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Abstract: In the electric vehicle wireless power transmission system, the high-frequency alternating
magnetic field between the transmitter and receiver can have a certain impact on the health of living
organisms and may even lead to lesions. In addition, metal foreign objects in an alternating magnetic
field can cause their own heating or even cause fires due to the eddy current effect, so foreign object
detection is an essential function in the wireless power transmission system of electric vehicles. In
order to prevent metals and living organisms from entering the charging area and causing harm to the
charging system and living organisms, this paper proposes a method for detecting living organisms
and metal foreign objects. Firstly, the equivalent circuits for the detection systems of the living
organism foreign objects and metal foreign objects are established, respectively, and the working
theory of the detection system is analyzed by deriving equations. Secondly, the comb capacitor
simulation model was constructed, and the comb capacitor electrode spacing, wire thickness, and
capacitor spacing were designed based on the scale factor γ to explore the effects of the height
and bottom area of the living organism’s foreign object on the comb capacitor. We constructed a
simulation model of the detection coil and designed the inner diameter D, the number of turns N, and
the wire spacing S of the detection coil according to the scale factor β. An arrayed detection coil and
comb capacitor combination mode is proposed to realize the function of the simultaneous detection
of metal and living organism foreign objects, and a compensation capacitor is introduced to keep the
detection system in a resonant state. Lastly, a platform for foreign object detection experiments was
set up to detect metal screws and beef chunks compared to the detection area without foreign objects.
Metal screws entering the detection area cause a 20% voltage drop in the detection circuit resistor,
and beef chunks entering the detection area cause a 30% voltage drop in the detection circuit resistor,
so the detection method is effective in detecting both metals and living organisms. The feasibility of
the combined mode of arrayed detection coils and comb capacitors was verified.

Keywords: comb capacitors; detection coils; compensation capacitors; electric vehicles; wireless
power transmission; foreign object detection

