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Abstract: Compared with batteries, ultracapacitors have higher specific power and longer cycle life.
They can act as power buffers to absorb peak power during charging and discharging, playing a role
in peak shaving and valley filling, thereby extending the cycle life of the battery. In this article, a
replaceable battery electric coupe SUV equipped with a lithium iron phosphate (LiFePO4) power
battery is taken as the research object, and a vehicle dynamics simulation model is established on
the MATLAB/Simulink platform. Parameter matching and control optimization for a hybrid energy
storage system (HESS) are conducted. Through a proven semiempirical cycle model of the LiFePO4

power battery, the operating cycle life model is derived and used to estimate the battery cycle life.
World Light Vehicle Test Cycle (WLTC) simulation results show that the HESS with 308 ultracapacitors
can extend the cycle life of the LiFePO4 power battery by 34.24%, thus significantly reducing the
operation cost of the battery replacement station.

Keywords: hybrid energy storage system; LiFePO4; battery; ultracapacitor; battery cycle life; replaceable
battery electric vehicle; battery replacement station

1. Introduction

Replaceable battery electric vehicles can not only be charged using the power grid
one but can also directly replace the fully discharged power battery in the vehicle with
a fully charged power battery. Recently, some car companies have launched replaceable
battery electric vehicles and provided battery replacement services to solve the problems of
high purchase cost and long charging time of electric vehicle power batteries. This allows
consumers to use batteries on a rental basis without purchasing them when purchasing
replaceable battery electric vehicles. When the battery is low, consumers can go to the
battery replacement station to receive a fully charged battery. The entire battery replacement
process takes 3–5 min, and the lengthy charging task is entrusted to the battery replacement
station. This enables users to have the same convenient energy replenishment experience
as for traditional fuel-powered vehicles when using battery electric vehicles, enhancing the
competitiveness of replaceable battery electric vehicles. However, compared to charging
stations, the operating cost of battery replacement stations is clearly higher. The battery
replacement station requires a complete battery replacement system and a certain amount
of power batteries, so the operation and maintenance costs are higher than those of charging
stations. Due to the high cost of power batteries, it is of great economic significance for
battery replacement stations to adopt measures such as optimizing charging and battery
balancing to extend battery life. One feasible technology and method to extend the cycle
life of batteries is to use batteries and ultracapacitors to form a hybrid energy storage
system [1–4]. By optimizing the distribution of power between batteries and ultracapacitors
through control strategies, the high specific power characteristics of ultracapacitors are
fully utilized to perform peak shaving and valley filling on batteries, recover regenerative
braking energy, and improve battery usage and extend battery cycle life.
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Wu et al. used a lithium iron phosphate (LiFePO4) battery and ultracapacitor to form a
hybrid energy storage system, which improves the efficiency of the vehicle energy storage
system [5]. Wang et al. used the dynamic programming (DP) algorithm to obtain the
optimal energy allocation strategy, reducing the peak current of the battery and improving
the energy efficiency of the energy system [6]. Zhang et al. used model predictive con-
trol (MPC) to obtain operating conditions data and optimize HESS energy allocation in
the prediction domain through partial historical data and prediction models [7]. Alaoui
et al. optimized and normalized the known offline energy consumption data features and
trained artificial neural networks (ANNs) to obtain allocation results that maximize HESS
efficiency [8]. The above control optimization relies on known offline operating conditions
data and accurate prediction models, and the algorithm is complex and difficult to use
online in real vehicles. Therefore, it is also known as an offline control strategy.

In [9,10], Song and Zhang et al. designed the fuzzy logical control (FLC) strategy for
HESS electric vehicles, which improved the power and economy of EVs. FLC does not rely
on precise mathematical models but on the knowledge and experience of experts. In [11–13],
low pass filtering (LPF) was used to separate the high-frequency and low-frequency parts
from the energy consumption curve of the vehicle’s operating conditions and the HESS
was controlled and optimized by the battery and ultracapacitor outputs, respectively. In
addition, rule-based controllers also include load tracking control and threshold strategy.
The above method can quickly implement a control strategy for HESS energy allocation
online, hence it is also known as an online control strategy.

