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Abstract: Traffic congestion and frequent traffic accidents have become the main problems affecting
urban traffic. The effective location prediction of vehicle trajectory can help alleviate traffic congestion,
reduce the occurrence of traffic accidents, and optimize the urban traffic system. Vehicle trajectory is
closely related to the surrounding Point of Interest (POI). POI can be considered as the spatial feature
and can be fused with trajectory points to improve prediction accuracy. A Local Dynamic Graph
Spatiotemporal–Long Short-Term Memory (LDGST-LSTM) was proposed in this paper to extract and
fuse the POI knowledge and realize next location prediction. POI semantic information was learned
by constructing the traffic knowledge graph, and spatial and temporal features were extracted by
combining the Graph Attention Network (GAT) and temporal attention mechanism. The effectiveness
of LDGST-LSTM was verified on two datasets, including Chengdu taxi trajectory data in August 2014
and October 2018. The accuracy and robustness of the proposed model were significantly improved
compared with the benchmark models. The effects of major components in the proposed model were
also evaluated through an ablation experiment. Moreover, the weights of POI that influence location
prediction were visualized to improve the interpretability of the proposed model.

Keywords: vehicle trajectory; location prediction; knowledge graph; point of interest; graph
attention network

1. Introduction

Traffic congestion and frequent traffic accidents have become serious problems affect-
ing urban traffic with the rapid development of cities [1]. The Intelligent Transportation
System (ITS) has been proposed to alleviate these traffic problems. The location prediction
of vehicle trajectory is one of the research topics relating to the ITS [2]. Through effective
location prediction, traffic congestion can be alleviated, which is of great significance in
terms of optimizing traffic management. The goal of vehicle location prediction is to predict
the next location of the vehicle according to the observed trajectory data [3]. Deep learning
methods have been widely used in vehicle trajectory location prediction. Vehicle trajec-
tory is usually considered a time series since it is a sequence of sampled points [1]. Long
Short-Term Memory (LSTM) was mainly used to deal with time sequences. Convolution
Neural Network (CNN) was used by Guo [1] to extract the spatial features of vehicles, and
a Deep Bidirectional Long Short-Term Memory (DBLSTM) model was used to extract the
temporal features to realize the location prediction of vehicles. A LSTM was applied by
Li et al. [4] to capture the temporal features between vehicles and design a convolutional
social pooling network to capture spatial features to predict vehicle trajectory. A weighted
support vector regression algorithm was proposed by Liao [5] to allocate weight according
to the calculation and comparison of trajectory points to achieve vehicle location prediction,
improving the accuracy and robustness of the results. Methods based on deep learning
algorithms can effectively improve prediction accuracy and reduce error. Through feature
mining and extraction, deep learning models can effectively improve the accuracy and ro-
bustness of the prediction results. However, complex road structures and the surrounding
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environment could become the factors affecting vehicle location prediction. The impact
of surrounding buildings, or to say, Point of Interest (POI), on prediction under complex
traffic environments was usually ignored in the existing research. Based on this situation,
the performance of vehicle location prediction in the real traffic network cannot be satisfied.
Therefore, how to integrate external features with vehicle trajectory to improve the accuracy
and robustness of the model needs further research.

Knowledge graph (KG), Graph Attention Network (GAT), and time attention mecha-
nism are popular methods used lately in the field of transportation and have shown better
performance in improving the accuracy and robustness of the model [6]. The knowledge
graph can help fuse features. GAT can be used as a spatial attention mechanism to effec-
tively extract spatial features, and a temporal attention mechanism can effectively extract
temporal features. The application of knowledge graph has developed rapidly in the field
of transportation. For example, a multi-layer traffic knowledge graph model was proposed
by Wang [7] to realize destination prediction by modeling the complex traffic network,
weighted summing, and fusing different node features. The driving intention in the traffic
network is affected by the functional area and the surrounding Point of Interest (POI) [8].
Therefore, it is important to predict the location of vehicle trajectory by designing a traffic
knowledge graph. The accuracy can be improved by interacting the vehicle trajectory with
the surrounding environments [8]. Point of interest (POI) generally refers to a location
or a specific point on a map or in a geographical area. Those points are often marked on
maps to help people navigate and discover places of interest, such as hotels, restaurants,
shopping malls, or other noteworthy locations. In trajectory prediction, the driving in-
tention of vehicles is closely related to the surrounding POI [8]. Therefore, POI can be
considered as prior knowledge and spatial feature to help model understanding of the
context. It can be fused with trajectory points to improve prediction accuracy [9]. The
trajectory may change when there are traffic jams or traffic accidents, and the POI knowl-
edge around trajectory points has an impact on the future trend. It is of significance to the
optimization of traffic management by integrating POI knowledge and vehicle trajectory to
realize position prediction and improve the accuracy of the prediction. Graph Attention
Network (GAT) [10] and various temporal attention mechanisms [11] are also widely used
for extracting spatial and temporal features. A new GAT is proposed by Su et al. [12] to
allocate attention to explain and express the spatial correlation of road networks, as well
as effectively capture the dynamic update of the adjacent transformation matrix. LSTM
combined with the attention mechanism was proposed by Ali et al. [13] to capture temporal
features. However, how to fuse the surrounding environment features such as POI and
the synergy of knowledge graph, GAT, and temporal attention mechanism on location
prediction tasks still lacks research.

A Local Dynamic Graph Spatiotemporal–Long Short-Term Memory (LDGST–LSTM)
is proposed in this paper to predict the next location of vehicle trajectory. Through the
proposed model, POI knowledge is extracted and fused by constructing a traffic knowledge
graph. Additionally, GAT and temporal attention mechanisms are combined to improve
the accuracy, robustness, and interpretability of the prediction. The main contributions of
this paper are as follows.

• Knowledge graph and spatiotemporal attention mechanisms were combined in this
paper to predict the vehicle location at the next moment. POI was integrated with
historical trajectory, and the POI weights that affect the prediction were visualized
additionally. Regions that have a great impact on the prediction are explored, and the
interpretability of the model was enhanced.

• A global traffic knowledge graph was constructed to learn and represent POI semantic
information. POI nodes were considered as the entity, and the connection between
POI was considered as the relationship. The representation vector of each node was
obtained by using the Translate Embedding (TransE) algorithm and was considered as
the feature vector for vehicle location prediction.
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• A spatiotemporal attention mechanism was designed to allocate weights for spatial
and temporal features, thus enhancing the interpretability and accuracy of the model.
The weight distribution of spatial features was achieved through GAT to obtain
the corresponding graph representation vector. LSTM combined with a multi-head
attention mechanism was applied to allocate weights of trajectory points at different
time steps to improve the prediction accuracy.

Section 2 introduces a thorough review of the research on vehicle trajectory prediction
from three aspects: deep learning, knowledge graphs, and attention mechanisms. The basic
concepts and studied problems are formally defined in Section 3. The research methodology
and details of the LDGST-LSTM model are presented in Section 4. Then, Section 5 provides
a description of the experiment settings. Experiments on robustness, accuracy, and ablation
are conducted to confirm the effectiveness of the proposed model. In Section 6, the findings
of this paper are outlined. Moreover, limitations and further directions are also described.

2. Related Work

This section will provide a literature review on related works, including vehicle
location prediction, knowledge graph, and attention mechanism.