1. Introduction

Wireless power transmission systems can transmit power from the grid to electrical
loads without cable connections. Over the past few decades [1], the research on wireless
energy transmission technology has never stopped [2,3]. Wireless power transmission tech-
nology is widely used in railway transport, medical equipment, and electric vehicles due to
its convenience and low equipment loss rate [4–7]. During the wireless charging process of
electric vehicles, the energy coupling region of the system may be mixed with certain metal
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or living organism foreign objects, and the presence of these foreign objects can affect the
system transmission efficiency and power. More seriously, the eddy current effect of the
metal can cause the temperature of the metal itself to rise and, in severe cases, even cause
a fire. Electromagnetic radiation generated by coils causes damage to the reproductive,
nervous, and immune systems of living organisms. Therefore, research on foreign body
detection is particularly important. Current foreign body detection techniques include
two main categories: metal foreign object detection and living organism foreign object
detection [8–12]. Research on foreign object detection technology for living organisms is
still in its infancy [13]. Most studies have also focused on the use of auxiliary sensors,
such as thermal cameras, X-rays, pressure sensors, radars, and heat sensors [14–16]. How-
ever, these methods are difficult to integrate with magnetic couplers and are susceptible
to environmental influences that can lead to false positives. In contrast, a structurally
simple and cost-effective method for the foreign body detection of living organisms using
comb capacitors has been proposed. In high-power wireless power transmission system
applications, similar to detection coil arrays, literature [17] and literature [18] introduced
a comb capacitor-based living organism detection device and analyzed and designed the
comb capacitor structural parameters, capacitance spacing, and so on. According to the
effect of living organisms on comb capacitors, corresponding parallel resonant circuits
and integral circuits are designed for the detection of living organisms. For metal foreign
object detection, detector coil arrays have received much attention due to their low cost
and high integration. Most of the research on metal foreign object detection using detector
coil arrays has focused on optimizing the coil array layout, eliminating detection blind
zones, and improving detection reliability [19–21]. Literature [22] proposes an active metal
foreign object detection scheme based on impedance change, which solves the problem of a
passive detection scheme that cannot achieve the detection under a power-down situation
by applying an excitation source to the detection coil, optimizes the coil structure to solve
the problem of detecting the blind area, and selects the frequency that deviates from the
resonance point with high sensitivity. In practice, spatial misalignment between electric
vehicles and ground-mounted power transmitters is inevitable. In order to eliminate this
misalignment effect, literature [23] proposes an FOD method based on passive sensing
coils using voltage vector decomposition. A non-cooperative MOD (metal object detec-
tion) mechanism is proposed in the literature [24] to support the safe operation of WEVC
(wireless electric vehicle charging) systems. We designed a unique array of sensing coils to
perfectly adapt to the magnetic field characteristics of DD coils. Size-modulated patch coils
were created to eliminate detection blind spots by correct polarity configuration. Due to its
asymmetric topology, flexible size modulation, and proper polarity configuration, it can ef-
fectively detect metallic foreign objects anywhere in the charging area. This research paper
introduces and analyzes a method for the detection of living organisms and metal foreign
objects based on planar comb capacitors and detection coils. Firstly, the fundamentals of the
method for detecting living organisms and metal foreign objects are analyzed separately.
Secondly, the comb capacitor and detection coil structural parameters are optimized and
designed with the help of a finite element simulation software, Ansys Maxwell-2022R1.
Finally, a combined model of the comb capacitor and detection coil is proposed. However,
considering the fabrication process, it is difficult for the comb capacitor and the detection
coil to reach full resonance, so it is necessary to introduce a compensation capacitor to
make the detection circuit work in resonance by matching the appropriate compensation
capacitor parameters. By introducing the compensation capacitor, the variation in the
impedance parameter is extended to the variation in the parameters of the whole resonant
circuit, which improves the sensitivity of foreign object detection. The foreign object detec-
tion method used in this paper innovatively fuses a detection coil with a comb capacitor
to achieve a system for detecting metal foreign objects and living organisms with high
detection accuracy.
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2. Principle Analysis of Living Organisms and Metal Foreign Object Detection
Technology
2.1. Principle Analysis of Comb Capacitor-Based Foreign Object Detection Technology for
Living Organisms

When a living organism approaches the comb capacitor, the dielectric between the
two pole plates of the comb capacitor as well as the capacitance to ground changes and
the capacitance value changes accordingly. Thus, the presence of an organism can be
demonstrated by comparing the change in the resistance voltage of the detection circuit
before and after the living organism enters the detection area. Unlike the capacitors used in
the literature, this paper will investigate planar comb capacitors.

The live foreign object detection circuit is shown in Figure 1, where CDi denotes the
comb capacitance, ∆CDi denotes the amount of change in the comb capacitance during the
invasion of the living organism foreign object, the input voltage is Uin, the external resistor
is RD, and the resonance angular frequency is ω. The control switches Qi are connected to
the corresponding comb capacitors, respectively. When the system charging area is free of
living organisms and foreign objects, each comb capacitor CDi resonates in parallel with the
inductor LD, respectively, to satisfy the parallel resonance condition shown in Equation (1).
By operating the control switch Qi to ensure that only one comb capacitor is connected to
the circuit at the same time, it is possible to realize the function of detecting organisms over
the entire charging area when the comb capacitor is sufficient to cover the charging area.
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When there is a living organism foreign object in the detection region, the equivalent
resistance expression of the parallel branch composed of inductance and comb capacitance
is shown in Equation (2). At this time, the output voltage is shown in Equation (3). A scaling
factor γ is introduced, which is defined as the ratio of the output voltage in the presence or
absence of the living organism foreign object, as shown in Equation (4). From Equation
(4), the scaling factor γ is only related to the amount of change in comb capacitance ∆CDi,
which is independent of the comb capacitance CDi. However, there are also live-to-ground
capacitance, comb capacitance-to-ground capacitance, and the effect of energy transmitting
and receiving coils and cores on comb capacitance in wireless power transmission systems.
So, when designing the comb capacitor, CDi should be made as large as possible. When
there is no living organism in the charging area, the inductor LD resonates in parallel
with the comb capacitor CDi, and the output voltage Uout is equal to the input voltage Uin.
Therefore, the scaling factor γ is proportional to the system output voltage U′

