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Abstract: In the rapidly evolving electric vehicle industry, the reliability of electronic systems is
critical to ensuring vehicle safety and performance. Printed circuit boards (PCBs), serving as a
cornerstone in these systems, necessitate efficient and accurate surface defect detection. Traditional
PCB surface defect detection methods, like basic image processing and manual inspection, are
inefficient and error-prone, especially for complex, minute, or irregular defects. Addressing this
issue, this study introduces a technology based on the YOLOv5 network structure. By integrating
the Convolutional Block Attention Module (CBAM), the model’s capability in recognizing intricate
and small defects is enhanced. Further, partial convolution (PConv) replaces traditional convolution
for more effective spatial feature extraction and reduced redundant computation. In the network’s
final stage, multi-scale defect detection is implemented. Additionally, the normalized Wasserstein
distance (NWD) loss function is introduced, considering relationships between different categories,
thereby effectively solving class imbalance and multi-scale defect detection issues. Training and
validation on a public PCB dataset showed the model’s superior detection accuracy and reduced false
detection rate compared to traditional methods. Real-time monitoring results confirm the model’s
ability to accurately detect various types and sizes of PCB surface defects, satisfying the real-time
detection needs of electric vehicle production lines and providing crucial technical support for electric
vehicle reliability.

Keywords: electric vehicle; PCB; surface defect detection; YOLOv5; CBAM; PConv; multi-scale;
NWD loss function

1. Introduction

Quality and safety have always been the most critical requirements in automotive
design, as they are directly linked to the safety of drivers and passengers. In recent years,
the rapid development of new energy vehicles, exemplified by electric vehicles, has led to
the widespread use of PCBs [1]. As illustrated in Figure 1, PCBs are abundantly present
in EVs, serving as the medium for communication and electric power transmission. Core
components of electric vehicles, such as batteries, electric drives, and electronic controls,
heavily rely on PCBs. If the PCBs used in vehicles are flawed, the consequences can range
from the accelerated deterioration of components to the failure of key functions, posing a
threat to driving safety. It can be said that PCBs are not only the foundation of modern EV
electronic systems but also directly influence the performance and safety of the vehicles.
Therefore, conducting defect detection on PCBs used in vehicles is essential to reduce the
risk of vehicle failure [2].

Firstly, as PCBs are the core components of numerous electronic systems in electric
vehicles, any defects in them can directly affect the performance and reliability of these
systems [3]. For example, critical components such as the battery management system,
motor control unit, charging system, and onboard infotainment systems all rely on the
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proper functioning of PCBs. Defects in PCBs might lead to interruptions or errors in
electronic signal transmission, potentially causing a decline in system performance. This
could manifest in various ways, including reduced battery charging efficiency, sluggish
response of the electric motor, or the failure of navigation and entertainment systems. In
the worst-case scenario, these defects might lead to failures in safety systems, such as brake
assist or emergency braking systems, which in extreme cases could result in accidents.
Moreover, surface defects on PCBs could lead to electrical short circuits, causing the battery
to overheat, potentially leading to fires or explosions [4,5]. Such faults pose not only a risk
to passenger safety but can also cause significant property damage. Due to the dependence
of electric vehicles on complex electronic systems, the reliability of PCBs becomes a crucial
factor in ensuring overall vehicle performance and passenger safety. The presence of defects
could necessitate frequent vehicle maintenance, increasing maintenance costs, and also
affecting consumer trust and satisfaction with the brand [6].

Figure 1. Electric vehicle structure.

In summary, defects on the surface of PCBs can have a widespread negative impact
on the performance, safety, reliability, and overall consumer experience of electric vehicles.
Thus, conducting efficient and precise PCB defect detection becomes especially critical
during the manufacturing process of electric vehicles [7,8]. Traditional methods of detection,
such as manual inspection or simple image processing techniques, face challenges when
dealing with complex, minute, or irregular defects and struggle to meet the strict standards
for detection speed and accuracy required in the EV industry. Therefore, developing new
detection technologies to enhance the reliability of electronic systems in electric vehicles is
an important task in the current landscape.