2.1. Vehicle Trajectory Location Prediction

The deep learning method is widely used in location prediction of vehicle trajectory. A
vehicle trajectory prediction model combining deep encoder–decoder and neural network
was designed by Fan et al. [14]. Multiple segments were processed and corrected by
using the deep neural network model, which improved the accuracy of the prediction
and alleviated long-term dependences [15]. Kalatian and Farooq [16] proposed a new
multi-input LSTM to fuse sequence data with context information of the environment. It
can reduce prediction error, but more external features that could improve the prediction
performance are ignored. Graph Convolutional Network (GCN) combined with its variant
model were proposed by An et al. [17] to realize vehicle trajectory prediction in urban
traffic systems. Through this conjunction, the model can effectively capture spatiotemporal
features, therefore improving the effectiveness of the prediction.

Methods based on deep learning algorithms can effectively improve prediction ac-
curacy and reduce error. Through feature mining and extraction, a deep learning model
can effectively improve its accuracy and robustness. Methods based on statistical methods
are also widely used in traffic prediction because of their interpretability. The statistical
model was used to calculate the possible transition probability, which can help under-
stand and explain mobile individual behaviors. By utilizing sensor data and modeling
techniques, Zambrano-Martinez et al. [18] applied statistical methods such as regression
and clustering to analyze the trajectory data, which provided insights into the complex
dynamics of urban traffic. Zhang et al. [19] introduced an innovative method incorporating
fuzzy logic and genetic algorithms for short-term traffic congestion prediction. However,
the impact of surrounding buildings, such as Point of Interest (POI), on prediction under
complex traffic environments is usually ignored in the existing research. Therefore, how to
better integrate external factors such as POI features needs further research to help improve
prediction performance.

The efficiency and accuracy of vehicle location prediction can be enhanced by com-
bining vehicle trajectory with road networks in data preprocessing. For example, original
vehicle trajectory points were replaced with marked nodes or roads of road networks
by Fan [14] to realize location prediction. However, only the location information was
considered in the proposed method, and external factors such as driving intentions or
preferences that have significant impacts on prediction results were ignored.

2.2. Knowledge Graph

Knowledge graph is one of the most popular representation methods, which describes
entities and their relationships in a structured triple. Each triple is composed of a head
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entity, a tail entity, and their relationship. The knowledge graph can be combined with
deep learning models to learn the representation of the entities and relationships to realize
prediction tasks. It can make contributions in the fields of medical treatment, national
defense, transportation, and network information security [20,21].

A knowledge graph can be seen as a structured representation of contextual informa-
tion on the map. It helps the model understand relationships between different elements
in the environment, such as the proximity of points of interest (POIs), road structures, or
historical traffic patterns. The knowledge graph enriches the model’s understanding of the
environment, allowing it to make predictions with a deeper awareness of the spatial context.
Additionally, the model should be adaptive to evolving conditions like construction zones
or changes in traffic patterns.

Translating Embedding (TransE) is one of the typical models of knowledge graph [22].
A TransGraph model based on TransE was proposed by Chen et al. [23] to learn the struc-
tural features. Moreover, the knowledge graph is also widely used in machine learning.
An open-source tool, DGL-KE, which can be effectively used to calculate the embedded
representation of the knowledge graph, was proposed by Zheng et al. [24] to execute the
TransE algorithm. This tool can speed up the training of entities and relationships in the
knowledge graph through multi-processing, multi-GPU, and distributed parallelism. A
traffic mode knowledge graph framework based on historical traffic data was proposed
by Ji and Jin [25] to capture the traffic status and congestion propagation mode of road
segments. This framework had pioneering significance for the knowledge graph in the
prediction of traffic congestion propagation. Wang et al. [26] proposed a method of embed-
ding the temporal knowledge graph through a sparse transfer matrix. Static and temporal
dynamic knowledge graphs were employed to capture global and local embedding knowl-
edge, respectively. This approach helped alleviate issues related to inconsistent parameter
scalability when learning embeddings from different datasets.

More semantic knowledge can be considered in the knowledge graph to enhance the
interpretability of complex models [21]. In addition, how to learn entities and relationships
with low frequency better, how to integrate context into graph embedding learning better,
and how to combine the graph embedding algorithm with other algorithms are future
research directions.

2.3. Attention Mechanism

Graph Attention Network (GAT) is widely used in the field of transportation to obtain
the spatial correlation between nodes. Wang et al. [27] proposed a trend GAT model to
predict traffic flow. The transmission among comparable nodes was facilitated by construct-
ing a spatial graph structure, effectively addressing the issue of spatial heterogeneity. A
spatiotemporal multi-head GAT model was proposed by Wang and Wang [28] to realize
traffic prediction. Spatial features were captured through a multi-head attention mecha-
nism, and temporal features were captured through a full-volume transformation linear
gated unit. The spatiotemporal correlation between traffic flow and traffic network was
integrated to reduce the prediction error. Wang et al. [29] proposed a dynamic GAT model
to realize traffic prediction. The spatial feature was extracted through the use of a node
embedding algorithm based on the dynamic attention mechanism, and the temporal feature
was extracted through the use of a gated temporal CNN in this model.

The temporal attention mechanism is also widely applied in traffic research. The
temporal attention mechanism can enhance the understanding of the time correlation
among research objectives. A temporal attention perception dual GCN was proposed
by Cai et al. [30] to realize air traffic prediction. The historical flight and time evolution
pattern were characterized through a temporal attention mechanism. Yan et al. [31] de-
signed a gated self-attention mechanism module to realize the interaction between the
current memory state and the long-term relationship. Chen et al. [32] applied a multi-head
attention mechanism to mine the features of fine-grained spatiotemporal dynamics. A one-
dimensional convolution LSTM model based on the attention mechanism was proposed
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by Wang et al. [33] to realize traffic prediction. Through the attention mechanism, diverse
features from multiple sources were integrated.

Spatial attention can make the model focus on the important areas of a scene, and
temporal attention is about understanding the sequence of trajectory points. By paying
more attention to significant spatial and temporal features, the model can dynamically
adjust its focus, prioritizing crucial information based on its significance in both space and
time. The spatiotemporal attention mechanism can obtain reasonable weights of the features
under complex traffic environments, therefore improving the interpretability of the model.
GAT can be considered as a spatial attention mechanism to capture spatial features, and the
multi-head attention mechanism can be considered to be a temporal attention mechanism
to capture temporal features. Therefore, it is meaningful and important to combine GAT
and temporal attention mechanisms when realizing vehicle trajectory location prediction.

Spatial and temporal attention mechanisms enable the model to dynamically adjust its
focus, making it more resilient to changes and uncertainties in the environment. Navigating
through intricate urban environments necessitates comprehending not just the immediate
surroundings but also the broader context. The combination of knowledge graph and
attention mechanisms allows the model to capture complex relationships, making it more
effective in handling intricate scenarios where standard models might struggle. By incor-
porating these components, these approaches can create a more context-aware trajectory
prediction model capable of adapting to diverse and dynamic real-world scenarios.

3. Problem Statement

In this section, some basic concepts and notations in this paper are first introduced,
and then the studied problem is formally defined.

Definition 1 (Raw trajectory Ti). A raw vehicle trajectory is usually represented by a sequence
of points continuously sampled by the Global Positioning System (GPS). Given a raw trajectory
dataset Traj = {T1, T2, . . . Tn}, the trajectory i, Ti = {Pi1,Pi2, . . . , Pik}, is defined as a sequence
of sampled points Pij, where Pij ∈ R2, i ∈ (1, 2, . . . , n), j ∈ (1, 2, . . . , k). A sampled point Pij
is defined as a tuple (lngij, latij) which represents the longitude and latitude of the GPS point
at timestamp j. Due to varying sampling rate, trajectory data may have irregular distribution
characteristics. For example, the data may be dense in some areas of the map but sparse in other areas.

