
two-step procedure, but it has been supplemented with additional processes such as 
sigma point production and prediction, as presented in Figure 2. 

 
Figure 2. Workflow of the UKF. 

The state Gaussian distribution is represented in the UKF process by a small number 
of wisely picked sample points known as sigma points. The 𝑛 = 2𝑛 + 1 sigma points are 
chosen using the following formula: 𝑋 = 𝑥   𝑥 + (𝜆 + 𝑛 )𝑃    𝑥 − (𝜆 + 𝑛 )𝑃  (1)

where 𝑃  is the Kalman filter process estimate covariance matrix, 𝑋  is the sigma-point 
matrix containing 𝑛  sigma-point vectors, and 𝜆 is a design parameter that defines the 
spread of the produced sigma points and often is calculated as 𝜆 = 3 − 𝑛 . 

Each produced sigma point is entered into the UKF nonlinear process model de-
scribed in Equation (2) to build the matrix of predicted sigma points 𝑋 with an 𝑛 × 𝑛  
dimension in what is called the sigma-point prediction phase. 𝑋 = 𝑓(𝑋 , 𝜈 ) (2)

Where 𝜈  is the white noise of the process, which is modeled as a Gaussian distribution 
(𝒩) with zero mean and covariance matrix 𝑄 . 

The mean and covariance matrices of the predicted state are then computed from the 
projected sigma points using Equation (3): 

Figure 2. Workflow of the UKF.

The state Gaussian distribution is represented in the UKF process by a small number
of wisely picked sample points known as sigma points. The nx = 2n + 1 sigma points are
chosen using the following formula:

Xk =

[
xk xk +

√
(λ + nx)Pk xk −

√
(λ + nx)Pk

]
(1)

where Pk is the Kalman filter process estimate covariance matrix, Xk is the sigma-point
matrix containing nx sigma-point vectors, and λ is a design parameter that defines the
spread of the produced sigma points and often is calculated as λ = 3− nx.

Each produced sigma point is entered into the UKF nonlinear process model described
in Equation (2) to build the matrix of predicted sigma points X̂ with an n× nx dimension
in what is called the sigma-point prediction phase.

X̂k+1 = f (Xk, νk) (2)

where νk is the white noise of the process, which is modeled as a Gaussian distribution (N )
with zero mean and covariance matrix Qk.

The mean and covariance matrices of the predicted state are then computed from the
projected sigma points using Equation (3):

x̂k+1 =
nx
∑

i=0
wiX̂k+1, i

P̂k+1 = ∑2nx
i=0 wi

(
X̂k+1,i − x̂k+1

)(
X̂k+1,i − x̂k+1

)T
(3)

where wi is the sigma-point weights that are applied to invert the sigma-point spreading.
These weights are computed as follows in Equation (4):

wi =
λ

λ+nx
, i = 0

wi =
1

2(λ+nx)
, i = 1 . . . nx

(4)



World Electr. Veh. J. 2024, 15, 5 7 of 26

Each produced sigma point is entered into the nonlinear UKF’s measurement model
described by Equation (5) to build the matrix of predicted measurement sigma points with
an n× nx dimension in the measurement prediction phase.

Ẑk+1 = h
(
X̂k+1

)
(5)

The mean and covariance matrices of the predicted measurement are then computed
using the predicted sigma points and the covariance matrix R of the measurement noise, as
shown in Equation (6):

ẑk+1 = ∑nx
i=0 wiẐk+1, i

Sk+1 = ∑2nx
i=0 wi

(
Ẑk+1,i − ẑk+1

)(
Ẑk+1,i − ẑk+1

)T
+ R

R = E
{

ωk.ωT
k
} (6)

where wi is the sigma-point weights computed in Equation (4), Sk is the measurement
covariance matrix, and E{.} Is the expected value of the measurement of white noise ωk,
which is modeled as a Gaussian distribution (N ) with zero mean and covariance matrix R.

The final stage is the UKF state update, in which the gain matrix (K) of the UKF is
produced using the estimated cross-correlation matrix (T) between the sigma points in the
state space and the measurement space, as in Equation (7). The gain is applied to both the
UKF state vector (x) and the state covariance matrix (P).

Tk+1 =
2nx
∑

i=0
wi
(
X̂k+1,i − x̂k+1

)(
Ẑk+1,i − ẑk+1

)T

Kk+1 = Tk+1S−1
k+1

xk+1 = x̂k+1 + Kk+1(ẑk+1 − zk+1)

Pk+1 = P̂k+1 − Kk+1Sk+1KT
k+1

(7)

5. Model of the Road Object

A motion model for a road object in the context of autonomous vehicles typically
describes how the object’s position and velocity evolve over time. The goal is to predict
the future trajectory of the road object, enabling the autonomous vehicle to anticipate its
movements and make informed decisions. Any object in the road is represented by five
variables (state representation). These variables are grouped into one vector called the state
vector x. Equation (8) presents x with its variables px, py, v, ψ, and

.
ψ, which are the object

location in the x and y axes, the magnitude of the object’s velocity calculated from its x
and y components (vx and vy), the yaw angle (object orientation), and the rate at which the
object-yaw angle changes, respectively, as shown in Figure 3.

x =


px
py
v
ψ
.
ψ

, v =
√

v2
x + v2

y, ψ = tan−1 vy

vx
(8)



World Electr. Veh. J. 2024, 15, 5 8 of 26World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 8 of 26 
 

 
Figure 3. The motion model of an arbitrarily moving road object. 

𝑥 = ⎣⎢⎢
⎢⎡𝑝𝑝𝑣𝜓𝜓 ⎦⎥⎥

⎥⎤ , 𝑣 = 𝑣 + 𝑣 , 𝜓 = 𝑡𝑎𝑛 𝑣𝑣  (8)

Based on the state vector 𝑥, the nonlinear 𝑥 = 𝑓(𝑥 , 𝜈 ) difference equation (dy-
namic equations) that represents the object’s motion model is constructed and provided 
in Equations (9)–(11). 

𝑥 = 𝑥 +
⎣⎢⎢
⎢⎢⎢
⎡ 𝑣𝜓 𝑠𝑖𝑛 𝜓 + 𝜓 Δ𝑡 − 𝑠𝑖𝑛(𝜓 )𝑣𝜓 −𝑐𝑜𝑠 𝜓 + 𝜓 𝛥𝑡 + 𝑐𝑜𝑠(𝜓 )0Δ𝑡0 ⎦⎥⎥

⎥⎥⎥
⎤

+ 𝜈  (9)

𝜈 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡12 (Δ𝑡) 𝑐𝑜𝑠(𝜓 ). 𝜈 ,12 (Δ𝑡) 𝑠𝑖𝑛(𝜓 ). 𝜈 ,Δ𝑡. 𝜈 ,12 (Δ𝑡) . 𝜈 ,Δ𝑡. 𝜈 , ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
 (10)

Figure 3. The motion model of an arbitrarily moving road object.

Based on the state vector x, the nonlinear xk+1 = f (xk, νk) difference equation (dy-
namic equations) that represents the object’s motion model is constructed and provided in
Equations (9)–(11).

xk+1 = xk +



vk.
ψk

(
sin
(

ψk +
.
ψk∆t

)
− sin(ψk)

)
vk.
ψk

(
−cos

(
ψk +

.
ψk∆t

)
+ cos(ψk)

)
0
∆t
0


+ νk (9)

νk =



1
2 (∆t)2cos(ψk).νa,k
1
2 (∆t)2sin(ψk).νa,k

∆t.νa,k
1
2 (∆t)2.ν ..

ψ,k
∆t.ν ..

ψ,k

 (10)

∆t = tk+1 − tk

νa,k ∼ N
(
0, σ2

a
)

ν ..
ψ,k ∼ N

(
0, σ2..

ψ

) (11)

where ∆t is the time difference between two consecutive samples and is the longitudinal
acceleration, ν ..

ψ,k is the longitudinal acceleration noise (noise modeling) at sample k with a



World Electr. Veh. J. 2024, 15, 5 9 of 26

standard deviation of σ2
a , and

..
ψ is the yaw acceleration noise at sample k with a standard

deviation of σ2..
ψ

.

If the
.
ψ is zero, and to avoid dividing by zero in Equation (9), the subsequent approxi-

mation is applied (linear model) to evaluate the prediction of px, and py:

pxk+1 = pxk + vkcos(ψk)∆t

pyk+1 = pyk + vksin(ψk)∆t
(12)

6. UKF-Based Lidar/Radar Fusion

The lidar measures the centroid of the object’s position (moving or stationary) in
Cartesian co-ordinates (px and py), as given by Equation (13), while the radar measures
the same object’s centroid position in polar co-ordinates (ρ, φ). Moreover, the radar also
measures the object’s velocity (

.
ρ), as given by Equation (14). Therefore, to unify the way of

measurement, a mapping function is used (in Equation (15)) to convert the lidar Cartesian
co-ordinates to polar form.

zlidar =

(
px
py

)
, zradar =

ρ
φ
.
ρ

 (13)

h(x) =

ρ
φ
.
ρ

 =


√

p2
x + p2

y

arctan
(

py
px

)
pxvx+pyvy√

p2
x+p2

y

 (14)

px = ρcos(φ), py = ρsin(φ) (15)

As shown in Figure 4, the prediction step is conducted for both lidar and radar
simultaneously. However, the update step is specific for each sensor since each sensor
has its own measurement model. Moreover, the update of the belief is executed upon the
arrival of a new sensor measurement (both sensors are not synchronized).