In recent years, deep learning and convolutional neural networks (CNNs) have made
remarkable progress in the field of image processing and recognition. Particularly, real-
time object detection algorithms, such as the YOLO (You Only Look Once) series, have
provided powerful tools for real-time image detection [9]. YOLOv5, known for its efficient
detection speed and high accuracy, has garnered widespread attention. However, directly
applying the original YOLOv5 model may not fully meet the specific requirements of PCB
defect detection, such as issues with class imbalance, multi-scale defects, and complex
backgrounds [10].

To address the aforementioned challenges, Ali Sezer and Aytaeli Altan proposed an
optimized deep learning model for detecting post-soldering defects in PCBs, utilizing 2D
signal processing methods [11]. Despite the availability of advanced sensing technologies,
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setting pass/fail criteria based on a limited number of failure samples has always been a
challenge. To overcome these issues, Jungsuk Kim and colleagues introduced an advanced
PCB inspection system based on a convolutional autoencoder with skip connections [12].
For comprehensive automation of the detection process, Yehonatan Fridman and others
proposed an automated, integrated change detection system named ChangeChip. This
system, based on computer vision and unsupervised learning, can detect a range of issues,
from soldering defects to missing or misplaced electronic components [13]. Bing Hu
developed a new network based on Faster R-CNN, utilizing ResNet50 with a feature
pyramid network as the backbone for feature extraction, enhancing the detection of small
defects on PCBs. Additionally, GARPN was used for more accurate anchor prediction,
and residual units from ShuffleNetV2 were integrated [14]. To address the challenge of
achieving high detection accuracy, fast detection speed, and low memory consumption
simultaneously, Xinting Liao and colleagues improved the activation functions in the
backbone and neck prediction networks of YOLOv4, yielding results superior to other
state-of-the-art detectors compared [15]. To enhance sensitivity to small defects, Wang
Xuan and team proposed a new lightweight deep learning-based defect detection network
named YOLOX-MC-CA. This network, developed on the basis of YOLOX, adopted a
coordinate attention mechanism to improve the recognition of small PCB surface defects
and modified the backbone network of YOLOX to a new CSPDarknet structure with some
inverted residual blocks [16].

This study proposes a customized network structure based on YOLOv5, incorporating
the NWD loss in its loss function to enhance the accuracy and robustness of the model
in detecting PCB surface defects. The YOLOv5 model has been appropriately adjusted in
terms of parameters and optimized in its network structure to meet the specific demands
of PCB defect detection. Particularly, this is achieved by introducing the CBAM along with
additional connections and convolution layers, facilitating multi-scale feature fusion and
enhancing the model’s attention mechanism. Furthermore, custom anchor sizes have been
defined to accommodate defects of varying sizes and shapes.

This research aims to provide an effective technological approach in the electric vehicle
industry for enhancing the quality of electronic components, thereby improving overall
vehicle performance and safety. It is dedicated to exploring the application of deep learning
technology in PCB defect detection and how the optimization of network structure and
design of loss functions can improve the model’s detection performance. The model was
trained and validated on a public PCB image dataset. Preliminary results show that com-
pared to the YOLOv5 model based on traditional loss functions, the model proposed in this
study demonstrates a significant advantage in detection accuracy and false detection rate,
particularly in detecting complex and minute defects. These technological advancements
are expected to contribute to significant improvements in production efficiency and product
reliability in the electric vehicle industry.

The contribution of this study lies in the innovative enhancement of the YOLOv5
framework, integrating multi-scale CBAM, partial convolution, and NWD loss to enhance
the accuracy of defect detection in electric vehicle PCBs. Experiments on a public PCB
dataset demonstrate significant advantages in detection precision and reduced false positive
rates, compared to existing technologies. These advancements offer new perspectives in
intelligent manufacturing and automated inspection.