Definition 2 (Point of Interest Qu). Point Of Interest (POI) can be denoted as a spatial
representation of urban infrastructure such as schools, hospitals, restaurants and so on. It
can reflect land use and urban functional characteristics and has potential semantic informa-
tion. Its distribution influences the intentions of travel. POI can be classified into different
types. Given a POI dataset with h types POI = {Q1, Q2, . . . , Qh}, the type u of POI Qu =
{Iu1, Iu2, . . . Ium} is defined as a set of points Iuj, where u ∈ (1, . . . , h), j ∈ (1, . . . , m). A POI
Iuj = (nameuj, addressuj, lnguj, latuj, attributeuj) is a five-tuple, that represents the semantic
information including the name, address, longitude, latitude, as well as the attribute of the jth POI.
In this paper, eleven different categories of POI are applied, including stores, entertainment, food,
hotels, scenic spots, finance, government, company, hospitals, life services, and sports.

Definition 3 (Road network G). A road network is defined as a graph G = (V, E, A), where V is
the set of nodes; each vi denotes a road segment. E is the set of edges connecting nodes, and each
ei,j =

(
vi, vj

)
denotes the connectivity between road segment vi and vj. The adjacency matrix of

the graph can be denoted as A ∈ R|V|×|V|, and semantic information of different POI categories
are considered as features. Each element ai,j in this matrix is a binary value, which is 1 when road
segment vi is adjacent to vj and 0 otherwise.

Definition 4 (Normalized trajectory NTi). Raw trajectory Ti will be processed through a data
conversion layer in this paper and transformed into a trajectory in normalization form NTi. Due to
the measurement error, it is not appropriate to directly input raw trajectory to the model. Given a



World Electr. Veh. J. 2024, 15, 28 6 of 24

raw trajectory dataset Traj = {T1, T2, . . . Tn}, the trajectory Ti = {Pi1,Pi2, . . . , Pik}. Match each
point Pij to the nearest node of the road network. A normalized point NPij is defined as a tuple
(vlngij, vlatij), which represents the longitude and latitude of node j. A normalized trajectory NTi
is then defined as a sequence of road segments after projection.

Definition 5 (Normalized POI NQu). Match each POI Iuj to the nodes of road network that
has the shortest projection distance. A normalized POI NIuj is defined as the corresponding road
segment after projection, and POI semantic information is assigned to the matched nodes as node
features. The normalized POI of type u is denoted as NQu and the semantic information of the
normalized POI j of type u is denoted as NIuj.

Definition 6 (POI Knowledge graph KGPOI). Defining a knowledge graph KGPOI =
(
EPOI ,

RPOI , TPOI), where EPOI = {e1, e2, e3, . . . em} is the POI entity set, and where m is the number
of the POI entities. RPOI = {r1, r2, r3, . . . rn} is the POI relationship set, where n is the number
of the POI relationship. TPOI = {(hPOI , lPOI , tPOI)} is a triple set, which refers to head entity,
relation, and tail entity, respectively.

Problem (Vehicle trajectory location prediction). Given a raw trajectory dataset Traj =
{T1, T2, . . . Tn} and a road network G, for current point Pij of the trajectory Ti, the task aims to
predict the next location Pij+1, which is a tuple (lngij+1, latij+1) consisting of the longitude and
latitude of a GPS point at timestamp j + 1.

4. Methodology

Vehicle trajectory is a sequence of continuously sampled points, and its intention is
closely related to the Point of Interest (POI). The semantic information of POI near each
trajectory point may have an impact on the next location prediction. Therefore, a Local
Dynamic Graph Spatiotemporal–Long Short-Term Memory model (LDGST-LSTM) was
proposed in this paper to realize location prediction for vehicle trajectory and explore the
impact weight of the nearby POI.

Raw vehicle trajectory and POI were first matched to the traffic network through the
data conversion layer in the proposed model. The data of POI and road network were
extracted from an open-source map website, OpenStreetMap (OSM). Then, a global POI
Knowledge Graph (KG) was constructed to obtain the representation vectors of the POI
entities in the global POI knowledge extraction layer. Based on the global knowledge graph,
local graphs related to each trajectory point were generated, and the graph representation
vector was captured through the Graph Attention Network (GAT) in the local dynamic
graph generation module. Finally, trajectory points with the related graph representation
vectors were input into the Long Short-Term Memory model (LSTM) with a multi-head
temporal attention mechanism (T-Attn) in the trajectory prediction layer to predict the
next location.

In this section, details of the proposed model LDGST-LSTM are provided, which
consists of four major components, as follows: a data conversion layer, a global POI
knowledge extraction layer, a local dynamic graph generation module, and a trajectory
prediction layer. The overall framework is first described in Section 4.1. Then, each
component in this model is specifically introduced in Section 4.2, Section 4.3, Section 4.4,
Section 4.5.

4.1. Overall Framework

The overall framework of LDGST-LSTM is shown in Figure 1. There are four major
components in the proposed model: (1) a data conversion layer, (2) a global POI knowledge
extraction layer, (3) a local dynamic generation module, and (4) a trajectory prediction layer.
Additionally, the local dynamic generation module is concluded in the trajectory prediction
layer. The observed vehicle trajectory Ti =

{
Pij−t, Pij−t+1, . . . , Pij

}
was considered as the
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input of the model, and the predicted next location Pij+1 of the trajectory at timestamp j + 1
was considered the output.
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Figure 1. The overall framework of Local Dynamic Graph Spatiotemporal–Long Short-Term Memory
(LDGST-LSTM) with four main components, as follows: (1) data conversion layer, (2) global POI
knowledge extraction layer, (3) local dynamic generation module, and (4) trajectory prediction layer.

As shown in Figure 1, vehicle trajectory Ti was the input of the model. Firstly, normal-
ized trajectory NTi and normalized POI NQu were obtained through map matching and
proximity algorithm, respectively, in the data conversion layer. Then, the representation
vector VPOI

ij of every POI was trained through the usage of the Translating Embedding
(TransE) algorithm based on the knowledge graph in the global POI knowledge extraction
layer. It will be considered semantic features of the trajectory points. In the trajectory
prediction layer, local graphs G′ ij−t:j related to trajectory points Pij−t:j were first generated,
and the corresponding graph representation vectors NRVij−t:j were obtained through GAT
in the local dynamic graph generation module. Normalized trajectory points NPij−t:j and
corresponding graph representation vectors NPVij−t:j were then concatenated and input
into LSTM with a multi-head attention mechanism. The model finally output the predicted
next location Pij+1 of the trajectory. The overall framework can be denoted through the use
of the following Formulas (1)–(4), where Pj−t:j = (Pj−t, Pj−t+1, . . . , Pj).

• Data conversion layer:
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Ti
map matching−−−−−−−→ NTi, Qu

proximity alg.−−−−−−−→ NQu (1)

• Global POI knowledge extraction layer:[
KGPOI , NQu

]
TransE−−−→ VPOI

ij (2)

• Local dynamic graph generation module:

Pij−t:j
VPOI

ij−−−→ G′ ij−t:j
GAT−−→ NRVij−t:j (3)

• Trajectory prediction layer:

NPij−t:j; NRVij−t:j
LSTM−−−→ Pij+1 (4)

4.2. Data Conversion Layer

This section will introduce road network data, trajectory data conversion and POI data
conversion specifically.