out during
foreign object intrusion of living organisms. The larger the change in comb capacitance
∆CDi and the smaller the scaling factor γ, the smaller the U′

out, the larger the change in
system output voltage, and the more sensitive the detection of living organisms.

ω2LDCDi = 1 (1)

Z(s) =
jωLD

1 − ω2LD(CDi + ∆CDi)
(2)

U′
out =

Uin
1 + Jω∆CDiRD

(3)
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γ =

∣∣∣∣U′
out

Uout

∣∣∣∣ = 1√
1 + ω2R2

D∆C2
Di

(4)

2.2. Principle Analysis of Metal Foreign Object Detection Technology Based on Detection Coil

In the alternating magnetic field, the magnetic effect or eddy current effect caused
by the metal substance mistakenly entering the magnetic field will produce an additional
field, this additional field will, in turn, affect the detection coil and change the impedance
of the detection coil so that the detection coil voltage changes by comparing the detection
coil voltage before and after the detection of metal foreign objects in the detection area to
determine whether the metal foreign objects exist.

According to Faraday’s law of electromagnetic induction, the metal foreign object can
be equivalently modeled as a series connection of resistance and inductance. When the
detection area is free of metal foreign objects, the equivalent circuit is shown in Figure 2.
Uin is the input voltage, ID is the current flowing through the sampling resistor when
there are no metal foreign objects, RD is the testing resistor, LD is the measuring coil’s
corresponding inductance, and CD is the parallel resonant capacitance. Since the detection
coil is in resonance with the matched capacitor, the detection coil voltage is the input
voltage Uin. When the detection area is mixed with metal foreign objects, the equivalent
circuit diagram shown in Figure 3a,b is a simplified equivalent circuit diagram. I’D is the
current flowing through the sampling resistor in the presence of metal foreign objects. I’ is
the current flowing through the detection coil in the presence of metallic foreign matter. Lx
is the foreign object equivalent inductance, Rx is the foreign object equivalent resistance, M
is the mutual inductance between LD and Lx, and Z is the reflected impedance.
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According to Kirchhoff’s voltage law, the following equation is obtained:{
Uin = I′DRD + (I′D − I′) 1

JωCD
0 = I′(Z + jωLD) + (I′ − I′D)

1
JωCD

(5)

where Z = (ωM)2

R2
x+(ωLx)

2 (Rx − JωLx).

The calculation gives the detection coil voltage as follows:

U′
out =

jωLD
J(ωZCDRD − ωLD) + Z

Uin (6)
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β =

∣∣∣∣U′
out

Uout

∣∣∣∣ = ∣∣∣∣ jωLD
J(ωZCDRD − ωLD) + Z

∣∣∣∣ (7)

The circuit resonance condition is

ω2LDCD = 1 (8)

From Equation (6), it can be seen that when the metal foreign object enters the detection
area, the voltage of the detection coil decreases, according to which it can judge whether
there is a metal foreign object mixed in. As shown in Equation (7), the scale factor β is set as
the ratio of the voltage of the detection coil with and without foreign objects to characterize
the detection effect of the system. The smaller β indicates that the greater the change in
detection coil voltage, the more effective the system detection.