Compared to the research on HESS energy allocation strategies, there is little research
on HESS parameter matching. Sadoun et al. estimated the optimal mixing degree of
HESSs based on the HESS energy allocation strategy and derived the matching parameters
of HESSs [14]. Zhang et al. established a HESS parameter-matching model to analyze
and match its parameters in order to achieve optimized battery life for energy allocation
strategy [15]. In [16,17], different parameter-matching and control strategies were used
for a HESS to study the impact on battery cycle life and try to extend the cycle life of
the battery. Liu et al. proposed a HESS parameter-matching method that can meet the
performance indicators of electric vehicles in terms of power and energy and achieve
optimized parameter matching by reducing weight and cost [18].

In addition to battery electric vehicles, a HESS has also been applied in hybrid electric
vehicles and fuel cell vehicles to improve and enhance energy systems. In [19–21], the
application of a HESS to hybrid electric vehicles improved vehicle power and economic
performance. Djouahi et al. applied a HESS to fuel cell electric vehicles, replacing a single
battery power buffer and reducing fuel consumption by simultaneously optimizing the
component size and power management of the HESS [22].

In summary, for HESSs, energy distribution strategies and parameter matching are key
to leveraging the high energy density and power density characteristics of batteries and
ultracapacitors and extending the lifespan of lithium-ion batteries [23]. This article takes a
replaceable battery electric coupe SUV equipped with a LiFePO4 battery as the research
object. Firstly, we establish a vehicle dynamics simulation model on the MATLAB/Simulink
platform, using a rule-based controller, and optimize the HESS control strategy parameters
while optimizing its matching parameters. In order to calculate the battery cycle life more
accurately, a proven semiempirical life model of a LiFePO4 battery was used to derive its
driving cycle life model, which was then used to estimate the battery cycle life. In order
to make the simulation results closer to the actual situation, the World Light Vehicle Test
Cycle (WLTC) driving cycle, which is widely considered to be closer to the actual situation,
was used to analyze and study the capacity degradation of LiFePO4 batteries in the single
battery energy system and the hybrid energy storage system.

2. Vehicle Parameters and Models

The model studied in this paper is a Chinese-made four-wheel drive battery replace-
able electric coupe SUV, and the main parameters are shown in Table 1. The vehicle is
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equipped with a 71.72 kW·h LiFePO4 battery pack and two 130 kW drive motors. The New
European Driving Cycle (NEDC, Figure 1a) provides a comprehensive driving range of the
vehicle of 400 km. However, according to the data from a car enthusiast forum, the actual
testing mileage is about 360 km. To make the simulation results closer to reality, the World
Light Vehicle Test Cycle (WLTC, Figure 1b) driving cycle is adopted. Table 2 provides the
NEDC and WLTC driving cycle test parameters and data. It can be seen that the maximum
speed, average speed, and maximum acceleration of the WLTC driving cycle are all higher
than those of NEDC in terms of vehicle power demand indicators. The testing content of the
NEDC standard includes five operating conditions, four urban cycles, and one suburban
cycle. The testing content of the WLTC standard includes four types: low speed, medium
speed, high speed, and ultra-high speed [24]. The NEDC testing standard was born in
the 1980s and was last modified in 1997, which is relatively outdated. The WLTC driving
cycle is the testing standard for global light vehicle testing standards, developed by the
United Nations and born in 2017. Under the WLTC driving cycle simulation, the vehicle
has a driving range of approximately 366 km, which is basically consistent with the car
enthusiast forum.

Table 1. Parameter table of replaceable battery electric coupe SUV.

Parameters Value

Curb weight/kg 2290
Windward area/A/m2 3.368

Wind resistance coefficient/Cd 0.26
Wheel radius/r/m 0.365

Rolling resistance coefficient/ f 0.009
Wheelbase/m 2.9

Drive motor power/kW 130
Maximum speed of drive motor/rpm 12,000
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Figure 1. Driving cycles: (a) NEDC, (b) WLTC. 
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Table 2. NEDC and WLTC driving cycle parameters.

Parameters NEDC WLTC

Time/s 1184 1800
Distance/km 10.93 23.26

Max speed/km/h 120 131.32
Average speed/km/h 33.21 46.49

Max acceleration/m/s2 1.06 1.7
The above data are based on software statistics and there may be some discrepancies.

The vehicle dynamics model is built on the MATLAB/Simulink platform (version
R2021b) using the backward simulation method [25,26]. This model includes working
condition files, vehicle modules, transmission modules, electric motor modules, and energy
storage system modules. The model takes the driving cycle file as input, passing the
vehicle speed, torque, and rotation speed or power demand from left to right. The specific
modeling process refers to [27].This article will not elaborate on the modeling process
in detail.