After the initialization steps for both the UKF and the measurement models for both
the lidar and radar, the time step (∆t) is computed as shown in Figure 4 and, at the same
time, using Equation (1), the sigma point (Xk) is created. The predicted sigma point (X̂k+1)
for the next time step is calculated using Equation (2), utilizing the object’s model given by
Equation (9). Then, the predicted state mean vector (x̂k+1) and its covariance matrix (P̂k+1)
is calculated by applying Equation (3).

For the update step in the fusion process, there are two branches. The first one is the
lidar branch and the second one is the radar branch. The last received measured signal
will decide which branch the workflow will assume (either lidar or radar signal). If a
radar signal is received, the predicted measurement sigma point (Ẑk+1) is computed based
on the model in Equation (14) and from X̂k+1 in Equation (5). Then, ẑk+1 states that the
covariance Sk+1 and the noise covariance Rradar are computed based on Equation (6). The
Rradar covariance matrix is further defined as given in Equation (16) below:

Rradar =

σ2
ρ 0 0

0 σ2
φ 0

0 0 σ2.
ρ

 (16)

where σ .
ρ, σφ, and σρ are the noise SD of the object yaw rate, the noise SD of the object

heading, and the noise SD of the object radial distance, respectively.



World Electr. Veh. J. 2024, 15, 5 10 of 26
World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 10 of 26 
 

 
Figure 4. The workflow of the UK for lidar and radar fusion. 

After the initialization steps for both the UKF and the measurement models for both 
the lidar and radar, the time step (∆𝑡) is computed as shown in Figure 4 and, at the same 
time, using Equation (1), the sigma point (𝑋 ) is created. The predicted sigma point (𝑋 ) 
for the next time step is calculated using Equation (2), utilizing the object’s model given 
by Equation (9). Then, the predicted state mean vector (𝑥 ) and its covariance matrix 
(𝑃 ) is calculated by applying Equation (3). 

For the update step in the fusion process, there are two branches. The first one is the 
lidar branch and the second one is the radar branch. The last received measured signal 
will decide which branch the workflow will assume (either lidar or radar signal). If a radar 
signal is received, the predicted measurement sigma point (𝑍 ) is computed based on 
the model in Equation (14) and from 𝑋  in Equation (5). Then, �̂�  states that the co-
variance 𝑆  and the noise covariance 𝑅  are computed based on Equation (6). The 𝑅  covariance matrix is further defined as given in Equation (16) below: 

𝑅 = 𝜎 0 00 𝜎 00 0 𝜎  (16)

where 𝜎 , 𝜎 , and 𝜎  are the noise SD of the object yaw rate, the noise SD of the object 
heading, and the noise SD of the object radial distance, respectively. 

The cross-correlation matrix (𝑇 ) is then computed based on the resulting state vec-
tors 𝑥  and �̂�  with their counterparts 𝑋  and 𝑍 , respectively using Equation 
(7). The 𝑇  is then used to compute the UKF gain (𝐾 ), which is consequently used to 

Figure 4. The workflow of the UK for lidar and radar fusion.

The cross-correlation matrix (Tk+1) is then computed based on the resulting state vec-
tors x̂k+1 and ẑk+1 with their counterparts X̂k+1 and Ẑk+1, respectively using Equation (7).
The Tk+1 is then used to compute the UKF gain (Kk+1), which is consequently used to com-
pute the updated state vector (xk+1) and covariance matrix (Pk+1), as shown in Equation (7).
Then, xk+1 and Pk+1 will be used to generate the new sigma points (Xk+1) in the next
iteration, etc.

Instead, if a lidar signal is received, the predicted measurement sigma point (Ẑk+1)
is computed based on the linear lidar measurement model in Equation (17) and directly
from X̂k+1. Then, ẑk+1 states that the covariance Sk+1 and the noise covariance Rlidar are
computed based on Equation (6) with more detail of Rlidar in Equation (17).

Hlidar =

[
1 0 0 0 0
0 1 0 0 0

]
Rlidar = E

[
ω.ωT] = [σ2

px 0
0 σ2

py

] (17)

where the object x and y positions, σpx and σpy , are the noise SDs, respectively. Likewise,
the radar, the cross-correlation matrix (Tk+1), the KF gain (Kk+1), and the covariance matrix
(Pk+1) are computed from Equation (7).



World Electr. Veh. J. 2024, 15, 5 11 of 26

7. Point-Cloud Clustering and Association

The point cloud resulting from the application of the UKF fusion algorithm presented
in Figure 4 offers details about the objects in the surroundings of the egocar. To extract each
object’s information (geometrical shape and pose), clustering is employed on the UKF point
cloud to characterize each object in a source-point model form, which will significantly
lower the computation overhead and memory prerequisite.

The clustering in this work is performed using the GB-DBSCAN algorithm, which
is a variation of the original DBSCAN algorithm [47], which is an unsupervised learning
algorithm that arranges data points with high density together in one group. Two param-
eters are used to tune the DBSCAN algorithm and define the allowed density. “ε” is the
first parameter to tune, which defines the allowed radial distance from the point under
evaluation “p”. “minPts” is the second parameter that determines the lowest number of de-
tection points that are located within a distance “ε” from “p”, including “p” itself, to form a
cluster. Therefore, the determination of the density of points to be grouped together to form
a cluster is conducted by the proper selection of “ε” and “minPts”. However, if the objects
to be detected take several topologies (other than circular), as with the case of road objects,
the DBSCAN algorithm is not enough. An improvement came from Dietmayer et al. [48]
by proposing not to use fixed parameters like “ε” and “minPts” in the GB-DBSCAN but,
instead, forming a polar grid taking into account the angular and radial resolution of the
sensor. The search area is not necessarily a circular one with a fixed radius but can be a
dynamic elliptic one. Therefore, this algorithm is very appropriate for pole-like objects, as
their distinctive feature is that they produce a high density of detection points, much more
than their surroundings.

The outcome of the GB-DBSCAN algorithm is a coarse clustering of the UKF fusion
data. The application of the RANSAC algorithm fine-tunes these clusters and associates
geometrical shape proposals with them [36]. For the pole-like landmarks, the most appro-
priate geometrical shape is the circular one, which is fitted to all the N points in each cluster.
The RANSAC algorithm then finds the parameters of each fitted circle (the radius (r̂) and
the centroid (x̂c, ŷc)), which will represent a pole landmark, by finding the optimal solution
of the following formula:

min

{
1
N ∑N

i=1

[√
(xi − x̂c)

2 + (yi − ŷc)
2 − r̂

]2
}

(18)

Once the pole-like landmarks are identified in the source UKF fusion data, the data
association step takes place by linking these identified landmarks with their matched
counterpart in the target (the supplied reference map). The employed PF relies heavily on
precision in this step. The association is implemented using the ICP algorithm [42]. The
standard ICP searches the whole point clouds in both the source and the target; however,
here, only the centroids are considered during the objects’ matching process, which, in
return, saves a significant amount of memory and processing overhead.

The ICP algorithm is composed of two phases that run iteratively till convergence is
reached. In our case, we have a set X representing the source points (UKF data) and another
set Y representing the target points (a point-cloud map). The first phase is the matching
between each point in X with the closest point in Y. The second phase is to find the optimal
transform (X→Y) given the matched association. Storing the X and Y sets in the form of a
KD tree data structure [49] is very crucial for the efficient matching by distance performed
by the ICP. xi and yi are two matched points from X and Y sets, respectively. The 2D ICP
algorithm finds the rotation angle “φ” and the translation parameter “t” that minimizes the
summation of the quadratic distance between the target and the source points, as presented
by Equation (19). Note that the rotation matrix R(φ) uses angle “φ” as a variable.

minφ,t

{
∑N

i=1(yi − (R(φ)xi − t))T(yi − (R(φ)xi − t))
}

(19)



World Electr. Veh. J. 2024, 15, 5 12 of 26

The co-ordinate system must be unified between the egocar co-ordinates (xc and yc)
and the reference map co-ordinates (xm and ym) to perform the data association correctly.
Therefore, the homogenous transformation is used (in the form of a transformation ma-
trix) as given by Equation (20). The translation and rotation are performed using map
particle/egocar co-ordinates (xp and yp) and the rotation angle θ.xm

ym
1

 =

cosθ −sinθ xp
sinθ cosθ yp

0 0 1

×
xc

yc
1

 (20)

8. Details of the Particle Filter

For a stochastic process that has noisy observations p(zt|xt), the posterior distribution
bel(xt) could be represented by a finite set of particles. This is considered an approximate
implementation of the Bayesian filter in a recursive mode with a normalization factor ζ
that is given by Equation (21):

bel(xt)← ζ p(zt|xt) bel(xt−1) (21)

The higher the particles’ number M, the more accurate the representation of the belief
distribution bel(xt), where t denotes the time step at which the state of the set of the
particles is considered, as given by Equation (22):

χt =
{

x[i]t

∣∣∣1 ≤ i ≤ M
}

(22)

The actual state (the optimal solution) will be one of the particles included in the
set χt at time t. Therefore, each x[i]t represents a hypothesis for the optimal solution. The
implementation of the employed PF in the work is presented in Algorithm 1. Moreover,
the workflow of the PF is illustrated in Figure 5. Upon receipt of a new measurement
(odometry) signal (ut) or a pole-like object measurement update (zt) from the UKF, a new
search for an optimum egocar pose is initiated.

Algorithm 1. Workflow of the employed PF.

Procedure Particle Filter (χt−1, ut, zt):

Input: Set of particles χt−1 at a time (t− 1), control
inputs ut, and a set of measurements zt.

Output: The updated set of particles χt at time t.