2. Method Theory

In response to issues such as low accuracy, imprecise recognition, and inefficiency in
PCB surface defect detection within the electric vehicle manufacturing industry, this paper
proposes a version of YOLOv5 that incorporates a multi-scale fusion attention mechanism.
The network structure is shown in Figure 2 below. Because PCB defects range in size from
tiny scratches to larger damage. Compared with the original YOLOv5 model, the detection
head of this network integrates features from multiple scales. Multi-scale feature fusion
allows the model to capture defects of these different sizes at the same time, thus improving
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the accuracy and robustness of detection. With specific improvements categorized into the
following three points:

• Multi-scale fusion with CBAM attention mechanism: The integration of multi-scale
fusion allows the model to incorporate feature maps from various resolutions, thereby
enhancing its ability to recognize defects of different sizes. At the same time, the
attention mechanism aids the model in capturing subtle features of these variations,
improving the model’s generalization capabilities across diverse PCB samples;

• Using partial convolution in the place of traditional convolution: Partial convolution
is particularly effective in scenarios with irregular shapes or missing data, which is ad-
vantageous for detecting defects with unclear edges. Additionally, partial convolution
reduces redundant computation and efficiently accesses memory, thereby enhancing
the detection efficiency;

• Introduction of the NWD (normalized Wasserstein distance) loss function: The NWD
loss provides smoother gradients, which helps avoid issues like gradient vanishing
or exploding during the training process. Moreover, by more accurately measuring
the differences between distributions, the NWD loss function aids in improving the
model’s generalization ability for unseen data.

Figure 2. The network structure of the model.

2.1. CBAM

CBAM is an attention mechanism module designed to enhance the performance of
convolutional neural networks. It is a combination of spatial and channel attention [17].
The introduction of this structure is because minor changes in certain areas may be key
indicators of defects in PCB defect detection. CBAM helps the model to focus on these
crucial areas by enhancing important features and suppressing less significant ones, thereby
improving the expressiveness of features. This enhancement enables easier differentiation
between normal areas and those with defects, especially in cases where the defects are not
obvious or there is a significant amount of background noise, ultimately improving the
accuracy of detection. Its structure is shown in Figure 3.

Channel attention module (CAM): This module focuses on the importance of each
channel in the input feature map. It computes the global average value for each channel
through global average pooling and then processes these global averages using two fully
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connected layers to produce a vector representing the channel weights [18]. Finally, this
vector is normalized using a Sigmoid activation function, yielding the weight coefficients
for each channel. This allows the model to automatically learn and select channels that are
more useful for target classification and feature representation.

Spatial attention module (SAM): This module focuses on the importance of each
spatial location in the input feature map. It calculates the maximum value for each channel
using channel max pooling and processes these maxima through two convolution layers to
produce a feature map representing spatial weights [19]. This feature map is then element-
wise multiplied with the input feature map to enhance the information at important spatial
locations and suppress less important ones.

Figure 3. Schematic diagram of CBAM structure.

Channel attention is learning the weights of different channels and multiple different
channels with weights, and enhancing attention to key channel domains [20]. For a feature
map of F ∈ R(C×H×W) layers, where C denotes the number of channels and H and W
denote the length and width of the feature map in pixels, the channel attention module
first calculates the weights for each channel MC ∈ R(C×1×1) according to the following
Equation (1).

MC(F) = σ(W1(W2(FC
avg)) + W1(W2(FC

max))). (1)

In the above equation, FC
avg and FC

max represent the averaged and maximally pooled
feature maps, W1 and W2 represent the weights of the two layers of multilayer perception,
and σ is the sigmoid activation function. The channel attention feature map is then obtained
by multiplying with the original feature map.
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The feature map is sent to the spatial attention module. Spatial attention focuses on
the positional information of objects and selectively aggregates the spatial features of each
space through the weighted sum of spatial features. Taking the channel-focused feature
map as input, maximal pooling and average pooling are performed in sequence, as shown
in Equation (2). Then, the spatial attention weight map is obtained through convolution
with a 7 × 7 kernel, as shown in Equation (3).