3. Foreign Object Detection System Parameter Design
3.1. Parameter Design and Simulation Analysis of Comb Capacitor

In wireless power transmission systems, comb capacitors are generally placed on top
of the energy-transmitting coils. Figure 4 shows a top view of the basic structure of a comb
capacitor. A single comb capacitor consists of two comb electrodes, Ai and Bi, with the
“teeth” of the comb electrodes arranged in a staggered pattern to form a local capacitance
cell, where the relevant parameters are defined as length l, width w, electrode spacing d,
and electrode thickness r. In this paper, the variation in comb capacitance ∆Ci is taken as
the reference standard, and the structural parameters of comb capacitance are optimized
and designed with the help of the simulation software Ansys Maxwell-2022R1. The comb
capacitance simulation model containing the living organism foreign object is shown in
Figure 5, where the red part indicates the living organism foreign object, and the yellow
part is the comb capacitance simulation model.
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Figure 5. Finite element simulation model of comb capacitor (living foreign object).

A material with a dielectric constant of 400 [25] was used for simulation and analysis
in place of the living organism foreign object. The size of the living organism foreign
object was chosen to be 50 × 50 × 10 mm3, and the distance of the living organism foreign
object from the center of symmetry of the comb capacitor was denoted by h. The comb
capacitor is set to have a length l of 100 mm, a width w of 50 mm, an electrode thickness r of
1 mm, and a wire thickness of 0.035 mm. The relationship between comb capacitance CDi
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and its variation ∆CDi with electrode spacing d, living organism foreign object, and comb
capacitance distance h is explored, as shown in Figure 6. From Figure 6a, the smaller the
electrode spacing d, the larger the comb capacitance CDi. According to Figure 6b, the comb
capacitance variation ∆CDi for different electrode spacing d shows an overall decreasing
trend with the increase in the distance h between the living organism foreign object and the
comb capacitance. The comb capacitance change ∆CDi is significantly larger for a spacing
of 3 mm compared to the case where the electrode spacing d is set to 5 mm and 7 mm.
Therefore, 3 mm is selected as the comb capacitor electrode spacing in this paper.
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The simulation models of different sizes of living organism foreign objects were
established, respectively, to explore the effects of different sizes of living organism foreign
objects on comb capacitance, as shown in Figure 7. From Figure 7, the comb capacitance
change ∆CDi decreases with the increase in the distance h between the living organism
foreign object and the comb capacitance for the same material and thickness. For the same
distance h, the relatively large bottom area of the living organism foreign object has a
greater effect on the comb capacitance.
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For the purpose of analysis, the dimensions of the living organism foreign object
simulation model were determined to be 50 × 50 × 10 mm3. Since this paper uses the
form of PCB planar capacitors, and the common PCB lead thicknesses are 1 oz (0.035 mm)
and 2 oz (0.070 mm), the thickness of the capacitor leads is determined by the simulation
analysis below. Figure 8 shows the curves of the variation in comb capacitance change ∆CDi
with the distance h between the living organism foreign object and the comb capacitance for
different wire thicknesses. According to Figure 8, it can be stated that when a foreign object
is influenced by the same live organism, the comb capacitance with 1 oz wire thickness
has a greater amount of change and more significant living organism detection than the
comb capacitance with 2 oz wire thickness. Therefore, in this paper, a 1 oz thickness of wire
is selected.
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Considering the presence of a protective enclosure in practical applications, the dis-
tance h between the living organism foreign object and the comb capacitor is set to 3 mm
in the following. Since the foreign object detection area is much larger than the detection
range of a single comb capacitor, the detection system should use multiple comb capacitors
to detect living organisms. In this paper, comb capacitors are arrayed, and the parasitic
capacitance CS between adjacent comb capacitor pole plates derived therefrom affects the
normal operation of comb capacitors. Setting the spacing between two neighboring comb
capacitors as g, CS/∆CDi is used as a reference basis to explore the variation in this scaling
factor with the spacing g, as shown in Figure 9. (CS is the parasitic capacitance, and ∆CDi is
the comb capacitance change when h is 3 mm)
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Figure 9. The variation in CS/∆CDi with g.