4.2.1. Road Network

The open-source map website Open Street Map (OSM) provided the urban road
network data needed in this work. Taking Chengdu as an example, the road network
is shown in Figure 2 and it contains three parts of information. Figure 2a represents the
road vector map and Figure 2b is the node vector map. Figure 2c visualizes the partial
satellite projection map of Chengdu along with the node vectors of road (the red dots). This
paper only maintains the road network data within the Third Ring Road of Chengdu as the
research area, which can mainly represent the urban district.
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4.2.2. Trajectory Data Conversion

In the data conversion layer, raw trajectory data were converted into a normalized
trajectory. Every point was denoted by the latitude and longitude corresponding to the
matched road network node. The original geographic coordinate system (GCJ-02) of the
trajectory data was first converted to WGS84, the geographic coordinate system of the
road network data in this paper. A predetermined threshold was taken into consideration
as the radius to search for candidate points, and the candidate points with the shortest
distance were chosen as the normalized trajectory points. This approach was based on the
earlier map-matching work of Lou et al. [34]. Points that were not successfully matched
will be deleted.

4.2.3. POI Data Conversion

POI data of Chengdu in 2018 were used in this paper. The proximity algorithm was
used in ArcGIS, and the nearest nodes were selected in the road network for each POI point
based on distance. The context information of POI points was matched to the relevant
nodes as the normalized POIs. POIs of different types were matched to the nodes of the
road network. Taking life services (black dots), food (orange dots), and hospitals (blue dots)
as examples, the partially matched visualization of POI can be seen in Figure 3.
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4.3. Global POI Knowledge Extraction Layer

A global graph G = (V, E, A) and a knowledge graph KGPOI =
(
EPOI , RPOI , TPOI)

were constructed in the global POI knowledge extraction layer, as shown in Figure 4. The
entity set, relationship set, and related triples were defined to study the representation
vectors of each POI entity through TransE algorithm. In the defined global graph, each node
in the global graph contained the related POI knowledge through the data conversion layer.

As shown in Figure 4, the normalized POI was considered as the entity, and the link
between the normalized POI was considered as the relationship, which in this paper denotes
that there was a connection between two POI nodes. Moreover, the triplet TPOI = {(h, l, t)}
was considered as the training set of TransE algorithm, where h represented the head entity,
t represented the tail entity, and l represented the relationship; h and t belongs to the entity
set EPOI , and l belongs to the relationship set RPOI . The target of the TransE algorithm was
to consider the relationship as the translation from the head entity to the tail entity, or to
say, to made h + l equal to t as much as possible. The potential energy of a triplet is defined
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by the L2 norm of the difference between h + l and t, as shown in Formula (5), where N is
the number of the triplets, and i represents the triplet i.

f (hi, li, ti) = ||hi + li − ti||2 =

√
N
∑

i=1
(hi + li − ti)

2 (5)
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Wrong triplets were identified and considered as negative samples in TransE algorithm
for uniform sampling. A negative sample was generated when any one of the factors in a
positive sample was replaced by the other entities or relationship randomly. The potential
energy of the positive samples was reduced, and the potential energy of the negative
samples were increased in the TransE algorithm. The objective function is defined in
Formula (6).

L = ∑
(h,l,t)∈∆

∑
(h′ ,l′ ,t′)∈∆′

[( fr(h, t) + γ− fr′(h′, t′))]+ (6)

where ∆ is the set of positive samples, and ∆′ is the set of negative samples. γ is a constant,
usually is set as 1, which represents the distance between positive and negative samples.
(h, l, t) and (h′, l′, t′) are the triplets of positive and negative samples, respectively. f (·) is
the potential energy function and [·]+ is max(0, ·).

The distributed representation vector of the current head and tail entities were con-
sidered as the representation vectors VPOI

ij ∈ Rd. The pseudocode of the global POI
knowledge extraction layer is shown in Algorithm 1.

Algorithm 1: Global POI knowledge extraction layer

Input entity, relation, and training sets EPOI , RPOI , TPOI = {(h, l, t)}, embedding dim k
1: normalize l ← uniform

(
− 6√

k
, 6√

k

)
for each l ∈ RPOI

2: l/‖l‖ for each l ∈ RPOI

3: e← uniform
(
− 6√

k
, 6√

k

)
for each e ∈ EPOI

4: loop
5: e/‖e‖ for each e ∈ EPOI

6: SPOI
batch ← sample

(
TPOI , b

)
//sample by size b

7: TPOI
batch ← ∅ //initialize the triplets

8: for (h, l, t) ∈ SPOI
batch do

9: (h′, l′, t′)← sample S′POI
(h,l,t) //extract negative samples
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Algorithm 1: Cont.

10: TPOI
batch ← TPOI

batch ∪ {((h, l, t), (h′, l′, t′))} //extract positive and negative samples randomly
11: end for
12: Update embeddings ∑(h,l,t)∈∆ ∑(h′ ,l′ ,t′)∈∆′ [( fr(h, t) + γ− fr′ (h′, t′))]+ //L
13: end loop
Output representation vector VPOI

ij of the current entity

4.4. Local Dynamic Graph Generation Module

Local graphs were generated for each trajectory point in the local dynamic graph
generation module. The Graph Attention network (GAT) was used as a spatial atten-
tion mechanism to allocate weight and update the parameters of every trajectory point
and its neighbors. Corresponding graph representation vector NRVij can be obtained
through GAT.

As shown in Figure 5, every node in the global graph was embedded with the POI
representation vector VPOI

ij based on the POI knowledge graph in Section 4.3. The feature
matrix F ∈ RN×k was constructed by all the embeddings of nodes, Fij = VPOI

ij, where
N is the number of the graph nodes, k is the embedding dimension of the feature, Fij
represents the feature matrix of the trajectory point j of the trajectory Ti. The related local
graphs G′ ij−t:j = (Vij−t:j, Eij−t:j, A′ ij−t:j) were generated for each normalized trajectory
point NPij−t:j in the normalized trajectory NTi, where Vij is the set of the current point NPij
and its neighbor nodes, Eij is the set of edges among the current point and its neighbors,
A′ ij is the local adjacency matrix of the current point, and it concludes the features of both
the current point and its neighbor nodes.
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GAT was used to calculate the attention weight between the trajectory points and their
neighbor nodes and fused the features for the local graphs. The adjacency matrix was used
to check whether there is a connection among nodes, and the resource was allocated by
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calculating the weights of the neighbor nodes in GAT. It can be considered as a spatial
attention mechanism to enhance the interpretability of the proposed model. The definition
of attention mechanism is shown as Formula (7).

Attention(query, source) = ∑ similarity(query, keym) ∗ valuem (7)

where source is the original information, and it is formed by the key–value pairs.
Attention(query, source) represents the information extraction through weight allocation
from the source under the condition of query. The aim of the GAT is to learn the relevance
among target nodes and their neighbor nodes through the parameter matrix. In this paper,
query is set as the feature vector Fij of the current point NPij, source is set as the feature vec-
tors of all the neighbor nodes of NPij, keym and valuem are, respectively, the mth neighbor
node and its feature vector. The relevance coefficients among every trajectory point and its
neighbor nodes were calculated in GAT. The calculation is shown in Formula (8).

ejm = LeakyReLU
(
wT[WFij

∣∣∣∣WFjm
])

(8)

where || represents concatenation, Fij is the feature vector of the point j of the trajectory Ti,
and Fjm is the feature vector of the neighbor node m of the point j. W is a learnable weight
parameter. w is a learnable weight of the linear layer and LeakyReLU is the activation
function. Moreover, all the coefficients were normalized by the function so f tmax in GAT to
obtain the attention weight, as shown in Formula (9). ajm is the attention weight between
node j and its neighbor node m, where Nij denotes the neighborhood of node j in the
trajectory Ti.

ajm = so f tmax
(
ejm
)
=

exp(ejm)
∑

n∈Nij
exp(ejn) (9)

The aggregated and updated feature vector was then calculated, as shown in
Formula (10). A multi-head attention mechanism was used to enhance the feature fu-
sion of the neighbor nodes.