FS =
1
c ∑

i∈c
FC(i) + max

i∈c
FC(i) (2)

MS = σ( f (7×7)(FS)). (3)

2.2. PConv

In practical vehicle assembly line detection scenarios, models often need to operate
on resource-constrained embedded or edge devices, making model light-weighting key
to achieving efficient, real-time detection. To reduce the number of parameters in the
network model without sacrificing performance, PConv is employed in place of traditional
convolution operations. As shown in Figure 4, traditional convolution requires multi-
channel convolutional kernels to traverse the entire input data. In contrast, the fundamental
idea of PConv is to perform regular convolution operations only on a portion of the channels
in the input feature map for spatial feature extraction, while keeping the information in
other channels unchanged.

Figure 4. (a) Convolution with k × k × c convolution kernels; (b) Partial convolution.

As shown in Figure 5, to ensure no channel information is lost during PConv, pointwise
convolution (PWConv) usually follows. PWConv approximates regular convolution in
feature transformation, facilitating the more efficient capture and preservation of spatial
features [21]. This combination also brings the model’s performance on the receptive field
closer to that of T-shaped convolution. As shown in Figure 5b, T-shaped convolution, a
special convolution operation, focuses on the central area of the feature map for efficient
central feature processing without involving selective channel processing. In contrast,
PConv and PWConv focus on a portion of the input channels, enhancing efficiency by
reducing redundant computations and memory access. This combination not only inherits
the central concentration characteristic of T-shaped convolution but also further reduces
floating-point operations by decomposing its computational process and leveraging filter
redundancy [22].
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Figure 5. Schematic of three different convolutions: (a) Schematic diagram of PConv and PWConv
structure; (b) Schematic diagram of T-shaped Conv structure; (c) Schematic diagram of regular
Conv structure.

To ensure representativeness in the analysis, it is assumed that the number of channels
in the input and output feature maps remains consistent. In traditional convolution opera-
tions, as illustrated in Figure 4a, assume that the dimensions of the input feature map are
height h, width w, and number of channels c. FLOPs can be calculated using the following
formula to quantify the computational complexity of the convolution operation [23]. This
approach provides a basis for further analysis and optimization of the convolutional neural
network structure, thereby reducing the consumption of computational resources while
ensuring network performance.

FLOPs = h × w × k2 × c2. (4)

However, PConv FLOPs calculation is only

FLOPs = h × w × k2 × c2
p. (5)

In this formula, cp represents the number of consecutive channels at the beginning or
end of the input feature map, indicating the channels involved in the convolution operation.
As depicted in Figure 4b, the dotted part in front of the input feature is chosen to represent
the entire feature map for calculations.

It can be seen from Equations (4) and (5) that, when the ratio of cp to c is 1
4 , the

calculation amount of PConv is only 1
16 times that of the existing traditional convolution,

which greatly improves the operating efficiency.
In discussing the efficiency and efficacy of convolution operations, T-shaped convo-

lution and PConv are two common convolution structures. T-shaped convolution, while
capable of efficient computation during feature filtering, tends to have higher consumption
in terms of computational load and memory access compared to PConv. This leads to
computational redundancy and lower time efficiency [24]. To quantify the performance
differences between these convolution structures, T-shaped convolution calculates FLOPs
as shown in Equation (6). PConv and PWConv are calculated according to Equation (7).

FLOPs = h × w ×
(

k2 × cp × c + c × (c − cp)
)

(6)

FLOPs = h × w ×
(

k2 × c2
p + c2

)
. (7)

By comparing Equations (6) and (7), T-shaped convolution needs (1 − k2cp)(c − cp)
more operations. This difference highlights the relatively lower computational efficiency of
T-shaped convolution and provides a direction for optimizing convolution structures to
reduce computational complexity.

2.3. NWD Loss Function

In the YOLO loss function, the localization loss typically relies on Intersection over
Union (IoU) to measure the match degree between predicted and actual bounding boxes.
However, IoU is particularly sensitive to minor deviations in bounding boxes, especially
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for smaller objects, potentially leading to instability in the loss function. To resolve these
problems, this paper incorporates the NWD loss function. It models bounding boxes as
Gaussian distributions and uses the Wasserstein distance to more accurately measure the
differences between the predicted and actual bounding boxes [25]. This improves the
model’s detection capability for small objects, enhances spatial accuracy, better handles
overlapping objects, and offers a more stable and balanced training process. The loss is
then calculated through normalization, with the entire process depicted in Figure 6.