Begin

1. Initialize Particles: χt = χt = ∅.
2. For m = 1 to M do

i. generate x[m]
i ∼ p

(
xt

∣∣∣ut, x[m]
t−1

)
ii. w[m]

t = p
(

zt

∣∣∣x[m]
i

)
iii. χt = χt + x[m]

i , w[m]
t

iv. End for loop

3. For m = 1 to M do

i. draw i with probability αw[i]
t

ii. add x[i]t to χt
iii. End for loop

4. Return χt

End.



World Electr. Veh. J. 2024, 15, 5 13 of 26

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 13 of 26 
 

Algorithm 1. Workflow of the employed PF. 

Procedure Particle Filter (𝜒 , 𝑢 , 𝑧 ): 
Input: Set of particles 𝜒  at a time (𝑡 − 1), control 

inputs 𝑢 , and a set of measurements 𝑧 . 
Output: The updated set of particles 𝜒  at time 𝑡. 
Begin  
1. Initialize Particles: �̅� = 𝜒 = ∅. 
2. 𝐹𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀 𝑑𝑜 

i. 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑥[ ]~𝑝 𝑥 |𝑢 , 𝑥[ ]  

ii. 𝑤[ ] = 𝑝 𝑧 |𝑥[ ]  

iii. �̅� = �̅� + 〈𝑥[ ], 𝑤[ ]〉  
iv. End for loop 

3. 𝐹𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀 𝑑𝑜 
i. 𝑑𝑟𝑎𝑤 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝛼𝑤[ ] 

ii. 𝑎𝑑𝑑 𝑥[ ] 𝑡𝑜 𝜒  
iii. End for loop 

4. Return 𝜒  
End. 

 
Figure 5. Overview and a flowchart of the particle filter algorithm. 

The PF implementation is a predict–update cycle, in which the prediction portion of 
the cycle is implemented by step (2) in the procedure. For each particle (out of the 𝑀 ran-
domly generated particles at the initiation phase of the procedure), two values are calcu-
lated for each particle (which represents a possible egocar); the first one is the state hy-
pothesis (𝑥[ ]), and the second one is the state transition distribution 𝑝 𝑥 |𝑢 , 𝑥[ ] , which 
is calculated using the object’s motion model explained in Section 5. A weight is created 
for each particle based on its generated state hypothesis (importance) among the other state 
hypotheses of the other particles, as given in Equation (23). Each weight takes the form of a 
multivariate Gaussian probability density function that is computed for each observation and 
the likelihood of all the observations are combined by taking their multiplication product. 

Figure 5. Overview and a flowchart of the particle filter algorithm.

The PF implementation is a predict–update cycle, in which the prediction portion
of the cycle is implemented by step (2) in the procedure. For each particle (out of the
M randomly generated particles at the initiation phase of the procedure), two values are
calculated for each particle (which represents a possible egocar); the first one is the state
hypothesis (x[m]

i ), and the second one is the state transition distribution p
(

xt

∣∣∣ut, x[m]
t−1

)
,

which is calculated using the object’s motion model explained in Section 5. A weight
is created for each particle based on its generated state hypothesis (importance) among
the other state hypotheses of the other particles, as given in Equation (23). Each weight
takes the form of a multivariate Gaussian probability density function that is computed for
each observation and the likelihood of all the observations are combined by taking their
multiplication product.

w[m]
t = ∏N

i=1

exp
(
− 1

2

(
z[t]i − µ

[t]
i

)T
Σ−1

(
z[t]i − µ

[t]
i

))
√
|2πΣ|

(23)

where N is the count of measurements for particle m, Σ is the measurements covariance
matrix, µ

[t]
i is the state mean predicted measurement for the pole corresponding to the ith

observation at step t, and z[t]i is the ith pole observation for particle m at step t.
After that, the set of particles (χt) is resampled proportional to the previously produced

weights (αw[i]
t ), where α is a normalization coefficient, generating new M particles and,

hence, χt (the updated posterior approximation) is produced. χt will usually contain the
strongest particles with multiple copies replacing the weak particles that are left out (have
small weights (less important)). And, so on, the algorithm continues till χt will contain M
copies of one particle (convergence) that represents the solution or the required egocar pose.

The convergence indicator for the PF is the weighted mean error (Errorweighted) com-
puted over all the particles, as shown in Equation (24). Errorweighted is achieved by calculat-
ing the RMSE between the ground truth g and the state of each particle pi and multiplied
by its weight, then summing the product for all particles, and dividing the result by the
summation of all the weights.

Errorweighted =
∑M

i=1 wi
√
|pi − g|

∑M
i=1 wi

(24)



World Electr. Veh. J. 2024, 15, 5 14 of 26

9. Realization of the RTMCL

The development and coding of the RTMCL are accomplished using C++ program-
ming language [50], as it is well known for its high performance, especially for real-time
applications [51]. The developed code runs on the Ubuntu Linux operating system [52].
Moreover, the development used the efficient numerical solving package Eigen, which is
used to perform all the vector and matrix computations involved in the execution of the
objects’ model and the prediction and update steps [53].

The sensor data are processed using the NVIDIA DRIVE AGX platform. The lidar
is Velodyne Lidar VLP-16 (16 channels, 100 m range, 360◦ horizontal field of view (FoV),
30◦ vertical FoV, 300,000 points/sec) and the radar is Continental ARS430 (77 GHz, 250 m
range, wide azimuth and elevation coverage, 0.1 m accuracy).

In order to sensitively execute the motion models for several objects (furnished by
Equations (9)–(11)), various noise parameters must be carefully determined. Their values
are fine-tuned and set and presented in Table 1.

Table 1. The noise parameters of the object model, PF, and UKF.

Parameter UKF/PF Parameter UKF

σa m/sec2 1.0 σpy (lidar) m 0.15

σ ..
ψ

rad/sec2 0.6 σρ (radar) m 0.3

σ .
ψ

rad/sec 0.06 σφ (radar) rad 0.03

σpx (lidar) m 0.15 σ .
ρ (radar) m/sec 0.3

To evaluate the consistency of the UKF design, the NIS measure that is averaged
over time is employed [54] to fine-tune the above noise parameters. Moreover, to make
sure the UKF design is unbiased and consistent, the estimation error is aggregated and its
mean value is calculated. This value should be around zero, besides the UKF’s actual MSE
corresponding to the UKF-computed state covariance. Equation (25) calculates the NIS
value at each time sample k and then uses a moving N-sample window of measurements
to compute its average value (NISAverage).

NISk = (zk+1 − ẑk)
TS−1

k (zk+1 − ẑk)

NISAverage =
1
N ∑k=N

k=1 NISk
(25)

The UKF performance depends heavily on how properly it is initialized [54]. The
estimated state vector (x) and its estimated state covariance matrix (P) are considered
the most important initialized variables. px and py (the first and second terms of x in
Equation (8)) are simply initialized by associating them to the early obtained unrefined
sensor measurements. For the following three terms of the x, trial-and-error endeavors
in addition to some intuition are used to initialize these variables, as given in Table 2.
Moreover, the P matrix is constructed as a diagonal matrix, as given in Equation (26), and
includes the covariance values of the estimate of each term in x.

P = diag
(

σ2
p̂x

, σ2
p̂y

, σ2
v̂ , σ2

ψ̂
, σ2

.̂
ψ

)
(26)



World Electr. Veh. J. 2024, 15, 5 15 of 26

Table 2. UKF state variable initialization.

Parameter UKF Parameter UKF

px m 1st raw x-reading py m 1st raw y-reading

v m/sec 0.0 ψ rad 0.0
.
ψ rad/sec 0.0 σp̂x m 1.0

σp̂y m 1.0 σv̂ m/sec
√

1000

σψ̂ rad
√

1000 σ .̂
ψ

m/sec2
√

1000

The calculation of the RMSE, as given in Equation (27), is used to evaluate the perfor-
mance of the UKF, which is defined as how close the estimated ranges are from the true
ranges (the ground truth). An N-sample moving window of estimates is used to calculate
this metric.

RMSE =

√
1
N ∑k=N

k=1

(
xest

k − xtrue
k
)2 (27)

where xtrue
k is the ground-truth state vector generated by the motion driving simulator [55]

or supplied as training data during the UKF design phase and xest
k is the UKF’s output (the

estimated state vector).
Regarding the PF, like the UKF, the proper initialization is very critical for its successful

execution. The initialization process is as follows:

(a) The PF particles’ count M usually falls in the range from 100 to 1000 [20], as per the
literature [43]. The higher the particles’ count, the higher the accuracy but the slower
the speed of computation, and vice versa. Therefore, a compromise must be made.
After many trials, M = 50 is selected after showing approved real-time performance
with the required precision.

(b) The result of the GPS/IMU fusion is the initial pose of the egocar (pxGPS , pyGPS , θGPS),
which will be used by the PF in the initialization of all the M particles’ state vectors as
follows:

p[m]
x ∼ N

(
pxGPS , σ2

xGPS
+ σ2

xarti f icial

)
p[m]

y ∼ N
(

pyGPS , σ2
yGPS

+ σ2
yarti f icial

)
θ
[m]
Particle ∼ N

(
θGPS, σ2

θGPS
+ σ2

θarti f icial

) (28)

where the particle m initialized pose is represented by p[m]
x , p[m]

y , and θ
[m]
Particle. The

standard deviations of the noise of the GPS/IMU fusion are σxGPS , σyGPS , and σθGPS .
Moreover, the artificial noise amounts added to pose variables are σxarti f icial , σyarti f icial ,
and σθarti f icial . They are used to add randomization to these variables to improve the
chances of convergence of the PF. Table 3 lists the values used to initialize these parameters.

