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Abstract: In recent years, with the intensification of global warming, extreme weather has become
more frequent, intensifying the uncertainty of new energy output and load power, and seriously
affecting the safe operation of power systems. Scene generation is an effective method to solve the
uncertainty problem of stochastic planning of integrated systems of new energy generation. Therefore,
this paper proposes a scenario generation and scenario reduction model of photovoltaic (PV) output
and electric vehicle (EV) load power under extreme weather based on the copula function. Firstly,
the non-parametric kernel density estimation method is used to fit a large number of sample data.
The kernel density estimation expressions of PV and EV powers under extreme weather conditions
are obtained and the corresponding goodness of fit tests are carried out. Then, a variety of joint
distribution models based on the copula function are established to judge the goodness of fit of each
model, and the optimal copula function is selected as the joint probability distribution function by
combining the Kendall and Spearman correlation coefficients of each model. Finally, the optimal
copula joint probability distribution is used to generate PV and EV power scenarios. The data of
extremely hot weather in a certain province were selected for an example analysis. The results
show that the output scenario obtained conforms to the correlation under this extreme weather, and
has higher accuracy in reflecting the actual PV output and load power in this province under this
extreme weather, which can provide a reference for reliability analyses of power systems and power
grid planning.

Keywords: copula function; scenario generation; kernel density estimation method; K-means clustering
method; scenario reduction; high-temperature weather

1. Introduction

With the continuous increase in the installed proportion of new energy power gen-
eration in the power grid, wind power and photovoltaic, as the main forms, are highly
susceptible to the influence of external meteorological factors, and the power generation is
characterized by intermittency and volatility [1]. In the conventional meteorological envi-
ronment, the new energy output can be predicted more accurately based on the weather
forecast value. However, in recent years, global climate change and the intensification of
the greenhouse effect have caused a significant increase in the frequency and intensity
of extreme weather, and the impact of different types of extreme weather on new energy
output will correspondingly show different time scales, which will lead to large-scale
shutdown and output loss in the power grid, and seriously threaten the safe and stable
operation of the power grid [2].

On 25 March 2020, a large range of snowfall occurred in north China. Because photo-
voltaic power stations did not consider the impact of snowfall on the active power output
in the power forecast, the maximum active power output of photovoltaic power stations
was predicted to reach 2600 MW, while the actual maximum active power output was only
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1050 MW, with a large difference between the two. On 15 March and 27 March 2021, the
strongest dust storm in several years occurred at a provincial power plant. Power waves of
photovoltaic power plants (installed capacity of 100 MW) in this area are more obvious.
After being covered by sand and dust on 15 March, the power station output showed
a strong short-term fluctuation characteristic, and the maximum output was 51.81 MW.
However, on 27 March, when the dust front passed through the power station, the power
station output had a large drop, and after being completely covered by sand and dust, the
output maintained at a low level. On 7 August 2018, the highest temperature in some parts
of Zhejiang Province reached 41 ◦C. According to previous forecasts, Zhejiang Province has
prioritized power demand response measures to alleviate the severe pressure on supply
and demand. In August 2020, California, in the United States, had continuous hot weather,
the highest temperature reached 49 ◦C, the load increased by 14% over the same period,
while the external power supply decreased by 30%, resulting in the independent operator
of the California power system being forced to implement two outages of more than 1 h;
more than 1 million power users were affected. Therefore, in order to ensure the safe
and stable operation of the power grid under extreme weather and improve the robust-
ness of the power system, it is crucial to predict the load and renewable energy output
data under low probability and high impact events [3]. Joint scenario generation of load
power and renewable energy output (for example, in the environment of the increasing
popularity of new energy vehicles, especially the correlation between PV output and EV
load powers) under extreme weather conditions helps operators and dispatchers make
correct and effective decisions for power system planning in the face of the randomness
and uncertainty in power systems [4]. At the same time, highly accurate scene generation
technology can transform the “passive response” into “active regulation” in the power
system, and also provide theoretical support for the optimal operation and risk assessment
of the power system.