Figure 6. Loss function improvement schematic.

For smaller-scale objects, which in practice are mostly not strictly rectangular and tend
to occupy only a few pixels in the middle of the bounding box, usually concentrated around
the center, while irrelevant elements like the background are distributed near the edge
areas. To more accurately represent the importance of different pixels within the bounding
box, a two-dimensional (2D) Gaussian distribution can be used to model the bounding
box [26,27]. In this model, the central pixels of the bounding box receive the highest weight,
and the importance of pixels gradually decreases from the center towards the edges.

Specifically, for the horizontal bounding box R = (cx, cy, w, h), where (cx, cy), w, and
h represent the center coordinates, width, and height, respectively. The equation of its
interior ellipse can be expressed accordingly:

(x − µx)
2

σ2
x

+
(y − µy)

2

σ2
y

= 1, (8)

where (µx, µy) are the center coordinates of the ellipse. σx, σy are the lengths of the semi-axes
along the x and y axes. µx = cx, µy = cy, σx = w

2 , σy = h
2 .

The probability density function of the 2D Gaussian distribution is given by the
following equation:

f (x|µ, Σ) =
1

2π
√

Σ
exp(− (x − µ)T

2 ∑ (x − µ)
), (9)

where x, µ, and Σ represent the coordinates (x, y), the mean vector, and the covariance
matrix, respectively. The Wasserstein distance is next used to measure the difference
between two probability distributions. For two two-dimensional Gaussian distributions
µ1 ∼ N(m1, Σ1), µ2 ∼ N(m2, Σ2), the second-order Wasserstein distance between µ1 and
µ2 is defined as follows:

W2
2 (µ1, µ2) = ∥m1 − m2∥2

2 + Tr[Σ1+Σ2 − 2(Σ
1
2
2 Σ1Σ

1
2
2 )

1
2 ]. (10)

The above equation can be simplified to:
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W2
2 (µ1, µ2) = ∥m1 − m2∥2

2 +

∥∥∥∥Σ
1
2
1 − Σ

1
2
2

∥∥∥∥2

F
. (11)

Thus, for two Gaussian distributions modelling frames Na, Nb, the distance metric can
be expressed as the following equation:

W2
2 (Na, Nb) =

∥∥∥∥∥
([

cxa , cya ,
wa

2
,

ha

2

]T
,
[

cxb , cyb ,
wb
2

,
hb
2

]T
)∥∥∥∥∥

2

2

. (12)

However, distance metrics cannot be used directly as similarity measures. Therefore,
the paper employs the Softmax function for normalization. The Softmax function can
convert a set of arbitrary real numbers into a probability distribution, which is particularly
suitable for extracting similarity information from distance metrics. Taking the negative of
the ratio of the square root of the Wasserstein distance to a constant C confines the output
results within the 0 to 1 range, thus creating a new metric named NWD:

NWD(Na, Nb) = exp

−

√
W2

2 (Na, Nb)

C

, (13)

where C is a constant closely related to the data set. In order for the frame loss to reflect
the information of both NWD and IoU similarity measures, this paper controls the relative
contributions of NWD and IoU in the total frame loss, and the values of the weights of
both are set to 0.5, which ensures that the contributions of NWD and IoU to the total frame
loss are equal. The final loss function expression is:

Loss =
1

2N ∑N
i=1 (1 − NWDi) +

1
2N ∑N

i=1 (1 − IoUi), (14)

where N is the number of detection frames, and the mean value is taken in order to
aggregate the loss of multiple targets to a single value that can be used for the further
computation and optimization of the loss function.

3. Experimental Section

In this subsection, the paper will evaluate the performance of the present model in PCB
defect detection through an exhaustive series of experiments. The model will be compared
with several leading methods, reflecting the ability of this paper’s model to identify PCB
defects more accurately.