(c) The particles’ weights that value their importance use the uniform distribution w[m] =
1
M for initialization.

(d) The landmarks that take a pole shape in the reference map and being used by the

RTMCL algorithm are represented by N
(

pxPole , σ2
xPole

)
and N

(
pyPole , σ2

yPole

)
, which

are Gaussian distributions for both x and y positions, respectively. These distributions
are used to model these positions’ uncertainties. The standard deviation σxpole and
σypole values are shown in Table 3.



World Electr. Veh. J. 2024, 15, 5 16 of 26

Table 3. Values for the PF initialized parameters.

Parameter PF Parameter PF

σxGPS 0.3 m σxarti f icial 10 m

σyGPS 0.3 m σyarti f icial 10 m

σθGPS 0.01 rad σθarti f icial
0.05 rad

σxpole 0.3 m σypole 0.3 m

Equation (29) presents the aggregated mean absolute error (MAE) of each estimated
pose variable compared to the ground truth. This metric is used in order to evaluate the
performance of the PF. It is computed by employing an N-measurement window that
moves across the incoming pose estimates.

Xerror =
1
N ∑N

i=1

∣∣∣xbest
i − xgt

i

∣∣∣
Yerror =

1
N ∑N

i=1

∣∣∣ybest
i − ygt

i

∣∣∣
Yawerror =

1
N ∑N

i=1

∣∣∣θbest
i − θ

gt
i

∣∣∣
(29)

where xgt
i , ygt

i , and θ
gt
i are the variables of the ground truth that are generated by the motion

driving simulator [56] or provided as training data throughout the particle filter design
phase, and xbest

i , ybest
i , and θbest

i are the best-estimated variables of the PF particles’ poses.

10. Testing and Evaluation Results

To fine-tune the hyperparameters of the RTMCL algorithm, broad trial-and-error
tryouts have been carried out. For proper assessment, numerical KPIs are proposed and
implemented as given by Equations (24), (26), and (28) to assess the RTMCL under several
hyperparameter configurations.

Moreover, through an iterative tuning process, the performance of the RTMCL is
evaluated on several testing tracks while under various sets of hyperparameters. Figure 6
presents an example of one of the employed testing tracks. The length of this track is 754 m
and has curvatures at several points. It also contains 42 landmarks that resemble poles to
sufficiently emulate an urban driving environment.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 17 of 26 
 

 
Figure 6. Egocar localization outcomes in the shown test track. 

The results of UKF testing performing the fusion of the lidar/radar are presented in 
Table 4. Several objects are detected, including pole-like landmarks, cars, cyclists, and pe-
destrians. The five state variables, 𝑝 , 𝑝 , 𝑣 , 𝑣 , and 𝜓, are measured and their RMSE 
are listed in Table 5 as a KPI (Equation (26)). A comparison between the ground truth of 
each state variable to the estimated value of this state, then obtaining the error is per-
formed by this KPI. Better detection is achieved with a lower value of this KPI. 

Table 4. The UKF’s performance assessment. 

State Var Cyclist Car Pedestrian Pole 𝑝  0.0648 0.1857 0.0652 0.0324 𝑝  0.0809 0.1899 0.0605 0.0433 𝑣  0.1452 0.4745 0.5332 0.0032 𝑣  0.1592 0.5075 0.5442 0.0054 𝜓 0.0392 0.2580 0.2075 0.0075 

The UKF is employed and tested in three different ways: the first one with only lidar 
signals, the second way with only radar signals, and the third one with the fusion between 
the lidar and the radar. This way of testing evaluates how significant the fusion is for the 
accuracy of object detection and tracking. Table 5 presents the results of the three ways of 
testing on the bicycle track. It is clear how significant the fusion is at all pose variables, all 
of them have much better RMSE. Table 5 clearly shows that fusion reduces the RMSE for 
all the pose state variables and makes a big difference in the accuracy of detection. As an 
example, the error of the detection position in the x-axis (𝑝 ) is lowered by 60% compared 
to the one with the lidar alone and 70% compared to the one with radar alone. Another 
example is the error of the velocity detection in the x-axis (𝑣 ) is lowered by 30% more 
than the one with the lidar alone and 26% more than the one with radar alone. Further-
more, the NIS KPI is computed as well for the three previous cases, showing that the fu-
sion has significantly improved the UKF’s consistency. The fusion NIS quantities that are 
higher than the threshold of 95% have been lowered by 31% compared to the “only lidar” 
and 38.5% compared to the “only radar” values. 

Table 5. Assessment of the UKF performance for lidar/radar sensor fusion. 

 Lidar + Radar Lidar Only Radar Only 
RMSE-𝑝  0.0648 0.1612 0.2031 
RMSE-𝑝  0.0809 0.1464 0.2539 
RMSE-𝑣  0.1452 0.2082 0.1971 

Figure 6. Egocar localization outcomes in the shown test track.

The results of UKF testing performing the fusion of the lidar/radar are presented
in Table 4. Several objects are detected, including pole-like landmarks, cars, cyclists, and
pedestrians. The five state variables, px, py, vx, vy, and ψ, are measured and their RMSE are



World Electr. Veh. J. 2024, 15, 5 17 of 26

listed in Table 5 as a KPI (Equation (26)). A comparison between the ground truth of each
state variable to the estimated value of this state, then obtaining the error is performed by
this KPI. Better detection is achieved with a lower value of this KPI.

Table 4. The UKF’s performance assessment.

State Var Cyclist Car Pedestrian Pole

px 0.0648 0.1857 0.0652 0.0324

py 0.0809 0.1899 0.0605 0.0433

vx 0.1452 0.4745 0.5332 0.0032

vy 0.1592 0.5075 0.5442 0.0054

ψ 0.0392 0.2580 0.2075 0.0075

Table 5. Assessment of the UKF performance for lidar/radar sensor fusion.

Lidar + Radar Lidar Only Radar Only

RMSE-px 0.0648 0.1612 0.2031

RMSE-py 0.0809 0.1464 0.2539

RMSE-vx 0.1452 0.2082 0.1971

RMSE-vy 0.1592 0.2129 0.1871

RMSE-ψ 0.0392 0.0540 0.0480

NIS-Average 2.2797 1.6941 2.6576

NIS-Min 0.0012 0.04874 0.11309

NIS-Max 14.749 12.997 12.183

NIS > 95% Threshold 2.2% 3.2% 5.2%

The UKF is employed and tested in three different ways: the first one with only lidar
signals, the second way with only radar signals, and the third one with the fusion between
the lidar and the radar. This way of testing evaluates how significant the fusion is for the
accuracy of object detection and tracking. Table 5 presents the results of the three ways of
testing on the bicycle track. It is clear how significant the fusion is at all pose variables, all
of them have much better RMSE. Table 5 clearly shows that fusion reduces the RMSE for
all the pose state variables and makes a big difference in the accuracy of detection. As an
example, the error of the detection position in the x-axis (px) is lowered by 60% compared
to the one with the lidar alone and 70% compared to the one with radar alone. Another
example is the error of the velocity detection in the x-axis (vx) is lowered by 30% more than
the one with the lidar alone and 26% more than the one with radar alone. Furthermore,
the NIS KPI is computed as well for the three previous cases, showing that the fusion has
significantly improved the UKF’s consistency. The fusion NIS quantities that are higher
than the threshold of 95% have been lowered by 31% compared to the “only lidar” and
38.5% compared to the “only radar” values.

An example of testing the whole pipeline of the RTMCL, which includes the combina-
tion of the PF and UKF with the employment of the probabilistic reference map, Figures 6–8
present the simulation results of egocar driving on the test track in Figure 6. The GB-
DBSCAN is used for the data association step for the localization of the egocar on the
global map. Figures 7 and 8 show both the ground truth and the estimated egocar pose
values drawn overlapping each other due to the computed small errors as reported in
Table 6. The PF performance is evaluated using the RMSE KPI given in Equation (28).
This KPI is computed for the three variables of the pose (x, y, and θ). It evaluates each of
these estimated values against its ground truth and aggregates the resulting errors. The
performance of the PF is better if these KPI values are lower. Several counts of particles



World Electr. Veh. J. 2024, 15, 5 18 of 26

are used to choose the most appropriate configuration for the employed PF and to test
its performance in real time. Hence, Table 6 shows that the minimum acceptable particle
count is around 25 particles. Lower than this number, the PF starts to divert. However, to
observe more robustness and improve further the accuracy, 50 particles are selected in this
work to be employed by the PF, as higher numbers will not add much to the accuracy at
the expense of much higher execution time. The count of 50 particles is considered a good
balance between robustness and execution cost (real-time performance). The selection of
50 particles shows convergence in all the extensive performed tryouts.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 18 of 26 
 

RMSE-𝑣  0.1592 0.2129 0.1871 
RMSE-𝜓 0.0392 0.0540 0.0480 

NIS-Average 2.2797 1.6941 2.6576  
NIS-Min 0.0012 0.04874 0.11309 
NIS-Max 14.749 12.997 12.183 

NIS > 95% Threshold 2.2% 3.2% 5.2% 

An example of testing the whole pipeline of the RTMCL, which includes the combi-
nation of the PF and UKF with the employment of the probabilistic reference map, Figures 
6–8 present the simulation results of egocar driving on the test track in Figure 6. The GB-
DBSCAN is used for the data association step for the localization of the egocar on the 
global map. Figures 7 and 8 show both the ground truth and the estimated egocar pose 
values drawn overlapping each other due to the computed small errors as reported in 
Table 6. The PF performance is evaluated using the RMSE KPI given in Equation (28). This 
KPI is computed for the three variables of the pose (𝑥, 𝑦, and 𝜃). It evaluates each of these 
estimated values against its ground truth and aggregates the resulting errors. The perfor-
mance of the PF is better if these KPI values are lower. Several counts of particles are used 
to choose the most appropriate configuration for the employed PF and to test its perfor-
mance in real time. Hence, Table 6 shows that the minimum acceptable particle count is 
around 25 particles. Lower than this number, the PF starts to divert. However, to observe 
more robustness and improve further the accuracy, 50 particles are selected in this work 
to be employed by the PF, as higher numbers will not add much to the accuracy at the 
expense of much higher execution time. The count of 50 particles is considered a good 
balance between robustness and execution cost (real-time performance). The selection of 
50 particles shows convergence in all the extensive performed tryouts. 