3. Driving Cycle Life Model of LiFePO4 Battery

To accurately estimate the impact of a hybrid energy storage system on battery cycle
life, a reliable driving cycle life model of the LiFePO4 battery is essential. In this paper, the
proven semiempirical constant current charging and discharging battery cycle life model is
used to derive the LiFePO4 battery driving cycle life model.

3.1. Cycle Life Model of Constant Current Charge and Discharge for LiFePO4 Battery

Researchers have carried out a lot of research on the constant current charging life
model of the LiFePO4 battery. Ref. [28] studied the constant current discharge cycle life of a
2.2 A·h cylindrical LiFePO4 battery and obtained the following formula:

Qloss = B × exp
(
−Ea
RT

)
×Ah

z (1)
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where Qloss is the percentage of capacity loss of the battery; B is the preexponential factor;
Ea is the activation energy; R = 8.314 J/ (mol·K) is the general gas constant; T = 298.15 K is
the absolute temperature corresponding to 0 °C and T = 298.15 K to room temperature of
25 °C; Ah is A·h throughput:

Ah = N × DOD × Cb (2)

where N is the number of discharges; DOD is the depth of discharge; Cb is the battery capacity.
By curve fitting experimental data with fixed discharge rates of 0.5, 2, 6, and 10C, the

B, Ea, and z at each discharge rate were obtained, as shown in Table 3.

Table 3. Parameter values under different discharge rates.

Discharge Rate B Ea z

0.5 30,330 31,500 0.552
2 19,300 31,000 0.554
6 12,000 29,500 0.56
10 11,500 28,000 0.56

Through parameter fitting, the general formula for the cycle life of the LiFePO4 battery
with a fixed discharge rate is as follows:

Qlossn = Bn × exp
(
−31700 + 370.3 × n

RT

)
× Ah

z (3)

where n is the multiple of 1C discharge rate, corresponding to different discharge rates of
0.5, 2, 6, and 10C; Bn is 31,630, 21,681, 12,934, 15,512, respectively; z is 0.55.

The lnBn decreases with the increase in discharge rate n [16,29] and, as shown in
Figure 2, is fitted as follows:

lnBn = 10.274 − 0.105n (4)
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3.2. Cycle Life Model of LiFePO4 Battery under Driving Conditions

The working current of the battery is constantly changing, and the semiempirical for-
mula obtained by fitting the experimental data of constant current charging and discharging
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life cannot accurately reflect the battery life under driving cycle conditions. Therefore, it is
necessary to establish a battery life model under driving cycle conditions [29].

3.2.1. Equivalent Cumulative Ampere Hours Released at Different Discharge Rates under
Equal Lifespan Conditions

By using the equivalent life condition, the cumulative ampere hours released at
different discharge rates can be equivalent to the cumulative ampere hours released at a
certain discharge rate. If Ah1_n is the amount of electricity released at nC discharge rate
under equal lifespan conditions and Ahn is equivalent to the ampere hours released at 1C
discharge rate, then:

Ah1_n = 0.55

√
Bn

B1
× exp

(
370.3(n − 1)

RT

)
×Ahn (5)

By introducing (5) into (3), the equivalent battery cycle life formula for nC discharge
rate to 1C discharge rate can be obtained:

Qloss1_n = B1 × exp
(
−31329.7

RT

)
×
(

0.55

√
Bn

B1
× exp

(
370.3(n − 1)

RT

)
×Ahn

)0.55

(6)

3.2.2. Battery Driving Cycle Life Model

Dividing the driving cycle into t equal time intervals ∆t, the discharge rate of the
battery at time t is nt. The 1C discharge rate discharge current is recorded as I1. The
discharge amount Ahnt

of the battery at time t is calculated using the ampere hour method:

Ahnt
=

nt I1

3600
× ∆t (7)

Bringing Formula (7) into Formula (6) obtains the equivalent battery cycle life at time t:

Qloss1_nt
= B1 × exp

(
−31329.7

RT

)
×
(

0.55

√
Bnt

B1
× exp

(
370.3(n − 1)

RT

)
× nt I1

3600
∆t

)0.55

(8)

After a driving cycle at room temperature, the battery cycle life loss Qloss1 is:

Qloss1 = B1 × exp
(
−31329.7

RT

)
×
(

∑t
0

1.19

√
Bnt

B1
× exp

(
370.3(n − 1)

RT

)
× nt I1

3600
∆t

)0.55

(9)

The loss of battery cycle life after m driving cycles is:

Qlossm = B1 × exp
(
−31329.7

RT

)
×
(

m∑t
0

1.19

√
Bnt

B1
× exp

(
370.3(n − 1)

RT

)
× nt I1

3600
∆t

)0.55

(10)

4. Hybrid Energy Storage System Model
4.1. Parameters and Model of LiFePO4 Battery

The electric coupe SUV uses a LiFePO4 battery with a high energy density structure,
which has higher battery efficiency and reliability. The rated voltage of the battery is 3.2 V,
and the capacity is 135 A·h. The main technical parameters for constant current charging
and discharging at room temperature are shown in Table 4.
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Table 4. Parameters of LiFePO4 single battery.

Parameters Value

Mass/kg 3.04
Capacity/A·h 135

Nominal voltage/V 3.2
Charging cut-off voltage/V 3.65

Discharge termination voltage/V 2.5
Internal resistance/m Ω 0.686 < Rint < 0.7080

Cycle life/80%DOD 25 °C >3000

Using the internal resistance model Rint, as shown in Figure 3.
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Battery terminal voltage U:

U = Uoc − IRint (11)

Output power Pb:
Pb = UI (12)

Bringing (11) into (12) to solve the bus current I:

I =
Uoc −

√
Uoc

2 − 4PbRint

2Rint
(13)

Discharge efficiency ηb_d:

ηb_d =
UI

Uoc I
=

Uoc − IRint

Uoc
(14)

Charge efficiency ηb_c:

ηb_c =
Uoc I
UI

=
Uoc

Uoc + IRint
(15)

State of charge (SOC) consumption ∆SOCb:

∆SOCb =
Iηcoul

3600Cb
∆t (16)

where Uoc is the open circuit voltage of the battery, which is a function of SOC and can be
obtained by looking it up in the table; Rint is the equivalent resistance, which is a function
of SOC and can be obtained by looking it up in the table; Cb is the battery capacity.
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4.2. Parameters and Model of Ultracapacitor

Compared to batteries, ultracapacitors have a high specific power and can be quickly
charged and discharged at high currents with an efficiency of over 95%. They can be reused
106 times (about 40 years). This article uses an ultracapacitor with a rated voltage of 2.7 V,
and the main technical parameters are shown in Table 5. Figure 4 shows the equivalent
model of the ultracapacitor.

Table 5. Parameters of Ultracapacitor.

Parameters Value

Mass/kg 0.36
Capacity/F 2500

Nominal voltage/V 2.7
Internal resistance/m Ω 0.35

Cycle life >500,000
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Ultracapacitor terminal voltage Ut:

Ut = Uc − IRs (17)

Output power Pc:
Pc = Uc I (18)

Bringing (17) into (18) solves the bus current I:

I =
Uc −

√
Uc

2 − 4PcRs

2Rs
(19)

Discharge efficiency ηc_d:

ηc_d =
Ut I
Uc I

=
Uc − IRs

Uc
(20)

Charging efficiency ηc_c:

ηc_c =
Uc I
Ut I

=
Uc

Uc + IRs
(21)

State of charge SOCc:

SOCc =
Uc − Ucmin

Ucmax − Ucmin
(22)



World Electr. Veh. J. 2023, 14, 248 9 of 16

Energy stored by ultracapacitors Ec:

Ec =
∫ t

0
Uc Idt =

∫ U

0
CcUcdUc =

1
2

CcU2
c (23)

where Uc is the open circuit voltage of the ultracapacitor; Rs is the equivalent resistance
of the ultracapacitor; Ucmax is the open circuit voltage of the ultracapacitor when fully
charged; Ucmin is the open circuit voltage at the end of discharge; Cc =

Idt
dUc

is the capaci-
tor capacitance.

According to Formula (20), the efficiency of ultracapacitors decreases under high
current discharge rates and low unit voltages. According to Formula (23), the low voltage
of ultracapacitors corresponds to a low-energy state. So, in practical use, a minimum
voltage Ucmin should be given, and when the voltage of the ultracapacitor is lower than
this voltage, the discharge should be stopped. During operation, ultracapacitors should
use high-voltage areas.