3.1. Data Set Processing and Training

The data set used in this article is a public synthetic PCB data set from the Intelligent
Robot Development Laboratory of Peking University.According to literature [28], although
the performance of synthetic data is slightly inferior to that of real data, synthetic PCB
defects still have a positive effect in increasing the diversity of training data in the absence
of a large amount of real defect data, and in literature [29] show that, even if the training
data differ from the target data in some features, the model can be effectively transferred
from synthetic data to real data through appropriate domain adaptation techniques. The
data set comprises 1386 images and six types of defects: missing hole, mouse bite, open
circuit, short, spur, and spurious copper, as shown in Figure 7. The synthetic defects are
highly similar to the real defects, which to a certain extent makes up for the problem of
insufficient data and helps to improve the generalization ability and accuracy of the model
in real scenarios. The average size of each defect pixel is 130 × 110, and each image has a
resolution of 2777 × 2138 pixels, with each defect occupying approximately 0.24% of the
entire image. This represents a significant challenge for the model’s performance. For this
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study, 535 images were used as the training set and 158 images as the validation set. The
final results showed a marked improvement.

Figure 7. PCB data set composition.

3.2. Evaluation Metrics

To quantify the effectiveness of the model’s detection capabilities, this paper employs
four evaluation metrics. Precision refers to the ratio of correctly detected positive samples
to all detected positive samples, including false positives. Recall is the ratio of correctly
detected positive samples to all actual positive samples, including those not detected. Mean
average precision (mAP) is the average of precision values across multiple categories and
recall levels. Frames per second (FPS) is used to measure the timeliness of the model’s
detection. Each metric evaluates the model’s performance from a different perspective. The
formulas for these calculations are as follows:

P =
TP

TP + FP
(15)

R =
TP

TP + FN
(16)

AP =
∫ 1

0
P(R)dR (17)

mAP =
∑M

n=1 APn

M
. (18)

Here, TPs (True Positives) refer to the number of positive sample targets correctly
identified, i.e., the targets correctly recognized. FNs (False Negatives) refer to the number
of positive sample targets not correctly identified, i.e., the targets that are missed. FPs
(False Positives) refer to the number of non-positive sample targets that are incorrectly
identified as positive, i.e., the targets that are falsely detected.

3.3. Model Training
3.3.1. Model Results

In this experiment, the PyCharm-integrated development environment was used and
Python 3.8 was chosen as the programming language. The experiment was run on an
efficiently configured hardware platform to ensure smooth execution of computational
tasks. Table 1 provides detailed hardware and software configuration information:
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Table 1. Configuration table of experimental platform.

Experimental Platform Specific Model

CPU Intel(R) Core(TM) i7-12700H
GPU Nvidia GeForce RTX 3060

Operating system Windows 11 64 bit
Memory 16 GB

Training framework Pytorch

With the support of the above hardware configurations, the YOLOv5 model proposed
in this paper achieves a significantly superior performance on the PCB defect detection
task. Taking 500 epochs of training as an example, the training curve is shown in Figure 8.

Figure 8. Training results graph.

An analysis of the YOLOv5 model’s performance data over 500 training epochs shows
a continuous decline in training loss, reflecting improvements in the model’s ability to
predict defect bounding boxes, objects, and categories. The introduction of the CBAM mod-
ule, which enhances the model’s focus on important features, contributes to an improved
detection performance. Consequently, in the later stages of training, the model exhibits
very high precision and recall rates. This indicates that the model not only accurately
locates and recognizes most defects but also has a very low rate of missing detections.
Additionally, the model’s mAP performance is robust, particularly approaching 98% at an
IoU threshold of 0.5, and maintains a high level even under more stringent IoU thresholds
(from 0.5 to 0.95). Towards the end of training, the model’s loss stabilizes and remains
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low, indicating that the model has converged well. The consistency of validation loss
with training loss suggests good generalization ability of the model and the absence of
overfitting. The learning rate gradually decreases in line with the training process, aligning
with the expected learning rate decay strategy. Overall, the model demonstrates excellent
training efficacy and potential for generalization, suggesting its efficiency in detecting PCB
surface defects in practical applications.

3.3.2. Ablation Experiments

To thoroughly investigate the impact of different components on model performance,
a series of ablation studies were conducted. These experiments individually examined the
effects of multi-scale fusion attention CBAM, PConv, and NWD on precision, recall, and
mAP, as presented in Table 2.