NPVij = ||H1
h=1σ

(
∑m∈Nij

ajm
(h)W(h)Fjm

)
(10)

where H1 is the number of the heads, σ is the activation function and NPVij is the graph
representation vector. The pseudocode of the local dynamic graph generation module is
shown in Algorithm 2.

Algorithm 2: Local dynamic graph generation module

Input normalized trajectory points NPij−t:j, POI feature vectors Fij = VPOI
ij

1: G′ ij−t:j ←
(
Vij−t:j, Eij−t:j, A′ ij−t:j

)
for each trajectory point // generate local graphs

2:
Target node vector Fij ← Vij and neighbor node vector Fjm ← Vjm // according to local
graphs

3: ejm ← LeakyReLU
(
wT[WFij

∣∣∣∣WFjm
])

4: ajm ← so f tmax
(
ejm
)

5: weighted sum:
6: for h ≤ H1 do
7: NPVij ← NPVij‖σ

(
∑m∈Nij

ajm
(h)W(h)Fjm

)
8: end for
Output graph representation vector NPVij for each trajectory point

4.5. Trajectory Prediction Layer

In the trajectory prediction layer, trajectory points and corresponding graph represen-
tation vectors were input, and the coordinate of the next location were obtained after going
through LSTM with a multi-head attention mechanism, as shown in Figure 6.
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As shown in Figure 6, the trajectory points NPij−t:j and the corresponding graph
representation vectors NPVij−t:j were concatenated and input into LSTM, as shown in
Formulas (11)–(17).

xj =
{

NPij, NPVij
}

(11)

f j = σ(W f ·
[
hij−1, xj

]
+ b f ) (12)

ij = σ
(
Wi·
[
hij−1, xj

]
+ bi

)
(13)

C̃j = tanh
(
WC·

[
hij−1, xj

]
+ bC

)
(14)

oj = σ
(
Wo·

[
hij−1, xj

]
+ bo

)
(15)

Cj = f j ∗ Cj−1 + ij ∗ C̃j (16)

hij = oj ∗ tanh
(
Cj
)

(17)

where W f , Wi, WC and Wo are, respectively, the weight of the forget gate, the input gate,
the cell state, and the output gate. b f , bi, bC and bo are the respective bias. The trajectory
points and corresponding graph representation vectors were concatenated as the input xj,
as shown in Formula (11). xj goes through the forget, input, and output gates, and generate
the cell state Cj, as shown in Formulas (12) and (13). Necessary information was processed
by the input gate and the updated information was activated by the function tanh to obtain
the C̃j, as shown in Formula (14). The current cell state Cj is shown in Formula (16), where
f j and ij are, respectively, the output of the forget gate and the input gate. Cj−1 is the cell
state of the previous vector and C̃j is the activated state updated by the input gate. The
hidden state hij of the current vector is obtained by multiplying the activated cell state Cj
and the output of the output gate oj, as shown in Formula (17).

A multi-head attention mechanism was used based on LSTM to allocate weight and
enhance the interpretability of the proposed model, as shown in Formulas (18) and (19).

Ah(Qh, Kh, Vh) = so f tmax
(

Qh ·Kh
T

√
d

)
Vh (18)
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MultiAtt(Q, K, V) =
(

A1
∣∣∣∣. . .

∣∣∣∣AH2

)
WO (19)

where Qh = WQ
i hij, Kh = WK

i , hij−t:j, Vh = WV
i hij−t:j. hij is the hidden state of the current

vector and is considered as the query, hij−t:j denotes the hidden states of the vectors xj−t:j

and is considered as the key and value, WQ
i , WK

i , WV
i , WO are learnable weight parameters,

d is the dimension, and H2 is the number of the heads.
The predicted result was obtained by adding a multilayer perceptron composed of

two full-connected layers, as shown in Formula (20).

Ŷj = W2
FReLU

(
W1

Fhj
′ + b1

F
)
+ b2

F (20)

where Ŷj is the predicted result. W1
F, W2

F
′, b1

F, and b2
F are, respectively, the weights and

biases of the two fully connected layers. hj
′ is the output calculated by using the multi-head

attention mechanism. Mean Square Error (MSE) was considered as the loss function to
calculate the difference between the predicted results and truth, where N is the number of
trajectories and K is the length of the trajectory. The calculation is shown in Formula (21).

L =
N
∑

i=1

K
∑

j=1

(
Ŷj − NPij

)2
(21)

The pseudocode of the trajectory prediction layer is shown in Algorithm 3.

Algorithm 3: Trajectory prediction layer

Input trajectory points in normalization form NPij−t:j, representation vectors of graph NPVij−t:j
1: LSTM Module:
2: loop
3: xj ←

{
NPij, NPVij

}
4: f j, ij,

∼
Cj, oj ← calculated by forget gate, input gate and output gate

5: Cj, hij ← cell state and hidden state are calculated by f j, ij,
∼
Cj, oj

6: Temporal attention mechanism:
7: Qh ←WQ

i hij , Kh ←WK
i , hij−t:j , Vh ←WV

i hij−t:j
8: for h ≤ H2 do
9: Ah ← so f tmax

(
Qh ·Kh

T
√

d

)
Vh

10: hj
′ ← hj

′‖AhWO

11: end for
12: MLP:
13: Ŷj ←W2

F ReLU
(
W1

Fhj
′ + b1

F
)
+ b2

F
14: end loop
Output coordinate Ŷj of the next location

5. Experiments

This section will demonstrate the details of the experiments, including datasets, ex-
periment settings and result analysis. The experiments were conducted to analyze the
accuracy and robustness of the proposed model by comparing the performances with the
benchmarks. Additionally, the ablation experiment was set to explore the effectiveness
of the proposed model by filtering the spatial and temporal attention mechanisms. More-
over, the POI weights that influence the prediction results are visualized on the map to
demonstrate the significance of urban functional regions to vehicle trajectories.

5.1. Datasets

Trajectory data: This study utilized Chengdu taxi trajectory data from Didi Gaiya,
specifically from October 2018 and August 2014. The dataset includes attributes such
as driver ID, order ID, timestamp, longitudes, and latitudes. Despite covering trajec-
tory data for a single month, the dataset comprises over 380,000 trajectories generated by
14,000 vehicles. Notably, 270,000 trajectories are generated on holidays, while 110,000 per-
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tain to working days. In terms of data distribution, the dataset predominantly covers
the urban area of Chengdu, spanning from 30.65283 to 30.72649◦ N and 104.04210 to
104.12907◦ E. Each trajectory in the dataset has a sampling frequency of 4 s, resulting in
a relatively high data density on the city road network. Given the dataset’s substantial
volume, comprehensive distribution, and frequent sampling, it provides sufficient data to
effectively train the proposed model presented in this paper.

Road Network data: The integration of Point of Interest (POI) and trajectory infor-
mation forms the basis for constructing a comprehensive global traffic graph. The road
network data for Chengdu were obtained from a map website OpenStreetMap (OSM). The
node vector data include the road node ID along with its corresponding longitude and
latitude. Each piece of road vector data comprises the road ID and a sequence of node
coordinates defining its path.

POI data: 11 types of POI data concerning Chengdu from AutoNavi map were sourced
through the Chinese Software Developer Network (CSDN) website. The original data
format includes information such as POI name, longitude and latitude coordinates, address,
district, and POI categories.

5.2. Experimental Settings

The experimental setup in this study is detailed as follows: The experiment employed
AMD RYZEN 75,800 h CPU and Nvidia Geforce RTX 3060 GPU. The operating system
was Windows 10, with Python as the coding language and PyTorch as the deep learning
framework. Furthermore, the parameter configurations are outlined as follows: All models
utilized a division of input data into training, validation, and test sets in a ratio of 7:2:1.
A batch size of 16 was set, with an initial learning rate of 0.0001. The training process
employed Adam as the optimizer. To ensure model convergence, the number of iterations
was set to 17,500.