 
Figure 7. Egocar orientation (yaw angle) estimation and ground truth in the testing track. 

 

Figure 7. Egocar orientation (yaw angle) estimation and ground truth in the testing track.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 18 of 26 
 

RMSE-𝑣  0.1592 0.2129 0.1871 
RMSE-𝜓 0.0392 0.0540 0.0480 

NIS-Average 2.2797 1.6941 2.6576  
NIS-Min 0.0012 0.04874 0.11309 
NIS-Max 14.749 12.997 12.183 

NIS > 95% Threshold 2.2% 3.2% 5.2% 

An example of testing the whole pipeline of the RTMCL, which includes the combi-
nation of the PF and UKF with the employment of the probabilistic reference map, Figures 
6–8 present the simulation results of egocar driving on the test track in Figure 6. The GB-
DBSCAN is used for the data association step for the localization of the egocar on the 
global map. Figures 7 and 8 show both the ground truth and the estimated egocar pose 
values drawn overlapping each other due to the computed small errors as reported in 
Table 6. The PF performance is evaluated using the RMSE KPI given in Equation (28). This 
KPI is computed for the three variables of the pose (𝑥, 𝑦, and 𝜃). It evaluates each of these 
estimated values against its ground truth and aggregates the resulting errors. The perfor-
mance of the PF is better if these KPI values are lower. Several counts of particles are used 
to choose the most appropriate configuration for the employed PF and to test its perfor-
mance in real time. Hence, Table 6 shows that the minimum acceptable particle count is 
around 25 particles. Lower than this number, the PF starts to divert. However, to observe 
more robustness and improve further the accuracy, 50 particles are selected in this work 
to be employed by the PF, as higher numbers will not add much to the accuracy at the 
expense of much higher execution time. The count of 50 particles is considered a good 
balance between robustness and execution cost (real-time performance). The selection of 
50 particles shows convergence in all the extensive performed tryouts. 

 
Figure 7. Egocar orientation (yaw angle) estimation and ground truth in the testing track. 

 

Figure 8. Performance of the yaw rate and speed of the egocar through a 3 − lap driving on the
testing track (blue is the yaw rate and red is the speed).

Table 6. The PF uses numerous counts of particles.

# Particles x-Error y-Error Yaw-Error Exec. Time

15 122.34 33.002 1.5959 0.268 ms

25 0.1382 0.1240 0.0048 0.486 ms

50 0.1143 0.1154 0.0040 0.739 ms

100 0.1154 0.1071 0.0037 1.224 ms

150 0.1098 0.1060 0.0037 2.086 ms

200 0.1102 0.1039 0.0036 2.403 ms
Red is the worst-case scenario, green is the best-case, and # is no. of.

The uncertainties in the reference map are modeled by the standard deviations associ-
ated with pole-like landmarks. The results of using the uncertainties in the map positions
are reported in Table 7. Several standard deviations are tested and show how significantly



World Electr. Veh. J. 2024, 15, 5 19 of 26

it affects the final egocar pose estimation produced by the PF. The table shows that the
RTMCL can handle a significant amount of uncertainty in the landmark position, which
can reach up to 2.0 m or 2σpole, and the computed error in the egocar localization is still
below 30 cm.

Table 7. The influence of the landmark standard deviation.

σxpole σypole
x-Error y-Error Yaw-Error

0.3 0.3 0.1143 0.1154 0.0040

0.5 0.5 0.1730 0.1633 0.0057

1.0 1.0 0.2926 0.2736 0.0098

The performance of the PF during the start-up phase is very crucial for its convergence,
stability, and performance later on. Therefore, Figure 9 presents the start-up segment of
the PF employing 50 particles till it becomes stabilized (after around 100 time steps). As a
sign or indicator of the robustness of the PF performance, Figure 10 presents the computed
particles’ weights throughout a single lap driving on the test track. The best weight at
each time step is significantly higher than the average weight. This is considered a good
indicator of robustness [57].

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 19 of 26 
 

Figure 8. Performance of the yaw rate and speed of the egocar through a 3 − lap driving on the 
testing track (blue is the yaw rate and red is the speed). 

Table 6. The PF uses numerous counts of particles. 

# Particles x-Error y-Error Yaw-Error Exec. Time 
15 122.34 33.002 1.5959 0.268 ms 
25 0.1382 0.1240 0.0048 0.486 ms 
50 0.1143 0.1154 0.0040 0.739 ms 
100 0.1154 0.1071 0.0037 1.224 ms 
150 0.1098 0.1060 0.0037 2.086 ms 
200 0.1102 0.1039 0.0036 2.403 ms 

Red is the worst-case scenario, green is the best-case, and # is no. of. 

The uncertainties in the reference map are modeled by the standard deviations asso-
ciated with pole-like landmarks. The results of using the uncertainties in the map posi-
tions are reported in Table 7. Several standard deviations are tested and show how signif-
icantly it affects the final egocar pose estimation produced by the PF. The table shows that 
the RTMCL can handle a significant amount of uncertainty in the landmark position, 
which can reach up to 2.0 m or 2𝜎 , and the computed error in the egocar localization 
is still below 30 cm. 

Table 7. The influence of the landmark standard deviation. 𝝈𝒙𝒑𝒐𝒍𝒆 𝝈𝒚𝒑𝒐𝒍𝒆 x-Error y-Error Yaw-Error 
0.3 0.3 0.1143 0.1154 0.0040 
0.5 0.5 0.1730 0.1633 0.0057 
1.0 1.0 0.2926 0.2736 0.0098 

The performance of the PF during the start-up phase is very crucial for its conver-
gence, stability, and performance later on. Therefore, Figure 9 presents the start-up seg-
ment of the PF employing 50 particles till it becomes stabilized (after around 100 time 
steps). As a sign or indicator of the robustness of the PF performance, Figure 10 presents 
the computed particles’ weights throughout a single lap driving on the test track. The best 
weight at each time step is significantly higher than the average weight. This is considered 
a good indicator of robustness [57]. 

 
Figure 9. Errors decay throughout the PF start-up phase. Figure 9. Errors decay throughout the PF start-up phase.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 20 of 26 
 

 

Figure 10. The distribution of particles’ weights during a single-lap tour by the egocar. 

It is observed that there is an inverse relation between these weight values (best and 
average) and the number of detected poles. Equation (30) below introduces another 
streamlined form of Equation (22), where the values of the weights are computed as the 
multiplication of the likelihoods of the observation of each pole-like landmark represented 
by a multivariate Gaussian probability density function. There is a suitable number of 
observed poles. If the number of observed poles is high, there is a chance that one or more 
of these poles have small Gaussian probability density values that can bring the whole 
product down and, consequently, the associated weight. After many tryouts, it is found 
that the most appropriate count of identified poles at each time step for the smooth oper-
ation of the RTMCL is in the scope of 4 to 12 poles as shown in Figure 11. 

𝑤[ ] = ∏ [ ] [ ] [ ] [ ]
  

(30)

 

Figure 11. The distribution of detected poles (red dots) during a single-lap touring by the egocar. 

The real-time performance of the RTMCL is tested using extensive experimentation 
and tryouts proving that its execution is fast enough. Table 8 presents the measurements 
of the execution times of several tasks within the RTMCL pipeline on a very moderate 
computational platform: an Intel 1.6-GHz Core i5 with 8 GB of RAM. These measurements 
are collected for a single estimation of the egocar pose based on the 12-pole detection. 

Table 8. Details of an individual pose estimation processing time by the RTMCL. 

Process Execution Time 
State estimation by the UKF for 12 poles 12 × 439 μs 

Clustering using GB-DBSCAN & RANSAC + data association 
using the ICP. 

835 μs 

Figure 10. The distribution of particles’ weights during a single-lap tour by the egocar.

It is observed that there is an inverse relation between these weight values (best
and average) and the number of detected poles. Equation (30) below introduces another
streamlined form of Equation (22), where the values of the weights are computed as the
multiplication of the likelihoods of the observation of each pole-like landmark represented



World Electr. Veh. J. 2024, 15, 5 20 of 26

by a multivariate Gaussian probability density function. There is a suitable number of
observed poles. If the number of observed poles is high, there is a chance that one or more
of these poles have small Gaussian probability density values that can bring the whole
product down and, consequently, the associated weight. After many tryouts, it is found that
the most appropriate count of identified poles at each time step for the smooth operation of
the RTMCL is in the scope of 4 to 12 poles as shown in Figure 11.

w[m]
t = ∏N

j=1

exp

(
−
(

z[t]xj−µ
[t]
xj

)
2σ2

xpole
−
(

z[t]yj−µ
[t]
yj

)
2σ2

ypole

)
2πσxpole σypole

(30)

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 20 of 26 
 

 

Figure 10. The distribution of particles’ weights during a single-lap tour by the egocar. 