As can be seen in Figure 9, CS/∆CDi becomes progressively smaller with increasing
spacing g, and the rate of decrease is progressively retarded. It can be seen that the larger
the capacitor spacing, the smaller the effect between neighboring capacitors, in line with
the actual situation. The spacing g should not be too large considering the need for foreign
object detection in the area between neighboring comb capacitors. Therefore, in this paper,
7 mm is selected as the spacing between two neighboring comb capacitors, when the
parasitic capacitance CS is less than one-fifth of the comb capacitance variation.

3.2. Detection Coil Parameter Design and Simulation Analysis

The detection coil is a planar square helical coil, and the coil structure is shown in
Figure 10. Using Ansys Maxwell to build a simulation model, the optimization objective of
the detection coil is the scaling factor β. The relationship between the coil diameter inside
D, side length A, and the number of turns N and the scaling factor is investigated to find
the optimal detection coil structure parameters. The scale factor β varies with coil diameter
inside D, number of turns N, and wire-to-wire spacing S, as shown in Figure 11. Therefore,
the selected parameters of the coil structure are coil diameter inside D = 10 mm, number of
turns N = 10, and wire-to-wire spacing S = 1 mm.
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4. Combined Comb Capacitor and Detection Coil Mode

In fact, the mixing of foreign objects into the coupling region is highly random and
fortuitous. In the current exploration process of domestic and international research
institutes, metal foreign objects are generally equivalent to RL circuits, ignoring the weak
eddy current effect that may be generated by body fluids under alternating magnetic fields,
and living organism foreign objects are generally equivalent to RC circuits. However,
various types of foreign objects are different in terms of material composition, shape, and
structure, which makes it impossible to construct accurate circuit models of foreign objects.

In this paper, by placing arrayed detection coils overlapped with comb capacitors, it is
possible to achieve the function of detecting both metal and living organism foreign objects
at the same time, as shown in Figure 12. Figure 12a shows a model of the detection coil and
comb capacitor combination. The red part of this is the comb capacitor model, as shown in
Figure 12b. Figure 12c shows the detection coil set, which is a combination of two detection
coils connected in reverse series. Since the comb capacitor detection distance is small, this
paper places the comb capacitor on the front side of the PCB and the detection coil on the
back side of the PCB. Figure 13 shows the foreign object detection system circuit, where
LD is the array detection coil, and CDi is the comb capacitor. The circuit is compensated in
parallel, with the arrayed detection coil and comb capacitor compensating each other, and
the compensation capacitor CKi, which is connected in parallel with the comb capacitor, is
added for adjustment so that the detection circuit is in a resonant state. The parameters
of the compensation capacitor CKi are matched according to Equation (9) to ensure that
the detection system works in resonance when there is no foreign object in the detection
area. The detection system makes up for the previous defects that can only detect a single
category of foreign objects of metal or organisms and realizes a set of detection systems
that can detect both metal and organism foreign objects.

ω2LDi(C Di + Cki

)
= 1 (9)
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coil. (b) Comb capacitor model. (c) Inverse series rectangular coil model.
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Since the detection area is large, multiple groups of detection devices are required in
order to achieve full-area detection. Each group of detection devices is controlled to access
the detection circuit in time by switch Qi, and the detection flow is shown in Figure 14.
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5. Foreign Object Detection System Experiment

In order to improve the sensitivity of the detection of foreign objects in the charging
area, this paper adopts the way of mutual compensation between comb capacitors and
detection coils and increases the compensation capacitance CKi for circuit state regulation
to ensure that the detection circuit is in a resonant state.

The design of the detection coil and comb capacitor based on the optimized structural
parameters described in the previous section is shown in Figure 15, with the comb capacitor
on the top layer of the combination and the detection coil on the bottom layer. The structural
parameters of the comb capacitor and detection coil used in this paper are shown in Table 1.
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Figure 15. Combination of a detection coil and a comb capacitor: (a) front side (comb capacitor) and
(b) reverse side (detection coil).