PV and EV power data forecasting based on scenario generation technology is an
important process in power industry planning, which mainly forecasts and calculates the
EV load power in the future period through historical EV power data and other related
factors. At present, the research methods of EV load power scenario generation technology
are mainly divided into three categories. The first is the traditional methods of time-
series analysis, regression analysis, and gray prediction models. Ref. [5] integrates the
adaptive advantages of the Kalman filter algorithm to obtain a relatively accurate equation
of state and observation equation, which improves the accuracy of short-term EV load
power prediction, but this method takes less consideration of uncertain factors such as
extreme weather. Ref. [6] established a blind numerical regression model for EV load
power forecasting to improve the accuracy of EV load power forecasting by analyzing the
EV load power demand and development trend in each production link of offshore oil
fields. However, this method has high requirements for historical data and fails to take a
large number of influential factors into account. Secondly, support-vector-machine- and
decision-tree-based machine learning methods can effectively solve the nonlinear problems
in output EV load power data generation. Ref. [7] optimizes the parameter selection
process of support vector machine through the chaotic electromagnetics algorithm, and
the algorithm’s convergence efficiency and optimization ability are improved, which is
suitable for short-term EV load power prediction. Ref. [8] proposed a similarity calculation
method based on local similarity minimization and a weighted similarity loss function, and
improved the gradient-lifting decision tree learning algorithm to improve the performance
of EV load power prediction. Finally, the deep learning method used a neural network
as the parameter structure to optimize. Currently, neural networks widely used in EV
load power prediction include back propagation neural networks, convolutional neural
networks, recurrent neural networks, and the emerging Transformer model.

Similarly, the prediction of renewable energy generation power based on scenario
generation technology also approximates the probability distribution mainly by simplifying
a large number of data, which is essentially a stochastic programming problem. At present,
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the scenario generation technology for renewable energy power generation is also mainly
divided into three categories. The first is the sampling-based method based on the Monte
Carlo method and Latin hypercube sampling method. However, such methods usually re-
quire certain assumptions about the probability distribution of the sample data and involve
large sets of scenarios. Secondly, the predictive method is based on an auto-regressive
moving average model and a generative adversarial neural network. A predictive model
is trained on a large amount of historical observation data to generate scenarios without
considering statistical assumptions. Ref. [9] proposes a random wind power model based
on ARIMA, which takes into account the non-stationary characteristics of wind power
generation, but is unable to deal with the complex nonlinear relationship between multiple
wind farms. Ref. [10] uses a conditionally improved Wasserstein generative adversarial
network to generate wind power scenarios that capture the spatiotemporal relationships
of multiple wind farms, but this requires high-quality historical observation samples and
training parameters. Finally, the optimized method based on distance matching is adopted.
However, this method is computationally inefficient for processing medium- and large-scale
scenes, and it cannot capture extreme scenes in sample data.

However, few papers consider the combination of the generation of renewable energy
output (PV) and load power (EV) scenarios in extreme weather environments, and most
papers only predict the power of the power supply side or the EV load side of the power
system, while in real life, it is more necessary to consider the correlation between PV and
EV in extreme environments. To solve the above problems, the structure of the remaining
part of this paper is arranged as follows. In Section 2, the non-parametric kernel density
estimation method is used to fit the actual data. The kernel density expressions of PV and
EV power at high temperature are obtained by goodness of fit and a precision test. In
Section 3, based on the copula function, a joint distribution model of the output of various
photoelectric fields and the load of electric vehicles is established. Combining the Kendall
and Spearman correlation coefficients of each model, the copula distribution function is
compared with the empirical copula function, and the Euclidean distance between them is
determined. The optimal copula function is selected as the joint probability distribution
of PV and EV power in extreme weather, and a typical scenario of PV and EV in high-
temperature weather is generated. In Section 4, an example analysis shows that the PV
and EV scenarios generated by this method are in line with the correlation, and can
accurately reflect the actual power of PV and EV under extreme high-temperature weather
in this region.

2. Kernel Density Estimation and Model Testing Methods

Research on the distribution of sample data of PV and EV power under extreme
high-temperature weather is mainly divided into two categories. One is the parameter
estimation method, which assumes that the data conform to a certain distribution according
to experience, and then estimates the corresponding parameters of the population by
sampling samples. However, this method needs to specify the specific distribution in
advance. To a certain extent, the characteristics of the PV and EV power curves are ignored,
resulting in the results obtained by the fitting of the parameter distribution model greatly
deviating from the actual distribution of the data [11]. The other kind of non-parametric
method does not have any prior assumptions about the population distribution, and studies
the characteristics of the data distribution entirely from the sampled samples, and kernel
density estimation belongs to this strategy.