It is observed that there is an inverse relation between these weight values (best and 
average) and the number of detected poles. Equation (30) below introduces another 
streamlined form of Equation (22), where the values of the weights are computed as the 
multiplication of the likelihoods of the observation of each pole-like landmark represented 
by a multivariate Gaussian probability density function. There is a suitable number of 
observed poles. If the number of observed poles is high, there is a chance that one or more 
of these poles have small Gaussian probability density values that can bring the whole 
product down and, consequently, the associated weight. After many tryouts, it is found 
that the most appropriate count of identified poles at each time step for the smooth oper-
ation of the RTMCL is in the scope of 4 to 12 poles as shown in Figure 11. 

𝑤[ ] = ∏ [ ] [ ] [ ] [ ]
  

(30)

 

Figure 11. The distribution of detected poles (red dots) during a single-lap touring by the egocar. 

The real-time performance of the RTMCL is tested using extensive experimentation 
and tryouts proving that its execution is fast enough. Table 8 presents the measurements 
of the execution times of several tasks within the RTMCL pipeline on a very moderate 
computational platform: an Intel 1.6-GHz Core i5 with 8 GB of RAM. These measurements 
are collected for a single estimation of the egocar pose based on the 12-pole detection. 

Table 8. Details of an individual pose estimation processing time by the RTMCL. 

Process Execution Time 
State estimation by the UKF for 12 poles 12 × 439 μs 

Clustering using GB-DBSCAN & RANSAC + data association 
using the ICP. 

835 μs 

Figure 11. The distribution of detected poles (red dots) during a single-lap touring by the egocar.

The real-time performance of the RTMCL is tested using extensive experimentation
and tryouts proving that its execution is fast enough. Table 8 presents the measurements
of the execution times of several tasks within the RTMCL pipeline on a very moderate
computational platform: an Intel 1.6-GHz Core i5 with 8 GB of RAM. These measurements
are collected for a single estimation of the egocar pose based on the 12-pole detection.

Table 8. Details of an individual pose estimation processing time by the RTMCL.

Process Execution Time

State estimation by the UKF for 12 poles 12 × 439 µs

Clustering using GB-DBSCAN & RANSAC + data association using the ICP. 835 µs

Pose estimation by the Particle Filter 739 µs

Overhead by control tasks—20% 1368 µs

The sum of execution times 8210 µs

It is recommended from the literature that the localization pipeline iterates at a speed
of 10 Hz to 30 Hz. Accordingly, the measured RTMCL execution time per iteration, which
is 8.2 ms (122 Hz) in Table 8, is considered very well suited at even the upper limit of
the recommendation.

Moreover, the values in Table 8 show that more than 50 pole detections can be em-
ployed and, still, the UKF is capable of meeting the requirements of collecting the lidar
and radar measurements at a rate of 30 Hz (33.3 ms cycle) according to [1]. All the above
analyses show that the real-time performance of the RTMCL is very convenient, allowing
its robustness to be improved by either increasing the number of particles or allowing more
pole detections.

Moreover, the results achieved in the work are significantly advantageous if compared
with other works in the literature. The mean error for both the lateral and longitudinal



World Electr. Veh. J. 2024, 15, 5 21 of 26

positions (11 cm) is less than the 20 cm obtained in [58] using a pole-based reference map,
stereo camera system as a main sensor, GPS as a secondary sensor, particle filter, and
Kalman filter.

Additionally, the achieved mean error by RTMCL is also lower than the one achieved
by [35], which is 16.4 cm (with an absolute max. error of 99.6 cm), obtained using a pole-
based mapping, a lidar fused with RTK-GPS, IMU, wheel encoder, a Bayesian filter, and
the egocar’s CTRV motion model.

Furthermore, the RTMCL outperforms the localization system proposed by [41], which
fuses a digital map, GPS, and IMU, along with lanes and symbolic road markings (SRMs)
recognized by a front camera via a particle filter. The latter-mentioned system produced
a 95 cm longitudinal error and a 49 cm lateral error. The full comparative analysis is
presented in Table 9 below.

Table 9. Comparing the proposed approach with other stand-out methods.

Comparison Aspect This Work (RTMCL) (Spangenberg et al. [58]) (Weng et al. [35]) (Suhr et al. [41])

Mean Error (Lateral) 11 cm 20 cm 16.4 cm (Max: 99.6 cm) 49 cm

Mean Error
(Longitudinal) 11 cm 20 cm 16.4 cm (Max: 99.6 cm) 95 cm

Sensor Configuration
GPS, IMU, radar, lidar,
particle filter, Kalman

filter.

Stereo camera, GPS,
particle filter, Kalman

filter

Lidar, RTK-GPS, IMU,
wheel encoder,
Bayesian filter.

Digital map, GPS,
IMU, front camera.

Localization Approach

Real-Time Monte Carlo,
Pole-based reference
map, particle filter,

Kalman filter.

Pole-based reference
map, stereo camera, GPS,

particle filter, Kalman
filter.

Pole-based mapping,
lidar, RTK-GPS, IMU,

wheel encoder,
Bayesian filter.

Digital map, GPS,
IMU, front camera,

particle filter.

Results Comparison Significantly
advantageous 20 cm mean error 16.4 cm mean error

(Max: 99.6 cm)
95 cm longitudinal,
49 cm lateral error

Moreover, the proposed RTMCL is compared to that of other research work based on
fusion techniques, as summarized in Table 10. The first work discusses Gao et al.’s deep
learning method for autonomous vehicle object detection [59], emphasizing the fusion of
vision and lidar data to enhance classification accuracy. It highlights the upsampling of
lidar point clouds, conversion into a depth feature map, and integration with RGB data
for CNN input. The study employs a vehicle-mounted camera and lidar, using NVIDIA®

GeForce GTX Titan X and NVIDIA® Jetson TX1 (NVIDIA, Santa Clara, CA, USA) for offline
detection and classification on a public dataset.

The second work outlines Gao et al.’s integrated framework for predicting cyclist
trajectories at unsignalized intersections [60]. It focuses on intent inference using a Dynamic
Bayesian Network (DBN) considering motion, ego vehicle, and environmental features. The
approach employs LSTM with encoder–decoder for online trajectory prediction, achieving
predictions within 0.9 s of entering the intersection. The text underscores the approach’s
outperformance over baseline methods (KF and DBN + KF) across various prediction
horizons and its potential benefits for intelligent vehicles in road-user protection and path
planning. Future research considerations include addressing cyclist–ego vehicle interaction
and enhancing method robustness and interpretability.



World Electr. Veh. J. 2024, 15, 5 22 of 26

Table 10. Comparing the proposed approach with work based on other fusion techniques.

Aspect Gao et al. [59] Gao et al. [60] Proposed Approach

Topic Autonomous vehicle object
detection. Cyclist trajectory prediction. Real-Time Monte Carlo Localization

(RTMCL) for autonomous vehicles.

Methodology Deep learning combining
vision and lidar data.

Integrated framework with
DBN and LSTM for cyclist

intent prediction.

RTMCL with GPS, IMU, radar, and
lidar data, incorporating clustering and

particle filter techniques.

Key Techniques Upsampling lidar, depth
feature map, CNN.

DBN, LSTM with
encoder-decoder, clustering

algorithms

Particle filter, UKF, clustering
algorithms, ICP.

Performance Metrics Improved classification
accuracy using fusion.

Predicts cyclist intentions
within 0.9 s, and outperforms

baseline methods.

Achieves 11 cm mean error, and
handles uncertainties in pole-like

landmark positions.

Implementation

Vehicle-mounted camera and
lidar, NVIDIA® GeForce GTX
Titan X, and NVIDIA® Jetson

TX1

Lidar (Velodyne VLP-16, 10
fps) and a mono camera (IDS

UI-5250CP-C-HQ, 15 fps).

Implemented in C++ on Intel 1.6-GHz
Core i5 with 8 GB of RAM, real-time

performance demonstrated.

Future Directions

Conduct real-world
experiments based on a

vehicle-mounted domain
controller.

Explore cyclist-ego vehicle
interaction, enhance

robustness and
interoperability

Add a front camera, incorporate
additional road objects, and explore

machine-learning approaches for
improved localization.

11. Conclusions

The proposed real-time Mont Carlo Localization (RTMCL) approach for self-driving
vehicles is a pipeline of tasks that starts with the fusion between the GPS and the IMU to
produce an unrefined egocar pose that is used to initialize the employed particle filter. Then,
in the next task, a tailored UKF is used to fuse the collected data from the installed radar
and lidar sensors on the egocar. The output of the UKF contains information about objects
in the surrounding of the egocar and, thus, needs further processing to detect these objects
and identify them. This task is carried out using the clustering algorithms GB-DBSCAN
and RANSAC then produces the poses of the detected pole-like landmarks. In another task.
The ICP algorithm is employed to perform the association between the identified poles in
the previous task to the ones embedded in the provided reference map. In the final task, a
tailored particle filter is developed and all the outputs of the previous tasks generate the
fine-tuned egocar pose as the final localization measured reference to the co-ordinates of
the global map.

The implementation of the whole RTMCL is conducted using C++ to ensure real-time
performance. The testing results show that the RTMCL reached an accuracy of around
11 cm of mean error using merely 50 particles. The recorded execution times on affordable
CPUs show the number of particles can further increase without much effect on the real-
time performance.

Furthermore, testing the pipeline of the RTMCL has shown that it can run smoothly at
30 Hz while handling up to 50 poles at a time. Moreover, up to 2.0 m in uncertainty in the
pose positions of the pole-like landmarks in the reference map can be handled successfully
by the RTMCL, as its estimated egocar pose error will not exceed 30 cm in such a case.