Table 2. The impact of different components on model performance.

Multi-Scale CBAM PConv NWD P/% R/% mAP/%

× × × 96.07 93.14 95.68
✓ × × 96.63 92.50 95.96
× ✓ × 97.63 95.97 97.64
× × ✓ 97.90 95.86 97.52
✓ ✓ ✓ 96.77 96.33 98.13

A value in bold indicates that it is the best value for that indicator.

The data reveal that the individual application of PConv and NWD significantly
enhances all performance metrics, while CBAM primarily impacts precision and mAP,
contributing less to the improvement in recall. When these three technologies are com-
bined, the model exhibits an optimal performance across all metrics, particularly achieving
the highest values in mAP. This suggests that, although each technological component
positively contributes to the model’s performance, their integrated application provides a
more comprehensive enhancement of the model’s overall capabilities.

3.3.3. Model Comparison

In order to measure the superiority of the proposed model in this paper, not only is
its evaluated performance quantified, but the model is analyzed in comparison with the
current popular target detection architectures such as SSD512, YOLOv3, YOLOv5, YOLOv7,
FAST R-CNN, and DenseNet [30], as presented in Table 3.

Table 3. Comparison of training results of different models.

Model P/% R/% mAP_0.5/% mAP_0.5:0.95/%

SSD512 84.07 94.85 92.09 48.79
YOLOv3 85.13 95.36 92.75 49.12
YOLOv5s 93.24 92.43 91.43 50.53
YOLOv7 95.33 95.75 95.08 51.25

Faster R-CNN 90.51 86.48 89.23 49.87
DenseNet 87.35 97.46 94.12 51.39
Proposed 96.77 96.33 98.13 51.16

A value in bold indicates that it is the best value for that indicator.

Table 4 shows the precision of different models for each defect. Table 5 shows the
recall of different models for each defect. Table 6 shows the mAP_0.5 of different models
for each defect.

The proposed model is particularly good at identifying complex defects such as open
and short circuits with an accuracy of more than 96%, showing efficient detection capability
and strong robustness.
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Table 4. Comparison table of the precision of different models for each type of defect.

Model Missing Hole/% Mouse Bite/% Open Circuit/% Short/% Spur/% Spurious Copper/%

Faster R-CNN 90.3 91.6 90.8 89.6 88.5 92.4
TDD-Net 97.4 94.8 95.3 94.3 97.1 94.9
YOLOv4 89.8 88.8 87.4 90.6 89.8 93.3
YOLOv5s 90.7 95.3 91.9 87.4 96.5 94.6
YOLOv7 98.3 93.2 94.9 93.1 97.2 95.4
YOLO-MBBi [31] 98.5 95.3 96.0 91.8 97.6 95.6
Proposed 98.5 96.0 98.3 96.6 96.9 97.3

A value in bold indicates that it is the best value for that indicator.

Table 5. Comparison table of the recall of different models for each type of defect.

Model Missing Hole/% Mouse Bite/% Open Circuit/% Short/% Spur/% Spurious Copper/%

Faster R-CNN 87.0 84.8 86.7 90.1 83.3 86.1
TDD-Net 98.4 92.6 97.8 96.2 92.5 95.2
YOLOv4 91.2 83.1 87.1 90.4 81.1 90.1
YOLOv5s 91.3 90.8 96.7 92.6 90.0 95.6
YOLOv7 98.9 92.1 98.8 95.1 93.3 95.7
YOLO-MBBi [31] 98.9 92.5 97.2 93.4 90.0 95.7
Proposed 100 90.3 96.5 95.3 95.8 94.5

A value in bold indicates that it is the best value for that indicator.

The proposed model has a very high recall rate on PCB defect detection, especially
on the “missing hole”, which reaches 100%. This shows its strong ability in accurately
identifying various types of defects, which is very suitable for application scenarios with
strict requirements for leakage detection rate.

Table 6. Comparison table of the mAP of different models for each type of defect.