2.1. Kernel Density Estimation Method

When the kernel density estimation method is used, the distance of each point to x in
the neighborhood of x can be calculated to analyze the degree of distance of each point to

x, and then the contribution degree of these points to the estimate
∧
f (x) can be determined.

Let the independent equally distributed samples drawn from X be X1, X2, . . . , Xn; f (x) is
the density function of X coincidence, it is an unknown function, x ∈ R, it is necessary
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to calculate the estimated value of the probability density function f (x) at the point x as
shown in Formula (1):

∧
f (x) =

1
nh

n

∑
i=1

K
(

x − Xi
h

)
(1)

where n represents the number of samples, h represents the window width, and K(·)
represents the kernel function. The kernel function name and formula [12] used to estimate
the density function are shown in Table 1.

Table 1. Kernel functions used for estimating density function.

Name Formula

Box (or uniform) 1
2 S(|r| ≤ 1)

Cosinus π
4 cos(π

2 r)S(|r| ≤ 1)
Epanechnikov 3

4 (1 − r2)S(|r| ≤ 1)
Gaussian 1√

2π
e−r2/2(|r| ≤ 1)

Quaritic 15
16 (1 − r2)

2S(|r| ≤ 1)
Triangle (1 − |r|)S(|r| ≤ 1)

Triweight 35
32 (1 − r2)

3S(|r| ≤ 1)
where r = (x − xi)/K is the sample center, x is the sample center, and xi is the i sample. S(·) is the execution
function, when |r| ≤ 1, S = 1; otherwise, S = 0. Different sum kernel functions have little influence on sum
density estimation. In terms of smoothness, the corresponding sum density estimation function of the Gaussian
kernel function has better smoothness, so the Gaussian kernel function is chosen in this paper.

2.2. Model-Checking Method
2.2.1. Goodness of Fit Test

After completing the fitting of the probability density, it is necessary to test the effect
of the fitting. By testing the fitting effect, we can measure the fitting degree of each fitting
method to the original data, so as to select the best fitting function. There are two commonly
used test methods [9], which are classified as Pearson χ2 and Kolmogorov–Smirnov.

(1) Pearson χ2

Suppose X1, X2, . . . , Xn is a sample of n samples extracted from the population X. X
follows a probability density function of f0(x), and its probability distribution function is
F0(x). The large interval is divided into k subintervals, and there is no overlap between
each subinterval. The number of samples falling into each subinterval was calculated, and
the Pearson χ2 statistic was calculated using Equation (2).

χ2 =
k

∑
i=1

(vi − npi)
2

npi
(2)

where vi is the number of samples in the i interval; pi is the theoretical value for which it
falls in the i interval.

As n approaches positive infinity, the distribution of χ2 converges to χ2
k−1. If the

confidence level a is given, then a subpoint of x is Equation (3).

P(χ2
k−1 < χ2

k−1(α)) = α (3)

where P(·) represents the probability of the event occurring. If the test statistic χ2 satisfies
χ2 < χ2

k−1(α), then it means that the probability distribution F0(x) at the confidence level α
satisfies the requirement.

(2) Kolmogorov–Smirnov

The Pearson χ2 needs to divide the sample space into k subspaces, which results in
the variation in test results with the selection of intervals, and the Kolmogorov–Smirnov
test has good applicability [13].
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Suppose X1, X2, . . . , Xn is the n samples extracted from the population X. The proba-
bility density function of X is f0(x), and its probability distribution function is F0(x). The
data of the samples are arranged from small to large, such that X(1) ≤ X(2) ≤ · · · ≤ X(n).

Based on the original samples, the empirical cumulative distribution function Fn(x) is
obtained and calculated as shown in Equation (4).

Fn(x) =


0, x < X(1)
k
n , X(k−1) ≤ x < X(k−1)

1, x > X(k)

(4)

The maximum vertical gap between the theoretical cumulative distribution F0(x) and
the empirical cumulative distribution Fn(x) is defined as the test statistic Dn, calculated
using Equation (5).

Dn = max
1≤i≤n

|Fn(xi)− F0(xi)| (5)

where i denotes the i-th sampling interval.
The parameters of the theoretical distribution model can be obtained from actual

historical data, and in this case, when a theoretical distribution is rejected in the test, the
error generated by the K-S test is relatively small.