5.2.1. Benchmark Models

There are five baselines used in experiments for the comparation and evaluation of
the proposed model, including LSTM [35], GRU [36], BiLSTM [37], AttnLSTM [38], and
AttnBiLSTM [39].

LSTM: It is commonly employed in time series prediction. In contrast to traditional
RNN models, LSTM addresses a deficiency where conventional models only factor in recent
states and struggle with long-term memory. LSTM achieves this by utilizing an internal cell
state and a forget gate, allowing it to decide which states to retain or forget. Additionally, it
can circumvent certain gradient vanishing issues inherent in traditional RNN models.

GRU: It features only two gates and three fully connected layers in contrast to LSTM,
leading to a reduction in computational requirements and lowering the overfitting risk.
GRU incorporates an update and a reset gate, allowing it to regulate information output,
selectively retaining historical information while discarding irrelevant data.

BiLSTM: Building upon LSTM, BiLSTM incorporates both forward and backward
propagation in its input, enabling each timestamp in the input sequence to retain both
future and past historical information simultaneously.

AttnLSTM: The attention mechanism is designed to allocate more weight to crucial
tasks when computational resources are constrained in this model, acting as a resource
allocation scheme to address information overload. Integrating LSTM with the attention
mechanism enhances its performance by amplifying the importance of key features or
filtering out irrelevant feature information.

AttnBiLSTM: BiLSTM combined with the attention mechanism can fuse information,
which involves elevating the weight of significant features and employing bi-directional
propagation. This integration enhances the computational efficiency and accuracy of the
model by incorporating abundant semantic information.
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5.2.2. Evaluation Metrics

Evaluation metrics used in this paper are Mean Absolute Error (MAE), Mean Square
Error (MSE), Root Mean Square Error (RMSE), Haversine Distance (HSIN), and Accuracy.
The definitions and equations of the five metrics are shown as follows. Yi denotes the
ground truth and Ŷi denotes the predicted location, and the number of trajectory data for
evaluation is denoted as N.

Mean Absolute Error (MAE): It denotes the mean of the absolute error between the
value that was predicted and the actual value, which can be calculated as in Formula (22).

MAE = 1
N

N
∑

i=1

∣∣Yi − Ŷi
∣∣ (22)

Mean Square Error (MSE): This metric denotes the square of the variation between the
ground truth and forecasted values, which can be calculated as in Formula (23).

MSE = 1
N

N
∑

i=1

(
Yi − Ŷi

)2 (23)

Root Mean Square Error (RMSE): The standard deviation of the difference between
the ground truth and predicted results is RMSE. The model fits better if the RMSE is
less. When it comes to high disparities, RMSE has greater penalties than MAE. It can be
calculated as Formula (24), where SSE = ∑N

i=1
(
Yi − Ŷi

)2 denotes the squares of the error of
all the samples.

RMSE =
√

MSE =
√

SSE
N =

√
1
N

N
∑

i=1

(
Yi − Ŷi

)2 (24)

Haversine Distance (HSIN): This metric denotes the distance between the actual and
predicted locations. The model with lower distance error is better. It can be calculated
as shown in Formula (25), where Yi = (lati, loni) is the truth and Ŷi = (l̂ati, l̂oni) is the
predicted longitude and latitude.

HSIN = 2r argsin

(√
sin2

(
lati−l̂ati

2

)
+ cos(lati)cos

(
l̂ati

)
sin2

(
loni−l̂oni

2

))
(25)

Accuracy: It indicates the proportion of the accurately predicted output in the total
output. The higher the accuracy rate, the better the model training effect. It can be calculated
as shown in Formula (26), and TP denotes the correctly predicted results, NP denotes the
incorrectly predicted results, and count(·) denotes the counting number.

Accuracy = count(TP)
count(TP)+count(NP) (26)

5.3. Result Analysis

The accuracy experiment and the robustness experiment are discussed in this paper.
The LDGST-LSTM model is compared with the benchmark models to explore the perfor-
mance in terms of accuracy and robustness. The ablation experiment is discussed to verify
the spatial and temporal attention mechanisms of the proposed model to enhance inter-
pretability. Moreover, the POI weights calculated using the temporal attention mechanism
are visualized on the map. The POI is considered as the feature of the vehicle trajectory,
and the influence of the POI on vehicle position prediction is revealed.

5.3.1. Accuracy Experiment

All models were trained, and the accuracy comparison results on the training set are
shown in Figure 7. It can be seen that on both holidays and working days, the accuracy of
LDGST-LSTM was significantly higher than the benchmarks.
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As shown in Figure 7a,b, the accuracy of the proposed model on both holidays and
working days was nearly 4.5 times higher than the benchmarks in the dataset of October
2018. As shown in Figure 7c,d, the accuracy of the proposed model on both weekends
and working days was nearly 3.5–4.5 times higher than the benchmarks in the dataset of
August 2014. Therefore, the accuracy of location prediction can be effectively improved by
considering POI knowledge and combining GAT and temporal attention mechanisms.

The accuracy comparison results of different models are shown in Table 1.

Table 1. Accuracy comparison of different models on holidays in October 2018, working days in
October 2018, weekends in August 2014, and working days in August 2014.

Accuracy in October 2018 (%) Accuracy in August 2014 (%)

Model on Holidays on Working Days on Weekends on Working Days

LSTM 0.09 0.10 0.12 0.10
GRU 0.07 0.08 0.12 0.07

BiLSTM 0.06 0.07 0.11 0.05
Attn-LSTM 0.05 0.14 0.15 0.09

Attn-BiLSTM 0.06 0.09 0.16 0.05
LDGST-LSTM 0.30 0.75 0.80 0.57

In the October 2018 dataset, the accuracy of LDGST-LSTM was 21% higher compared
to LSTM during holidays and 61% higher compared to Attn-LSTM during weekdays. In
the August 2014 dataset, LDGST-LSTM improved by 64% compared to Attn-BiLSTM on
weekends. Therefore, compared to the benchmarks, the model proposed in this paper can
improve performance by selecting appropriate POI categories on weekdays and holidays,
respectively. More importantly, integrating POI knowledge and combining spatial and
temporal attention mechanisms can greatly improve the accuracy of vehicle trajectory
location prediction.
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5.3.2. Robustness Experiment

The results of the robustness experiment are discussed in this section. The convergence
speed and the metrics after convergence of the proposed model and benchmarks are
compared to analyze the robustness. The results of convergence speed are shown in
Figure 8.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 19 of 26 
 

  
(a) (b) 

  
(c) (d) 

Figure 8. Convergence speed comparison of different models: (a) holidays in October 2018, (b) 
working days in October 2018, (c) weekends in August 2014, and (d) working days in August 2014. 

As shown in Figure 8a,b, the loss of LDGST-LSTM drops slowly compared with the 
benchmark models before the 200th iteration on the dataset of October 2018. The 
convergence speed of the proposed model becomes faster from the 250th to the 300th 
iterations, and it converges at around the 350th iteration. As shown in Figure 8c,d, the loss 
of LDGST-LSTM drops slowly compared with the benchmark models before the 200th 
iterations on the dataset of August 2014. Additionally, the convergence speed of the 
proposed model becomes faster from the 250th to the 350th iterations and it converges at 
around the 450th iteration. 