4.3. Topological Structure of Hybrid Energy Storage System

There are many studies on the topology structure of hybrid energy storage systems,
and most researchers are mainly concerned about the specific topology structure used.
There is currently no standard rule on how to evaluate the advantages and disadvantages
of various structures. The topology of the hybrid energy storage system shown in Figure 5
is used in this article.
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The battery is directly connected to the inverter, and the ultracapacitor is connected in
parallel with the battery through a bidirectional DC-DC converter. Due to the smoother
range of voltage variation at the battery end compared to the ultracapacitor, the output
voltage of the inverter can remain relatively stable. The DC-DC converter detects the
terminal voltage of the battery, adjusts the voltage of the ultracapacitor, and matches the
two to work. This structure is relatively easy to control and allows for a wide range of
voltage changes for ultracapacitors.

4.4. Hybrid Energy Storage System Control Strategy and Parameter Matching

As shown in Figure 6, the rule-based controller is used in this article. Based on the
vehicle’s total energy demand Pr, the upper limit of power provided by the battery sepa-
rately Pmean, the charging power of the battery to the ultracapacitor Pch, the ultracapacitor
can provide power Pc_a, rechargeable power Pc_ch, bottom line voltage Ucmin, balanced
voltage Ucl, and SOCc to develop rule-based control strategies. When driving, if Pr≤ Pmean,
the battery operates independently; when Pr> Pmean, the battery and ultracapacitor work
together; during braking, ultracapacitors are given priority in recovering braking energy.

Figure 7 shows the energy consumption and battery life of the entire vehicle when
using different Pmean and Pch. Assuming the total energy consumption of the vehicle is x1
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and the reciprocal of battery cycles is x2, the multi-objective function regarding the vehicle
energy consumption and battery cycles can be described as:

x1 + γx2 (24)

where γ is the weight factor.
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Due to the use of ultracapacitors increasing vehicle mass and energy consumption,
the main goal should be to reduce vehicle energy consumption, taking into account the
improvement of battery life and obtaining the control parameters Pmean = 25 kW and
Pch = 0 kW for the lowest energy consumption.

The above control parameters are used to simulate 166 LiFePO4 batteries with differ-
ent numbers of ultracapacitors, as shown in Figure 8. As the number of ultracapacitors
increases, the energy consumption of vehicles also increases. This is due to the increase in
energy system mass caused the use of ultracapacitors, resulting in an increase in overall
vehicle energy consumption. The cycle life of the battery first significantly improved,
reaching its optimal value at 308 ultracapacitors, and then the overall energy consumption
of the vehicle significantly increased. After reaching its optimal value, the cycle life of the
battery began to decline.

Here, 308 ultracapacitors with the highest increase in battery cycle times are selected.
The parameters of single energy and hybrid energy storage systems are shown in Table 6.
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Figure 8. The relationship between the number of ultracapacitors and vehicle energy consumption 6 
and battery cycle life. 7 

World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 11 of 17 
 

 
(a) 

 
(b) 

Figure 7. Different 𝑃𝑃mean and 𝑃𝑃ch with vehicle energy consumption and battery cycle life: (a) Ve-
hicle energy consumption; (b) Battery cycle life. 

The above control parameters are used to simulate 166 LiFePO4 batteries with differ-
ent numbers of ultracapacitors, as shown in Figure 8. As the number of ultracapacitors 
increases, the energy consumption of vehicles also increases. This is due to the increase in 
energy system mass caused the use of ultracapacitors, resulting in an increase in overall 
vehicle energy consumption. The cycle life of the battery first significantly improved, 

Figure 7. Different Pmean and Pch with vehicle energy consumption and battery cycle life: (a) Vehicle
energy consumption; (b) Battery cycle life.



World Electr. Veh. J. 2023, 14, 248 12 of 16

 
 

 

 

 

 

200 250 300 350 400 450 500
2.20×107

2.21×107

2.22×107

2.23×107

2.24×107

2.25×107

2.26×107

 Energy consumption
 Cycles

Number of UC

En
er

gy
 c

on
su

m
pt

io
n 

(J
)

3.90×103

3.95×103

4.00×103

4.05×103

4.10×103

4.15×103

4.20×103

4.25×103

4.30×103

4.35×103

 C
yc

le
s

 

 

 

Figure 8. The relationship between the number of ultracapacitors and vehicle energy consumption 
and battery cycle life. 

Figure 8. The relationship between the number of ultracapacitors and vehicle energy consumption
and battery cycle life.

Table 6. Parameters of single energy and hybrid energy storage system.