2.2.2. Test of Fitting Accuracy

The fitting accuracy test is to measure the difference between the probability model
of the scenery output and the frequency distribution curve of the actual output from a
quantitative point of view. The mean absolute percentage error (MAPE) and root mean
square error (RMSE) are used to measure the fitting accuracy of the model [14].

MAPE =
1
k

k

∑
i=1

∣∣∣∣Pgi − Poi

Poi
× 100%

∣∣∣∣ (6)

RMSE =

√√√√1
k

k

∑
i=1

(Pgi − Poi)
2 (7)

where k is the number of intervals; Poi and Pgi are the density distribution of orthogonal
series of standardized output power of EV and PV and the probability of histogram in the
i-th interval, respectively.

3. Correlation Modeling and Scene Generation of PV and EV Power under
High-Temperature Weather Based on Copula Theory
3.1. Copula-Related Theory
3.1.1. Copula Functions and Classification

The copula function is a kind of connection function that connects the joint distribution
function of random vectors with the respective edge distribution function, that is, there is a
copula function C that makes Formula (8) true.

F(x1, x2, · · · , xn) = C(FX1(x1), FX2(x2), · · · , FXn(xn)) (8)

where n is the number of variables, FXi (xi)(i = 1, 2, · · · , n) is the edge distribution function
of a single variable, C(·) is the copula connection function and F(x1, x2, · · · , xn) is the joint
distribution function of n variables.

There are two common copula families, the Archimedes copula and the elliptic copula.
The three most common types of Archimedes copula functions are Gumbel copula, Clayton
copula, and Frank copula, and elliptic copula functions mainly include the normal copula
and t-copula. Because fitting multidimensional random variables with the t-copula is
extremely time-consuming, and the Gumbel copula form is complex, only the remaining
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three copula functions are considered in this paper. The coupling relationship between two
or more variables can be described by selecting the optimal copula function, as shown in
Figure 1 [15].
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3.1.2. PV Systems and EV Modeling

(1) PV Modeling

The output power of a PV system is often calculated using the formula

Ppv = A × G(T, S)× η (9)

where A is the area of the PV panels, S is the solar irradiance as a function of temperature T
and sunshine, and (T) is the efficiency of the panels related to the temperature T.

(2) EV Modeling

Assume that Pev is the power output or efficiency of the EV under standard conditions
in the area considered. EV battery charging and discharging can be modeled using

Pev = Pev,rated ×
(

1 − kt

(
T − Tre f

))
× f (SOC)∗ (10)

where Pev is the output power of the EV system, Tre f is the average temperature under
normal conditions, kt is the temperature coefficient indicating the sensitivity of EV demand
to temperature changes, and f (SOC) is a function representing the impact of the state of
charge on the EV’s efficiency or performance.

The detailed characteristics of PV plants and EVs are given in the Appendix A.

3.1.3. Optimal Choice of Copula Function

(1) Joint scenario generation and reduction of PV and EV power

Because there are many types of copula functions, it is impossible to select the optimal
copula directly, so it is necessary to distinguish the goodness of fit and select the optimal
function. The commonly used methods include functional image discrimination, correlation
coefficient discrimination, and Euclidean distance discrimination [16].

1⃝ Functional image discrimination is to compare the probability density function
images of each copula function with the probability density function of the
sample data, and the closest image is the optimal copula function.

2⃝ Correlation coefficient discrimination method is to judge the goodness of fit
using the Kendall rank correlation coefficient and Spearman rank correlation
coefficient. The rank correlation coefficients of various copula functions are
compared with the rank correlation coefficients of sample data. The closer
the data are, the better the goodness of fit is, and the corresponding copula
function is the best.
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Let the PV and EV powers with correlation be U and V, respectively. (u1, v1) and
(u2, v2) are any two sample observations of the power (U, V), and the two values are
independent of each other. If (u1, v1) · (u2, v2) > 0, it is said that (u1, v1) and (u2, v2) are
consistent; If (u1, v1) · (u2, v2) < 0, then (u1, v1) and (u2, v2) are said to be inconsistent.

The calculation formulas of the Kendall rank correlation coefficient ρk and Spearman
rank correlation coefficient ρs are shown in Formulas (11) and (12), respectively.