It is planned to supplement a front camera as well as range finders [61] to the current
fusion approach in the future and further examine the returns they will contribute to
overall localization performance [62]. In addition, the RTMCL will be supplemented with
additional road objects such as curbs, sidewalks, guardrails, and intersection features,
among others. It is also worth considering the use of deep learning and other machine
learning approaches.



World Electr. Veh. J. 2024, 15, 5 23 of 26

Author Contributions: Conceptualization, W.A.F.; methodology, W.A.F.; software, W.A.F.; validation,
W.A.F.; formal analysis, W.A.F.; investigation, W.A.F.; resources, W.A.F.; data curation, W.A.F.;
writing—original draft preparation, W.A.F.; writing—review and editing, J.M.H.B.; visualization,
W.A.F.; supervision, W.A.F.; project administration, W.A.F.; funding acquisition, J.M.H.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by The American University of the Middle East (AUM), Kuwait.
The APC was funded by The American University of the Middle East (AUM), Kuwait.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the need of permission from the
funding source.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature
ADAS Advanced Driving Assistance Systems
CTRV Constant Turn Rate and Velocity
egocar The reference vehicle contains sensors that perceive the environment around it.
EKF Extended Kalman Filter
DGPS Differential Global Positioning Systems
GB-DBSCAN Grid-Based Density-Based Spatial Clustering of Applications with Noise
GPS Global Positioning System
ICP Iterative Closest Point
IMU Inertial Measurement Unit
KF Kalman Filter
KPI Key Performance Indicator
RANSAC RANdom SAmple Consensus
RTK-GPS Real-Time Kinematic Global Positioning System
RTMCL Real-Time Monte Carlo Localization
RMSE Root Mean Squared Error
NIS Normalized Innovation Squared
PF Particle Filter
UKF Unscented Kalman Filter
SDC Self-Driving Car
SD Standard Deviation
ψ The object orientation yaw angle (heading)
v The magnitude of object velocity
(,) The moving object’s centroid position
λ Spread of the generated sigma points (a design parameter).
X The UKF sate sigma-point matrix
px, py The object’s current x and y positions.
P UKF state covariance matrix
K UKF gain matrix
T UKF cross-correlation matrix
R Measurement noise covariance matrix
S The predicted measurement covariance matrix
∆t The difference in time between two consecutive timestamps.
M The number of particles.
bel(xt) Posterior distribution.
χt Denoted set of particles at time step t

p
(

xt

∣∣∣ut, x[m]
t−1

)
PF state transition distribution

References
1. Yurtsever ELambert Carballo, J.; Takeda, A.K. A Survey of Autonomous Driving: Common Practices and Emerging Technologies.

IEEE Access 2020, 8, 58443–58469. [CrossRef]
2. Farag, W. A lightweight vehicle detection and tracking technique for advanced driving assistance systems. J. Intell. Fuzzy Syst.

2020, 39, 2693–2710. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.2983149
https://doi.org/10.3233/JIFS-190634


World Electr. Veh. J. 2024, 15, 5 24 of 26

3. Fisser, H.; Khorsandi, E.; Wegmann, M.; Baier, F. Detecting Moving Trucks on Roads Using Sentinel-2 Data. Remote Sens. 2021,
14, 1595. [CrossRef]

4. Farag, W. Multiple Road-Objects Detection and Tracking for Autonomous Driving. J. Eng. Res. 2022, 10, 237–262. [CrossRef]
5. Farag, W. Lidar and Radar Fusion for Real-Time Road-Objects Detection and Tracking. Intell. Decis. Technol. 2021, 15, 291–304.

[CrossRef]
6. Farag, W. A Comprehensive Real-Time Road-Lanes Tracking Technique for Autonomous Driving. Int. J. Comput. Digit. Syst. 2020,

9, 349–362. [CrossRef]
7. Farag, W. Real-Time Detection of Road Lane-Lines for Autonomous Driving. Recent Adv. Comput. Sci. Commun. 2020, 13, 265–274.

[CrossRef]
8. Guastella, D.; Muscato, G. Learning-Based Methods of Perception and Navigation for Ground Vehicles in Unstructured Environ-

ments: A Review. Sensors 2021, 21, 73. [CrossRef]
9. Babak, S.-J.; A Hussain, S.; Karakas, B.; Cetin, S. Control of autonomous ground vehicles: A brief technical review. In Proceedings

of the 4th International Conference on Mechanics and Mechatronics Research (ICMMR 2017), Xi’an, China, 20–24 June 2017.
[CrossRef]

10. Farag, W. Road-objects tracking for autonomous driving using lidar and radar fusion. J. Electr. Eng. 2020, 71, 138–149. [CrossRef]
11. Woo, A.; Fidan, B.; Melek, W.W. Localization for Autonomous Driving. In Handbook of Position Location: Theory, Practice, and

Advances, 2nd ed.; Wiley: Hoboken, NJ, USA, 2019.
12. Zekavat, R.; Buehrer, R.M. Localization for Autonomous Driving. In Handbook of Position Location: Theory, Practice, and Advances;

IEEE: Piscataway, NJ, USA, 2019; pp. 1051–1087. [CrossRef]
13. Smit, R.; Van Mourik, H.; Verroen, E.; Pieters, M.; Bakker, D.; Snelder, M. Will self-driving cars impact the long-term investment

strategy for the Dutch national trunk road system? In Autonomous Vehicles and Future Mobility; Elsevier: Amsterdam, The
Netherlands, 2018; pp. 57–67. [CrossRef]

14. Ma, H.; Pei, W.; Zhang, Q. Research on Path Planning Algorithm for Driverless Vehicles. Mathematics 2022, 10, 2555. [CrossRef]
15. Kuutti, S.; Fallah, S.; Katsaros, K.; Dianati, M.; Mccullough, F.; Mouzakitis, A. A Survey of the State-of-the-Art Localization

Techniques and Their Potentials for Autonomous Vehicle Applications. IEEE Internet Things J. 2018, 5, 829–846. [CrossRef]
16. Homolla, T.; Winner, H. Encapsulated trajectory tracking control for autonomous vehicles. Automot. Engine Technol. 2022, 7,

295–306. [CrossRef]
17. Farag, W. Complex-Track Following in Real-Time Using Model-Based Predictive Control. Int. J. Intell. Transp. Syst. Res. 2021, 19,

112–127. [CrossRef]
18. Liu, Y.; Pei, X.; Guo, X.; Chen, C.; Zhou, H. An Integration Planning and Control Method of Intelligent Vehicles based on the

Iterative Linear Quadratic Regulator. J. Frankl. Inst. 2024, 360, 265–282. [CrossRef]
19. Khare, V.; Jain, A. Predict the performance of driverless car through the cognitive data analysis and reliability analysis based

approach. E-Prime-Adv. Electr. Eng. Electron. Energy 2023, 6, 100344. [CrossRef]
20. Levinson, J.; Montemerlo, M.; Thrun, S. Map-Based Precision Vehicle Localization in Urban Environments. In Proceedings of the

Conference: Robotics: Science and Systems III, Virtual, 27–30 June 2007; Georgia Institute of Technology: Atlanta, GA, USA, 2007.
21. Veronese, L.; Auat-Cheein, F.; Mutz, F.; Oliveira-Santos, T.; Guivant, J.E.; de Aguiar, E.; Badue, C.; De Souza, A.F. Evaluating the

Limits of a LiDAR for an Autonomous Driving Localization. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1449–1458. [CrossRef]
22. Zhou, T.; Yang, M.; Jiang, K.; Wong, H.; Yang, D. MMW Radar-Based Technologies in Autonomous Driving: A Review. Sensors

2020, 20, 7283. [CrossRef] [PubMed]
23. Takanose, A.; Atsumi, Y.; Takikawa, K.; Meguro, J. Improvement of Reliability Determination Performance of Real-Time Kinematic

Solutions Using Height Trajectory. Sensors 2021, 21, 657. [CrossRef]
24. Rathour, S.S.; Boyali, A.; Zheming, L.; Mita, S.; John, V. A Map-Based Lateral and Longitudinal DGPS/DR Bias Estimation

Method for Autonomous Driving. Int. J. Mach. Learn. Comput. 2017, 7, 67–71. [CrossRef]
25. Carlevaris-Bianco, N.; Ushani, A.K.; Eustice, R.M. University of Michigan North Campus long-term vision and lidar dataset. Int.

J. Robot. Res. 2015, 35, 1023–1035. [CrossRef]
26. Modsching, M.; Kramer, R.; Hagen, K. Field trial on GPS accuracy in a medium-size city: The influence of built-up. In Proceedings

of the 3rd Workshop on Positioning, Navigation, and Communication, Hannover, Germany, 16 March 2006; pp. 209–218.
27. Rakhmanov, A.; Wiseman, Y. Compression of GNSS Data with the Aim of Speeding up Communication to Autonomous Vehicles.

Remote Sens. 2023, 15, 2165. [CrossRef]
28. Li, W.; Li, Z.; Jiang, W.; Chen, Q.; Zhu, G.; Wang, J. A New Spatial Filtering Algorithm for Noisy and Missing GNSS Position Time

Series Using Weighted Expectation Maximization Principal Component Analysis: A Case Study for Regional GNSS Network in
Xinjiang Province. Remote Sens. 2022, 14, 1295. [CrossRef]

29. Levinson, J.; Thrun, S. Robust vehicle localization in urban environments using probabilistic maps. In Proceedings of the 2010
IEEE International Conference on Robotics and Automation, Anchorage, Alaska, 3–8 May 2010; pp. 4372–4378.