The performance of MAE, MSE, RMSE and HISN of different models are shown in 
Tables 2–5. As shown in Tables 2 and 3, the performance of the proposed model on 
evaluation metrics was the best compared with benchmarks when using the dataset of 
October 2018. The MAE, MSE, RMSE, and HSIN of the proposed model were, respectively, 
7.73%, 28.57%, 11.11%, and 15.72% lower than LSTM, which was the most robust among 
the baselines in the holidays. The MAE, MSE, RMSE, and HSIN of the proposed model 
were, respectively, 6.19%, 33.33%, 27.27%, and 41.79% lower than GRU, which was the 
most robust among the benchmarks in the working days. As shown in Tables 4 and 5, the 
performance of the proposed model on evaluation metrics were still the best when using 
the dataset of Chengdu August 2014. The four metrics of the proposed model were, 
respectively, 6.09%, 33.33%, 15.64%, and 41.66% lower than GRU in the weekend. The 
MAE, MSE, RMSE, and HSIN of the proposed model were, respectively, 4.88%, 28.57%, 
18.55%, and 15.99% lower than LSTM in the working days. Therefore, it can be seen that 
the robustness of the proposed model were the best compared with all the benchmark 
models. 

  

Figure 8. Convergence speed comparison of different models: (a) holidays in October 2018, (b) working
days in October 2018, (c) weekends in August 2014, and (d) working days in August 2014.

As shown in Figure 8a,b, the loss of LDGST-LSTM drops slowly compared with
the benchmark models before the 200th iteration on the dataset of October 2018. The
convergence speed of the proposed model becomes faster from the 250th to the 300th
iterations, and it converges at around the 350th iteration. As shown in Figure 8c,d, the
loss of LDGST-LSTM drops slowly compared with the benchmark models before the 200th
iterations on the dataset of August 2014. Additionally, the convergence speed of the
proposed model becomes faster from the 250th to the 350th iterations and it converges at
around the 450th iteration.

The performance of MAE, MSE, RMSE and HISN of different models are shown
in Tables 2–5. As shown in Tables 2 and 3, the performance of the proposed model on
evaluation metrics was the best compared with benchmarks when using the dataset of
October 2018. The MAE, MSE, RMSE, and HSIN of the proposed model were, respectively,
7.73%, 28.57%, 11.11%, and 15.72% lower than LSTM, which was the most robust among
the baselines in the holidays. The MAE, MSE, RMSE, and HSIN of the proposed model
were, respectively, 6.19%, 33.33%, 27.27%, and 41.79% lower than GRU, which was the
most robust among the benchmarks in the working days. As shown in Tables 4 and 5,
the performance of the proposed model on evaluation metrics were still the best when
using the dataset of Chengdu August 2014. The four metrics of the proposed model were,
respectively, 6.09%, 33.33%, 15.64%, and 41.66% lower than GRU in the weekend. The
MAE, MSE, RMSE, and HSIN of the proposed model were, respectively, 4.88%, 28.57%,
18.55%, and 15.99% lower than LSTM in the working days. Therefore, it can be seen that the
robustness of the proposed model were the best compared with all the benchmark models.
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Table 2. Performance comparison of different models on holidays in October 2018.

Model MAE MSE RMSE HISN

LSTM 0.0207 0.0007 0.0234 2.4433
GRU 0.0218 0.0008 0.0243 2.8943

BiLSTM 0.0302 0.0012 0.0329 4.7287
Attn-LSTM 0.0234 0.0009 0.0258 3.7313

Attn-BiLSTM 0.0492 0.0035 0.0567 8.4362
LDGST-LSTM 0.0191 0.0005 0.0208 2.0591

Table 3. Performance comparison of different models on working days in October 2018.

Model MAE MSE RMSE HISN

LSTM 0.0212 0.0009 0.0295 3.5067
GRU 0.0210 0.0009 0.0275 3.4957

BiLSTM 0.0305 0.0010 0.0305 3.1503
Attn-LSTM 0.0220 0.0008 0.0250 3.4728

Attn-BiLSTM 0.0345 0.0012 0.0355 3.7504
LDGST-LSTM 0.0197 0.000 0.0200 2.0348

Table 4. Performance comparison of different models on weekends in August 2014.

Model MAE MSE RMSE HISN

LSTM 0.0202 0.0007 0.0305 2.9507
GRU 0.0197 0.0006 0.0275 2.6054

BiLSTM 0.0255 0.0008 0.0335 3.0504
Attn-LSTM 0.0199 0.0006 0.0290 2.6595

Attn-BiLSTM 0.0301 0.0012 0.0403 3.7955
LDGST-LSTM 0.0185 0.0004 0.0232 2.0634

Table 5. Performance comparison of different models on working days in August 2014.

Model MAE MSE RMSE HISN

LSTM 0.0205 0.0007 0.0275 2.5047
GRU 0.0227 0.0009 0.0294 2.8643

BiLSTM 0.0269 0.0011 0.0327 3.0457
Attn-LSTM 0.0235 0.0009 0.0310 3.0137

Attn-BiLSTM 0.0312 0.0014 0.0343 3.3189
LDGST-LSTM 0.0195 0.0005 0.0224 2.1042

5.3.3. Ablation Experiment

The ablation experiment is discussed to analyze the effect of major components in
the proposed model by filtering GAT and the temporal attention mechanism. In addition
to the proposed model, three ablation models are analyzed, including (1) Local Dynamic
Graph Convolutional Network–Long Short-Term Memory (LDGCN-LSTM), (2) Local
Dynamic Graph Convolutional Network–Temporal Attention Long Short-Term Memory
(LDGCN-TAttnLSTM), and (3) Local Dynamic Graph Attention–Long Short-Term Memory
(LDGAT-LSTM).

As shown in Figure 9, the accuracy of LDGST-LSTM is the highest among the other
three ablation models in both datasets. The accuracy of LDGST-LSTM is almost the same
as the accuracy of LDGAT-LSTM. It may be the reason that, during holidays, the intention
of the taxis is more focused on some functional regions, and the importance of spatial
overweighs the temporal features.



World Electr. Veh. J. 2024, 15, 28 20 of 24World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 21 of 26 
 

 
(a) (b) 

  
(c) (d) 

Figure 9. Accuracy comparison of different ablation modules: (a) holidays in October 2018, (b) 
working days in October 2018, (c) weekends in August 2014, and (d) working days in August 2014. 

The ablation results are shown in Tables 6–9. As shown in Tables 6 and 7, the 
evaluation metrics of LDGST-LSTM were the best among the ablation models when using 
a dataset in 2018. The MAE, MSE, RMSE, and HSIN of the proposed model were, 
respectively, 9.91%, 28.57%, 12.97%, and 15.46% lower, and the accuracy was 4.17% higher 
than LDGAT-LSTM, which means it performed the best among ablation models in the 
holidays. The MAE, MSE, RMSE, and HSIN of the proposed model were, respectively, 
3.9%, 14.29%, 22.18%, and 20.12% lower, and the accuracy was 40% higher than LDGAT-
LSTM on working days. As shown in Tables 8 and 9, the performances of LDGST-LSTM 
were also the best in the 2014 dataset. The four metrics of LDGST-LSTM were, 
respectively, 25.40%, 33.33%, 18.31% and 18.52% lower, and the accuracy was 7.69% 
higher than LDGAT-LSTM; therefore, it performed the best among ablation models in the 
weekends. The MAE, MSE, RMSE and HSIN of LDGST-LSTM were, respectively, 10.55%, 
28.57%, 11.81% and 10.42% lower, and the accuracy was 3.64% higher than LDGAT-LSTM 
on working days. In conclusion, the proposed model performed the best compared with 
other ablation models. Therefore, the combination of GAT and temporal attention 
mechanism can enhance the interpretability and improve the accuracy and robustness of 
the model. 

  

Figure 9. Accuracy comparison of different ablation modules: (a) holidays in October 2018, (b) working
days in October 2018, (c) weekends in August 2014, and (d) working days in August 2014.