ρk =
2(a − b)

N(N − 1)
(11)

ρs =

N
∑

i=1
(ci − c)(di − d)√

N
∑

i=1
(ci − c)2

√
N
∑

i=1
(di − d)

2
(12)


c =

N
∑

i=1

ci
N

d =
N
∑

i=1

di
N

(13)

where a is the logarithm of samples with consistent output in (U, V); b is the logarithm of
samples with inconsistent output in (U, V); and N is the total number of sampling points.
In this paper, N is 24, that is, the step length is 1 h. ci is di in (u1, u2, · · · , uN) in the rank; di
is vi in (v1, v2, · · · , vN) in the rank.

3⃝ The Euclidean distance discrimination method is to compare the Euclidean
distance of each copula function with the empirical copula function of the
sample data. The smaller the Euclidean distance is, the better the goodness of
fit of the copula function is.

Let (xi, yi)(i = 1, 2, · · · , n) be the sample of the two-dimensional variable (X, Y),
and Fn(xi) and Gn(yi) are the empirical cumulative distribution functions of the two-
dimensional variable (X, Y), respectively. The empirical copula function calculation for-
mula of the samples can be expressed as in Equation (14).

Cn(u, v) =
1
n

n

∑
i=1

I[Fn(xi)≤u]G[Gn(yi)≤v] (14)

where I[·] is an indicator function. If [Fn(xi) ≤ u], there exists I[Fn(xi)≤u] = 1, otherwise
I[Fn(xi)≤u] = 0. The same is true for I[Gn(yi)≤v].

The optimal copula function is selected by using the squared Euclidean distance. The
squared Euclidean distance is defined by Formula (15).

d2 =
n

∑
i=1

|Cn(ui, vi)− Gn(ui, vi)|
2

(15)

ui = Fn(xi)

vi = Gn(yi)
(16)

where Ce(·) is the empirical copula function. The size of the chosen squared Euclidean
distance can reflect the closeness of various copula function models to the empirical copula
function. The smaller d2 is, the better the fitting performance of the function is [17].

(2) Scenario generation based on cubic spline interpolation

The joint distribution function of each period is sampled, and the cubic spline polyno-
mial on its cumulative probability interval is solved by means of the cubic spline interpola-
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tion method. Then, the PV and EV powers corresponding to each period can be calculated
by substituting any sampling cumulative probability value into Equation (17).{

xi = F−1
Xi (ui) = aui

3 + bui
2 + cui + l

yi = F−1
Yi (vi) = a′ui

3 + b′ui
2 + c′ui + l′

(17)

where a, b, c, l and a′, b′, c′, l′ are the coefficients of the polynomials in the cubic spline
interpolation method.

(3) Scenario reduction based on k-means clustering algorithm

The k-means clustering algorithm has the advantages of a simple principle and fast
clustering speed, and is one of the most widely used clustering algorithms at present [18].
Therefore, the k-means clustering algorithm is selected as the scene reduction algorithm in
this paper. The clustering steps are as follows [19–21]:

According to the preset clustering number K, K scenarios are randomly selected
from all the combined PV and EV power scenarios as the initial clustering centers for
each category.

Calculate the distance between each scene and the cluster center of each category, and
classify each scene into the category with the closest distance to it.

Calculate the cluster center of each category again to obtain the new cluster center
corresponding to each category.

Determine whether the convergence condition is met; if so, the clustering ends, other-
wise, return to step (2).