Table 1. Comb capacitor and detection coil structure parameters.

Comb Capacitor Detector Coil

Parametric Numerical Value Parametric Numerical Value

Capacitor length
l/mm 100 Inside warp of the

coil D/mm 10

Electrode spacing
d/mm 3 Number of turns of

coil N 10

Capacitance Width
w/mm 50 Spacing of lines

S/mm 1

Electrode thickness
r/mm 1

Capacitor spacing
g/mm 7

The detection coil inductance LD was measured as 8.67 µH, and the comb capacitance
CD1 was 38.87 pF. The external resistor RD is selected to be 100 kΩ, an AC power signal
with a frequency of 3 MHz is applied to the detection circuit, and a compensation capacitor
CKi is added to the circuit to bring the circuit to a resonant state by connecting the resonant
conditions in parallel. We constructed a foreign object identification experimental apparatus,
as depicted in Figure 16, to confirm the viability of the foreign object detection technique
suggested in this work.
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The presence of foreign matter is determined by comparing the voltage change in
the external resistor RD. Figure 17a shows the change in the voltage waveform of resistor
RD when metals (metal screws) and living organisms (beef blocks) sequentially enter the
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detection area. Figure 17b–d shows the waveforms of the input voltage Uin and resistance
voltage URD of the foreign object detection circuit when there is no foreign object in the
detection area, when there is a beef block in the detection area, and when there is a metal
screw in the detection area, respectively. It can be observed that when both metal foreign
objects and living organism foreign objects enter the detection area, they both cause a
change in the circuit parameters, which leads to a change in the URD. Taking the voltage
amplitude change of more than 10% as the criterion for passing the test, upon analyzing
Figure 17b–d, it can be found by comparison that the screws lead to an amplitude change
of 20% in the resistor voltage of the detection circuit, which is a significant change in
amplitude, and it is easy to achieve the effective detection of metals of this size. Testing the
beef block as a biosample, as shown in Figure 16b, leads to a 30% amplitude change in the
resistance amplitude of the detection circuit. Both methods caused at least a 20% change in
amplitude, indicating that the detection method is highly sensitive.
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Figure 17. Waveforms of Uin and URD when metal and living organism foreign objects enter the
detection region. (a) Metal and live foreign objects enter the detection area in sequence. (b) No foreign
object. (c) Living organism foreign object (beef block). (d) Metal foreign object (metal screw).

In summary, it is experimentally verified that the foreign object detection method can
achieve the detection of metal and living organism foreign objects with high detection
sensitivity.

6. Conclusions

First, the circuit models for the detection of metal foreign objects and living organism
foreign objects are established in this article. Formulas are derived in order to analyze
the design concepts for the structural parameters of the comb capacitor and detection coil.
Second, simulation software was used to optimize the comb capacitor’s electrode spacing
and wire thickness. This study examined the impacts of a biological foreign item’s size
and distance, as well as the distance between neighboring comb capacitors, on the comb
capacitor. Parameters such as inner diameter, number of turns, and wire spacing of the
detection coil were optimally designed. Finally, a combination model of arrayed detection
coil and comb capacitor that can detect both metal and living organism foreign objects
is proposed, and a compensation capacitor is introduced to improve the operation of the
detection circuit and increase the sensitivity of the detection system.

The presence of metal screws and beef blocks for the detection of foreign objects in
the detection area is caused by the detection circuit resistance voltage amplitude changes
reduced by 20% and 30%, respectively, to achieve an effective detection of metal and living
organisms foreign objects. The experimental results demonstrate the feasibility of the
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combined mode of detection coil and comb capacitor, which has the dual functions of metal
foreign object detection and living organism foreign object detection with high detection
sensitivity. The detection of multiple foreign objects of different classes in the detection
area at the same time will be a potential area for future research.
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