30. Wikipedia. Point Cloud. 10 February 2023. Available online: https://en.wikipedia.org/wiki/Point_cloud (accessed on 14
March 2023).

31. Metabase. Visualizing Data with Maps. 2023. Available online: https://www.metabase.com/learn/visualization/maps (accessed
on 14 March 2023).

https://doi.org/10.3390/rs14071595
https://doi.org/10.36909/jer.10993
https://doi.org/10.3233/IDT-200106
https://doi.org/10.12785/ijcds/090302
https://doi.org/10.2174/2213275912666190126095547
https://doi.org/10.3390/s21010073
https://doi.org/10.1088/1757-899X/224/1/012029
https://doi.org/10.2478/jee-2020-0021
https://doi.org/10.1002/9781119434610.ch29
https://doi.org/10.1016/B978-0-12-817696-2.00005-6
https://doi.org/10.3390/math10152555
https://doi.org/10.1109/JIOT.2018.2812300
https://doi.org/10.1007/s41104-022-00114-8
https://doi.org/10.1007/s13177-020-00226-1
https://doi.org/10.1016/j.jfranklin.2023.11.046
https://doi.org/10.1016/j.prime.2023.100344
https://doi.org/10.1109/TITS.2020.2971054
https://doi.org/10.3390/s20247283
https://www.ncbi.nlm.nih.gov/pubmed/33353016
https://doi.org/10.3390/s21020657
https://doi.org/10.18178/ijmlc.2017.7.4.622
https://doi.org/10.1177/0278364915614638
https://doi.org/10.3390/rs15082165
https://doi.org/10.3390/rs14051295
https://en.wikipedia.org/wiki/Point_cloud
https://www.metabase.com/learn/visualization/maps


World Electr. Veh. J. 2024, 15, 5 25 of 26

32. Wikipedia. Polygon Mesh. 11 January 2023. Available online: https://en.wikipedia.org/wiki/Polygon_mesh (accessed on 14
March 2023).

33. Mapping 2023. Why Better Mapping Technology Is Critical to Autonomous Vehicles. Available online: https://semiengineering.
com/why-better-mapping-technology-is-critical-to-autonomous-vehicles/ (accessed on 4 March 2023).

34. Kummerle, J.; Sons, M.; Poggenhans, F.; Kuehner, T.; Lauer, M.; Stiller, C. Accurate and efficient self-localization on roads using
basic geometric primitives. In Proceedings of the 2019 IEEE International Conference on Robotics and Automation, Montreal, QC,
Canada, 20–24 May 2019.

35. Weng, L.; Yang, M.; Guo, L.; Wang, B.; Wang, C. Pole-based realtime localization for autonomous driving in congested urban
scenarios. In Proceedings of the 2018 IEEE International Conference on Real-Time Computing and Robotics, Kandima, Maldives,
1–5 August 2018; pp. 96–101.

36. Fischler, M.; Bolles, R. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

37. Sefati, M.; Daum, M.; Sondermann, B.; Kreisk, K.D.; Kampker, A. Improving vehicle localization using semantic and pole-like
landmarks. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium, Los Angeles, CA, USA, 11–14 June 2017; pp. 13–19.

38. Schaefer, A.; Büscher, D.; Vertens, J.; Luft, L.; Burgard, W. Long-Term Urban Vehicle Localization Using Pole Landmarks Extracted
from 3-D Lidar Scans. In Proceedings of the European Conference on Mobile Robots (ECMR), Prague, Czech Republic, 4–6
September 2019.

39. Chiang, K.; Chiu, Y.; Srinara, S.; Tsai, M. Performance of LiDAR-SLAM-based PNT with initial poses based on NDT scan matching
algorithm. Satell. Navig. 2023, 4, 3. [CrossRef]

40. Taheri, H.; Xia, Z.C. SLAM; definition and evolution. Eng. Appl. Artif. Intell. 2021, 97, 104032. [CrossRef]
41. Suhr, J.K.; Jang, J.; Min, D.; Jung, H.G. Sensor Fusion-Based Low-Cost Vehicle Localization System for Complex Urban Environ-

ments. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1078–1086. [CrossRef]
42. Lu, F.; Milios, E. Robot pose estimation in unknown environments by matching 2D range scans. J. Intell. Robot. Syst. 1997, 18,

249–275. [CrossRef]
43. Thrun, S. Particle Filters in Robotics. In Proceedings of the 18th Annual Conference on Uncertainty in AI (UAI), Edmonton, AB,

Canada, 1–4 August 2002.
44. Zarchan, P.; Musoff, H. Fundamentals of Kalman Filtering: A Practical Approach, 4th ed.; American Institute of Aeronautics and

Astronautics, Incorporated: Reston, VA, USA, 2013; ISBN 978-1-62410-276-9.
45. Wan, E.A.; Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE Adaptive

Systems for Signal Processing, Communications, and Control Symposium, Lake Louise, AB, Canada, 4 October 2000.
46. Einicke, G.A.; White, L.B. Robust Extended Kalman Filtering. IEEE Trans. Signal Process. 1999, 47, 2596–2599. [CrossRef]
47. Sander, J.; Xu, X.; Ester, M.; Kriegel, H.-P. A density-based algorithm for discovering clusters in large spatial databases with noise.

In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August
1996; pp. 226–231.

48. Dietmayer, K.; Kellner, D.; Klappstein, J. Grid-based dbscan for clustering extended objects in radar data. In Proceedings of the
2012 IEEE Intelligent Vehicles Symposium, Alcala de Henares, Spain, 3–7 June 2012.

49. Wikipedia. K-D Tree. 28 February 2023. Available online: https://en.wikipedia.org/wiki/K-d_tree (accessed on 21 March 2023).
50. GCC, The GNU Compiler Collection. 2023. Available online: https://gcc.gnu.org/ (accessed on 22 March 2023).
51. Wikipedia. Real-Time Computing. 16 November 2023. Available online: https://en.wikipedia.org/wiki/Real-time_computing

(accessed on 1 December 2023).
52. Ubuntu Linux. 2023. Available online: https://www.ubuntu.com/ (accessed on 22 March 2023).
53. Eigen. 2023. Available online: http://eigen.tuxfamily.org/index.php?title=Main_Page (accessed on 22 March 2023).
54. Zhao, S.; Huang, B. On Initialization of the Kalman Filter. In Proceedings of the 6th International Symposium on Advanced

Control of Industrial Processes (AdCONIP), Taipei, Taiwan, 28–31 May 2017.
55. Piché, R. Online tests of Kalman filter consistency. Int. J. Adapt. Control Signal Process. 2016, 30, 115–124. [CrossRef]
56. CARLA. Open-Source Simulator for Autonomous Driving Research. 2023. Available online: https://carla.org/ (accessed on 31

March 2023).
57. Farag, W. Real-Time Autonomous Vehicle Localization Based on Particle and Unscented Kalman Filters. J. Control Autom. Electr.

Syst. 2021, 32, 309–325. [CrossRef]
58. Spangenberg, R.; Goehring, D.; Rojas, R. Pole-based Localization for Autonomous Vehicles in Urban Scenarios. In Proceedings

of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14
October 2016.

59. Gao, H.; Cheng, B.; Wang, J.; Li, K.; Zhao, J.; Li, D. Object classification using CNn-based fusion of vision and LIDAR in
autonomous vehicle environment. IEEE Trans. Ind. Inform. 2018, 14, 4224–4231. [CrossRef]

60. Gao, H.; Su, H.; Cai, Y.; Wu, R.; Hao, Z.; Xu, Y.; Wu, W.; Wang, J.; Li, Z.; Kan, Z. Trajectory prediction of cyclist based on
dynamic Bayesian network and long short-term memory model at unsignalized intersections. Sci. China Inf. Sci. 2021, 64, 172207.
[CrossRef]

https://en.wikipedia.org/wiki/Polygon_mesh
https://semiengineering.com/why-better-mapping-technology-is-critical-to-autonomous-vehicles/
https://semiengineering.com/why-better-mapping-technology-is-critical-to-autonomous-vehicles/
https://doi.org/10.1145/358669.358692
https://doi.org/10.1186/s43020-022-00092-0
https://doi.org/10.1016/j.engappai.2020.104032
https://doi.org/10.1109/TITS.2016.2595618
https://doi.org/10.1023/A:1007957421070
https://doi.org/10.1109/78.782219
https://en.wikipedia.org/wiki/K-d_tree
https://gcc.gnu.org/
https://en.wikipedia.org/wiki/Real-time_computing
https://www.ubuntu.com/
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://doi.org/10.1002/acs.2571
https://carla.org/
https://doi.org/10.1007/s40313-020-00666-w
https://doi.org/10.1109/TII.2018.2822828
https://doi.org/10.1007/s11432-020-3071-8


World Electr. Veh. J. 2024, 15, 5 26 of 26

61. Hosur, P.; Shettar, R.B.; Potdar, M.B. Environmental awareness around vehicle using ultrasonic sensors. In Proceedings of the
2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India, 21–24
September 2016; pp. 1154–1159. [CrossRef]

62. Wiseman, Y. Ancillary Ultrasonic Rangefinder for Autonomous Vehicles. Int. J. Secur. Its Appl. 2018, 12, 49–58. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/icacci.2016.7732200
https://doi.org/10.14257/ijsia.2018.12.5.05

	Introduction 
	Literature Review 
	Overview of the Proposed Localization Algorithm 
	Overview of the UKF 
	Model of the Road Object 
	UKF-Based Lidar/Radar Fusion 
	Point-Cloud Clustering and Association 
	Details of the Particle Filter 
	Realization of the RTMCL 
	Testing and Evaluation Results 
	Conclusions 
	References