4. Case Study

According to the journal Meteorology published by the National Meteorological Center,
with the continuous westward extension and strengthening of the subtropical high, under
the influence of factors such as atmospheric clear sky radiation and sinking warming, a
total of two high-temperature weather processes occurred in July 2022 across the country.
The first stage was 5–17 days; in the second stage, from 21 to 31 days, some areas in
Jiangsu, Shanghai, Zhejiang, Fujian, Jiangxi, Anhui, southern Henan, and southern Xinjiang
Basin experienced high-temperature weather of more than 40 ◦C. The daily maximum gas
temperature approached or broke through the historical extreme value of the same period.
At this stage, the high-temperature weather included several provinces. Taking one day as
the time scale, we selected the PV and EV data of Jiangsu Province (denoted as province A)
and Xinjiang Province (denoted as province B), which were in the same high-temperature
weather (namely, 26 July), for comparison. In addition, the PV and EV data of Jiangsu
Province (denoted as province A) under normal weather (that is, 26 May) were selected
as controls. Line charts are drawn of the time dimension and space dimension on the
influence of extreme high-temperature weather on PV and EV, as shown in Figure 2. The
three curves in the two graphs in Figure 2 compare the data of different provinces in the
same month under extreme heat weather and the data of different weather conditions in
different months in the same province. The left plot represents EV data, and the right plot
represents PV data. It can be seen that (1) compared with normal weather conditions, under
the influence of extreme high-temperature weather, the light intensity is enhanced, and the
PV output of province A is increased compared with the PV output of normal weather in
the province, and the electricity load data is also increased in the extreme high-temperature
weather. (2) Under the same extreme high-temperature weather condition, the dimension
of province B is lower than that of province A, and the light is stronger under the same
temperature condition, so the PV output data are higher. Compared with province B,
province A is more developed in population and economy, and has a higher penetration
rate of electric vehicles. Therefore, under the same weather conditions, province A has a
greater demand for electricity load.
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Figure 2. Comparison of PV and EV data in time and space and weather dimensions.

In this paper, copula joint output modeling and typical scene generation were carried
out based on the measured power data of 10 days from 21 July to 31 July 2022, under extreme
hot weather in a certain province (generally defined as the daily maximum temperature
reaching or exceeding 35 degrees Celsius in Chinese meteorology) [22–25], and the EV load
and PV output power data are U and V, respectively.

Firstly, the copula force correlation model is established by using the historical force
data at all times to illustrate the process of copula model establishment. The edge distribu-
tion function of PV and EV powers under extreme hot weather in this province is estimated
using non-parametric kernel density. Then, four kinds of copula functions are constructed;
unknown functions in copula functions are obtained through parameter estimation. Dif-
ferent copula functions are selected to combine the edge distribution functions of PV and
EV, and the optimal copula function is selected according to Section 3.1.3. The Kendall
rank correlation coefficient, Spearman rank correlation coefficient and squared Euclidean
distance of each copula function are shown in Table 2. Table 2 reveals that the correlation
coefficients calculated using the Frank copula method closely approximate those obtained
from the sample data. Moreover, the Euclidean distance between the Frank copula and
empirical copula is the smallest among all the results. Finally, we can obtain the joint
probability distribution of PV and EV under extreme high-temperature weather, as shown
in Figure 3.
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Table 2. Correlation coefficient and squared Euclidean distance of each copula function.

Kendall Rank
Correlation
Coefficient

Spearman Rank
Correlation
Coefficient

Square Euclidean
Distance

Gaussian Copula −0.06664 −0.09983 0.45874

Gumbel Copula 1.35753 × 10−6 2.05096 × 10−6 2.06240

Clayton Copula 7.25427 × 10−7 1.09220 × 10−6 2.06237

Frank Copula −0.09334 −0.13967 0.24974

Sample Data −0.08268 −0.12254 0

Since the PV and EV distribution functions at each time are not exactly the same, the
typical scene generation through only one copula model ignores the differences in the PV
and EV distribution functions at different times, and the generated output scene has a large
gap to the actual situation. Therefore, copula models are established for 24 moments in the
scheduling cycle, and typical joint output scenarios considering the differences of PV and
EV time-series distribution functions are obtained through scene generation and reduction.

The copula model at 24 moments is sampled according to probability, and the power
output scenes at 24 moments are spliced into the joint power output scenes of complete
moments, which are reduced using the k-means clustering algorithm. In order to consider
the difference of the PV and EV time-series distribution function, the typical joint power
output scenes of the PV and EV time series are shown in Figure 4. The two color graphs
in the top half of Figure 4 show the power corresponding to the changes over time of
500 scenes generated by PV and EV, respectively. The two line charts composed of green,
purple, yellow, red, and blue in the bottom half of Figure 4 show the corresponding PV
and EV power, respectively, generated by the clustering method over time after the scenes
are reduced to five scenes. As can be seen from the two line graphs in the lower part of
Figure 4, the variation in PV output with time and the variation in EV load power with
time are similar under extreme high-temperature weather. The curve of PV output with
time is parabolic, reaching the maximum value at noon of a day, that is, when the light
is the strongest, which is in line with reality. The curve of electric vehicle load with time
is relatively tortuous, and the electricity load reaches its highest value in the afternoon
and evening.
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After scenario reduction, the corresponding probability distribution for each scenario
is shown in Figure 5. Comparing the probability distribution maps generated based on
different copula functions with the original data can also verify again that the scenes
generated based on the Frank copula are closer to the original data, and the model is
more accurate.
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5. Conclusions