The ablation results are shown in Tables 6–9. As shown in Tables 6 and 7, the evaluation
metrics of LDGST-LSTM were the best among the ablation models when using a dataset in
2018. The MAE, MSE, RMSE, and HSIN of the proposed model were, respectively, 9.91%,
28.57%, 12.97%, and 15.46% lower, and the accuracy was 4.17% higher than LDGAT-LSTM,
which means it performed the best among ablation models in the holidays. The MAE,
MSE, RMSE, and HSIN of the proposed model were, respectively, 3.9%, 14.29%, 22.18%,
and 20.12% lower, and the accuracy was 40% higher than LDGAT-LSTM on working days.
As shown in Tables 8 and 9, the performances of LDGST-LSTM were also the best in the
2014 dataset. The four metrics of LDGST-LSTM were, respectively, 25.40%, 33.33%, 18.31%
and 18.52% lower, and the accuracy was 7.69% higher than LDGAT-LSTM; therefore, it
performed the best among ablation models in the weekends. The MAE, MSE, RMSE and
HSIN of LDGST-LSTM were, respectively, 10.55%, 28.57%, 11.81% and 10.42% lower, and
the accuracy was 3.64% higher than LDGAT-LSTM on working days. In conclusion, the
proposed model performed the best compared with other ablation models. Therefore, the
combination of GAT and temporal attention mechanism can enhance the interpretability
and improve the accuracy and robustness of the model.

Table 6. Ablation results of the proposed model on holidays in October 2018.

Model MAE MSE RMSE HISN Accuracy (%)

LDGST-LSTM 0.0191 0.0005 0.0208 2.0591 0.25
LDGAT-LSTM 0.0212 0.0007 0.0239 2.4357 0.24

LDGCN-TAttnLSTM 0.0225 0.0008 0.0244 2.6329 0.20
LDGCN-LSTM 0.0195 0.0005 0.0224 2.1042 0.13
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Table 7. Ablation results of the proposed model on working days in October 2018.

Model MAE MSE RMSE HISN Accuracy (%)

LDGST-LSTM 0.0197 0.0006 0.0200 2.0348 0.70
LDGAT-LSTM 0.0205 0.0007 0.0257 2.5473 0.50

LDGCN-TAttnLSTM 0.0220 0.0008 0.0295 2.6904 0.45
LDGCN-LSTM 0.0237 0.0010 0.0305 2.9754 0.40

Table 8. Ablation results of the proposed model on weekends in August 2014.

Model MAE MSE RMSE HISN Accuracy (%)

LDGST-LSTM 0.0185 0.0004 0.0232 2.0634 0.70
LDGAT-LSTM 0.0253 0.0007 0.0301 2.8751 0.64

LDGCN-TAttnLSTM 0.0248 0.0006 0.0284 2.5323 0.65
LDGCN-LSTM 0.0297 0.0009 0.0328 2.9107 0.50

Table 9. Ablation results of the proposed model on working days in August 2014.

Model MAE MSE RMSE HISN Accuracy (%)

LDGST-LSTM 0.0195 0.0005 0.0224 2.1042 0.57
LDGAT-LSTM 0.0218 0.0007 0.0254 2.3490 0.55

LDGCN-TAttnLSTM 0.0261 0.0009 0.0278 2.5983 0.40
LDGCN-LSTM 0.0284 0.0009 0.0290 2.9841 0.30

5.3.4. POI Weights Visualization

The predicted coordinates of the next location, along with their corresponding weight,
can be calculated by using the proposed model. The visualization of POI weights is realized
through the nuclear density analysis in the ArcGIS.

The visualization of POI weight has a positive significance in terms of vehicle trajectory
planning, traffic optimization, and vehicle location prediction. As shown in Figure 10, there
are some regions of POI information that affect vehicle location prediction. For example,
this is shown in the western and southern regions in Figure 10a,c, and the right and the top
sides in Figure 10b,d. It can be seen that on holidays and weekends, POI in the western
and southern regions can be considered important information that influences vehicle
trajectories. It may denote that these regions are close to the center of the city and have
high traffic flow on holidays and weekends. Therefore, it is important to plan the driving
path in these regions on holidays and weekends. Moreover, POI regions that influence the
location prediction are more dispersed on working days, and the trajectory decision can be
more flexible.
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6. Conclusions and Future Work

A Local Dynamic Graph Spatiotemporal–Long Short-Term Memory (LDGST-LSTM)
model was proposed in this paper to predict the next location of vehicle trajectory. The
data conversion layer, POI global knowledge extraction layer, local dynamic graph gen-
eration module, and trajectory prediction layer were major components of the proposed
model. Raw taxi trajectory and POI semantic information were first matched to the road
network through the use of a map-matching algorithm and proximity algorithm in the data
conversion layer. Then, the representation vectors of POI were learned through the use
of the TransE algorithm by constructing a knowledge graph in the POI global knowledge
extraction layer. Based on the global knowledge graph, a local graph related to each trajec-
tory point was generated, and the graph representation vector was captured through GAT
in the local dynamic graph generation module. Finally, trajectory points with the related
graph representation vectors were input into LSTM with a multi-head attention mechanism
in the trajectory prediction layer to predict the next location.

However, there are limitations in this paper. Firstly, exploring accurate trajectory re-
covery can be a potential avenue for future research due to non-uniform GPS sampling and
the presence of GPS signal shielding areas. Moreover, only POI knowledge is considered as
the external feature in this paper. The current approach heavily relies on Points of Interest
for contextual information. However, there may be other relevant contextual factors, such
as real-time weather conditions and road construction, which could influence trajectory
prediction. Exploring these factors can provide a more comprehensive understanding of the
environment and enhance the accuracy and robustness of the model. Additionally, knowl-
edge graphs are currently static and do not dynamically update in real time. This limitation
may impact the model’s adaptability to changes in the environment, such as sudden road
closures or new construction. Therefore, implementing a mechanism for online updating
of knowledge graphs based on real-time data can be a further enhancement. This ensures
that the model adapts dynamically to changes in the environment, improving its ability
to handle dynamic scenarios. Moreover, scenarios in this paper were the macro traffic
roads and specific traffic scenarios such as complex intersections and traffic light timing
could be a challenge for trajectory prediction. The current model may struggle to accu-
rately predict trajectories in scenarios where multiple roads converge or diverge. Therefore,
further research could focus on developing specialized mechanisms for handling complex
intersections. This may involve incorporating advanced spatial attention mechanisms or
considering the historical behavior of vehicles at such intersections. In recent years, the
rapid development of connected automated vehicles has significantly transformed the
landscape of transportation. The emergence of shared data on the road presents a unique
opportunity to enhance various aspects of vehicular technologies, including trajectory
prediction. Leveraging data from connected vehicles, such as cooperative perception us-
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ing 3D LiDAR [40], can indeed contribute valuable insights to trajectory dynamics. The
potential of shared information from connected vehicles to revolutionize the accuracy and
reliability of trajectory predictions can be another new direction for research and innovation.
Furthermore, extending the analysis in terms of dataset duration and geographic coverage
is another further research direction. Assessing the model’s performance over a more
extended period should be considered, such as capturing potential variations in different
seasons or temporal patterns. The effectiveness of the model across a broader geographic
area should also be considered, incorporating diverse scenarios to test its adaptability in
different environments.
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LDGST-LSTM Local Dynamic Graph Spatiotemporal–Long Short-Term Memory
lat latitude
lng longitude
OSM OpenStreetMap
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TransE Translating Embedding
GAT Graph Attention Network
KG Knowledge Graph
LSTM Long Short-Term Memory model
T-Attn Temporal Attention mechanism
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