Model Missing Hole/% Mouse Bite/% Open Circuit/% Short/% Spur/% Spurious Copper/%
Faster R-CNN 85.5 88.2 89.5 90.6 90.2 91.4
TDD-Net 97.1 94.5 97.2 91.9 94.0 95.7
YOLOv4 86.0 82.8 85.3 91.4 86.0 94.8
YOLOv5s 85.8 94.2 93.5 89.8 93.8 92.9
YOLOv7 97.7 94.0 97.6 91.8 94.3 96.2
YOLO-MBBi [31] 97.6 94.5 97.3 92.1 94.5 95.7
Proposed 99.3 95.9 99.2 97.0 99.2 97.6

A value in bold indicates that it is the best value for that indicator.

The data from the aforementioned table clearly indicate that the algorithm proposed
in this paper performs excellently in this comparative analysis, especially in terms of
precision and the mAP_0.5 metric, where it surpasses all other listed algorithms. Its high
accuracy rate of 96.77% means that its predictions are very reliable. The highest mAP_0.5
score of 98.13% demonstrates the model’s strong detection ability under relatively lenient
conditions. While it may not have the highest score in mAP_0.5:0.95, its score of 51.16% is
still quite high, indicating that it maintains a good performance under various levels of
detection difficulty. Compared to other models, the algorithm in this paper has a distinct
advantage in terms of overall performance, making it particularly suitable for applications
that require extremely high precision.

In comparing the basic YOLOv5 model with the enhanced YOLOv5 model for PCB
defect inference detection tasks, a significant performance difference is observed. As
shown in Figure 9, the top row in images (a), (b), and (c) shows the inference results of
the basic model, while the bottom row shows the results of the model proposed in this
paper. Figure 9a illustrates that the basic model misses subtle flaws when faced with the
same defects, whereas the model proposed in this paper still correctly classifies the defects.
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Figure 9b shows the false detection instances of the basic model, mistaking a short circuit
for spurious copper. Figure 9c reflects that, even when detecting the same defects, the basic
model usually has lower confidence, increasing the uncertainty in the subsequent analysis.
This improvement is evident in two respects: first, the improved model reduces the number
of false positives and false negatives, which is crucial for ensuring the completeness of PCB
detection. Second, for the defects that are indeed detected, the improved model provides
higher confidence scores. This enhanced confidence not only implies more reliable detection
results but may also reflect the improved model’s optimization of feature extraction and
pattern recognition.

Figure 9. Comparison of inference results.

Detection speed and model size are also key factors for measuring the usefulness of a
model. Figure 10 shows a stacked histogram of the percentage of different model sizes and
detection FPS [32].

Figure 10. Stacked histogram of size and percentage of detection FPS.
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Overall, the model proposed in this paper demonstrates significant advantages in
terms of size and speed, reflecting efficient computational performance and lower resource
requirements. This makes the model highly suitable for resource-constrained environments
and applications that require rapid response, while also reducing the costs associated with
storage and deployment.

4. Summary and Outlook

In this research, the proposed enhancements of the YOLOv5 model significantly
improve the efficiency and accuracy of PCB surface defect detection, which is of great
importance to the electric vehicle industry. By integrating a multi-scale attention mech-
anism, applying PConv lightweight convolution, and optimizing the loss function, the
model achieves an ideal balance between size, speed, and accuracy. These improvements
not only enhance the accuracy of defect detection but also contribute to the reliability and
safety of the electronic systems in electric vehicles, thereby directly impacting the overall
performance of the vehicles. Although the model outperforms traditional methods in
several respects, there is still room for improvement in terms of robustness under extreme
lighting conditions, and generalization for other datasets. Future research will focus on
these challenges, aiming to further enhance the model’s generalization ability and adapt-
ability through in-depth network optimization and algorithmic innovations. Additionally,
when deploying such models to actual electric vehicle production lines, integration with
existing systems, and challenges like data biases and model overfitting encountered in
practical operations, must be considered. Through continuous research and collaboration
with the industry, it is expected that these theoretical improvements will be translated
into reliable solutions in practical applications, bringing higher production efficiency and
stronger system reliability to the electric vehicle sector, thereby advancing the industry’s
technological progress and competitive edge.
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