On the basis of considering the difference of PV and EV output distribution function
at different moments, this paper uses copula function to establish the joint output model of
PV and EV time series, and uses density function image discriminant method, correlation
coefficient discriminant method and European distance discriminant method to judge the
goodness of fit, and selects the optimal copula model at each moment. Finally, the optimal
copula model at each moment is sampled, spliced and reduced according to probability to
obtain the typical scenario of time-series joint output. The proposed model is verified by
taking the measured PV and EV output data of a province for 10 days under extreme high-
temperature weather as an example. The analysis results show that the typical scenario
of the joint output of PV and EV power in extreme high-temperature weather can better
reflect the influence of high-temperature weather on PV and EV data in this province,
which can be applied to the power system optimization model, and can improve the
accuracy and effectiveness of the power system optimization operation strategy. At the
same time, the difference coefficient CV is used to measure the probability of the generation
of five scenarios of PV and EV, which can better reflect the complementary characteristics
of the two. It is worth pointing out that in terms of mathematical model, this paper
only established the scenario generation and scenario reduction model of photovoltaic
output and electric vehicle load power under extreme environment based on binary copula
function. However, at this stage, the installed capacity of new energy continues to increase,
especially for a variety of new energy types such as wind power and photovoltaic. At the
same time, in the system planning cycle, it is easy to be affected by uncertain factors such
as extreme environment. Therefore, how to consider the scenario generation technology
of combined output and power load of various new energy in extreme environment in
planning and operation will be one of the future work of this paper. Another future work
will be to study and forecast the correlation of other kinds of loads and other kinds of
renewable energy under extreme high-temperature weather.
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Appendix A

The tables describing the characteristics of PV plants and EVs are given below.

Table A1. PV plant power output curve characteristics.

Description

Diurnal Variation Curve

The diurnal variation curve of a photovoltaic power station illustrates
the change in power generation over the course of a day. Typically,
power generation gradually increases at sunrise, may reach its peak
around noon, and then gradually decreases until sunset.

Seasonal Variation

The power generation of a photovoltaic power station is influenced
by seasonal changes. Summer, with longer sunlight hours and a
higher solar zenith angle, may result in higher peak power during
this season.

Weather Impact
Weather conditions, such as clear, cloudy, or overcast skies, directly
affect the output of a photovoltaic power station. Cloudy weather can
lead to fluctuations and a reduction in power generation.

Shadow Effect
If the photovoltaic power station is affected by shadows from
buildings, trees, or other objects, irregular fluctuations may appear on
the curve, known as the shadow effect.

Start and End Times The times when a photovoltaic power station begins and ends its
power generation, influenced by sunrise and sunset times.

Peak Power
The highest power generation of the photovoltaic power station
during the day, typically occurring at noon when the solar zenith
angle is at its maximum.

Power Fluctuations

The fluctuation in power on the power curve of the photovoltaic
power station, representing instantaneous changes in power,
potentially influenced by shadows, cloud cover, and other weather
factors.

Table A2. EV power output curve characteristics.

Description

Charging Peak Period
Electric vehicles may experience a charging peak at night or during
specific time periods, indicating users’ tendency to charge during low
electricity price periods.

Driving Peak Period Daytime may witness a driving peak, signifying higher usage
demand for electric vehicles during the day.
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Table A2. Cont.

Description

Charging Efficiency
Variations

The charging curve may reflect variations in charging efficiency at
different charging power levels, influenced by battery and charging
equipment performance.

Charging Time
Distribution

Describes the distribution of time required for electric vehicle
charging, including short “top-up” charges and longer “full-charge”
durations.

Load Fluctuations: Reflects the variability in electric vehicle power demand, with certain
periods exhibiting significant power fluctuations.

Charging Behavior
Response

Describes whether electric vehicles respond to power system demand
signals or price signals, adjusting their charging behavior accordingly.

Usage Patterns Distinguishes between weekdays and weekends, as well as different
usage patterns during daytime and nighttime.
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