Energy Type Number of
Batteries

Number of
Ultracapacitors

Energy System
Mass/kg

Battery 166 0 505
Hybrid energy storage system 166 308 505 + 111 (UC)

5. Simulation Discussion
5.1. Battery and Ultracapacitor Power Demand

As shown in Figure 9, compared to a single energy source, the peak driving power
of the battery is significantly reduced, and the regenerative braking power is almost zero.
The ultracapacitor provides peak power when the driving power exceeds 25 kW and bears
almost all braking power during regenerative braking. The ultracapacitor is repeatedly
charged and discharged throughout the entire operation process, absorbing regenerative
braking energy. Under the control strategy adopted, the hybrid energy storage system
can reasonably allocate power between batteries and ultracapacitors, leveraging their
respective advantages.

5.2. Battery Current and Efficiency

By using the hybrid energy storage system, the charging and discharging currents
of the battery are significantly reduced. The maximum discharge current and maximum
charging current are reduced by 61.43% and 91.62%, respectively, compared to a single
energy source, as shown in Figure 10. Reducing the charging and discharging current can
reduce battery loss and improve battery efficiency.

From Formulas (14) and (15), it can be seen that the battery discharge efficiency ηb_d
and charging efficiency ηb_c are inversely proportional to the charging and discharging
current of the battery. The higher the current, the more power is consumed in the internal
resistance of the battery and the lower the efficiency of the energy system. That is to say,
the hybrid energy storage system can reduce battery losses and improve battery efficiency
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by reducing battery charging and discharging currents. The simulation results show that
compared with a single battery energy system, the hybrid energy storage system improves
the discharge efficiency of the power battery from 87% to 98%. On the other hand, in the
hybrid energy storage system, the ultracapacitor absorbs almost all regenerative braking
power. Due to the high efficiency of the ultracapacitor, the charging efficiency of the energy
system is also improved and the overall efficiency of the energy system is improved.
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5.3. Battery Cycle Life

Based on the battery current of different energy systems (as shown in Figure 10), the
method given in Section 3 is used to estimate the battery cycle life under driving cycle
conditions. As shown in Figure 11, with the use of the hybrid energy storage system, the
cycle life of the battery has been increased from 3166 to 4250 cycles (capacity has decreased
to 20%), the cycle life has been increased by 34.24%, and under the WLTC drive cycle, the
driving range has been increased from 73,767.80 km to 99,025.00 km.
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According to the current market price, the LiFePO4 battery is approximately 600 yuan/kW·h
at present and a company has laid out over 1500 battery replacement stations in China.
The latest data show that it took 102 days to switch from 20 million times to 25 million
times, with an approximately average of 50,000 times per day. According to a conservative
estimate of 50,000 vehicles, adopting hybrid energy storage system technology can save
battery costs of over CNY 700 million, as shown in Table 7.

Table 7. Economic benefit estimation table.

Items Number

Battery pack energy/kW·h 71.72
Unit price 10,000 yuan/kW·h 0.06

Unit price of battery pack/10,000 yuan 4.3
Number of battery exchanges/10,000 5

Total price of battery pack/10,000 yuan 215,160
Battery cycle life increase/% 34.24
Battery savings/10,000 yuan 73,668

6. Conclusions

In this work, in order to improve the cycle life of replaceable battery electric vehicle
batteries, a hybrid energy storage system is composed of ultracapacitors and batteries and
parameter matching and control optimization are carried out on the hybrid energy storage
system. In order to more accurately estimate the battery cycle life under driving cycle
conditions, a proven cycle life model of a LiFePO4 battery at a fixed discharge rate was
adopted, and on this basis, the battery cycle life model under driving cycle conditions
was deduced. The simulation results show that the optimized hybrid energy storage
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system can extend the cycling life of the original vehicle battery by 34.24% under WLTC
driving cycle conditions, greatly saving the operating costs of battery replacement for
automotive companies.

The main contribution of this article is to provide a systematic method and tool for
extending the battery cycle life of replaceable battery electric vehicles using a hybrid energy
storage system. By using the method provided in this article, it is possible to quickly opti-
mize the design of hybrid energy storage systems under various driving cycle conditions
and provide estimated battery cycle life results. In addition, the method provided in this
article has certain universality and can be used to study various electric vehicles.

It should be pointed out that the simulation results of this article are based on the
control rule parameters formulated based on the average driving power demand of the
WLTC driving cycle. It is not the optimal solution, which means that the advantages of
different energy sources in hybrid energy storage systems have not been fully utilized. To
further leverage the advantages of hybrid energy storage systems, global optimization
algorithms can be used to obtain the most optimal control parameters.
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