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Abstract: With the increasing number of new energy sources connected to the grid, the unbalanced
output of three-phase grid-connected inverters and the lack of no inertia and damping characteristics
in the traditional microgrid control system will seriously affect the stability of voltage, frequency,
and power angle for microgrids. This paper proposes a novel cascaded three-phase bridge inverter
topology for the battery system used for the electric vehicle. Compared with traditional cascaded
H-bridge inverters, the proposed multilevel inverter can achieve self-adaptive balance for three
phases. The mathematical model of a cascaded three-phase bridge inverter is established in this paper.
Based on the voltage and current equations of a multilevel inverter, a new modulation strategy named
carrier phase-shifted-distributed pulse width modulation (CPSD-PWM) was developed, which is
more suitable for cascaded three-phase bridge inverters. The harmonic analytic equations of carrier
phase-shifted pulse width modulation (CPS-PWM) and CPSD-PWM are constructed by the double
Fourier analysis method. Compared with the traditional PWM modulation strategy, the CPSD-PWM
can reduce the output harmonics and improve the balance of the three-phase output, which can
realize the three-phase adaptive balance in the cascaded three-phase bridge inverter. This paper
develops a cascaded three-phase bridge multilevel power converter system based on the virtual
synchronous generator (VSG) control strategy. The voltage and frequency of inverter output can be
accurately controlled in both island mode and grid-connected mode through active power-frequency
regulation and reactive power–voltage regulation, and the stability of primary frequency regulation
for the multilevel microgrid inverter can be improved by collaborative optimization of virtual inertia
and virtual damping. The CPSD-PWM modulation strategy and VSG control strategy are verified by
the simulation results and experimental data for the cascaded three-phase bridge inverter.

Keywords: cascaded three-phase bridge inverter; CPSD-PWM; double Fourier analysis; VSG control

1. Introduction

The traditional grid provides voltage and frequency support for the synchronous ma-
chine. Nowadays, the power system is changing from traditional fossil energy generation
to wind, solar, and other new energy sources. The inertia and frequency support capacity
decrease. The electric vehicle is treated as a good adjustable load resource, and how to
design and control the converter of the electric vehicle has been focused on. When the
new energy vehicle electric drive system is connected to the microgrid on a large scale, the
power quality of its grid-connected access and output three-phase power will directly affect
the stability of the microgrid [1,2]. Therefore, this paper studies the high-reliability pulse
width modulation (PWM) strategy and grid-connected control strategy of a new energy
vehicle multilevel electric drive system based on a new cascade three-phase bridge inverter,
which can improve the output power quality of the electric drive system in the state of
energy storage generation, reduce the output harmonics and loss on the transmission line,
and enhance the adjustment performance to the disturbance, thus improving the operation
stability of the new energy microgrid.
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The medium voltage multilevel converter is mainly used to connect the new energy
generation or battery to the grid, which can effectively reduce the switching frequency,
du/dt, electromagnetic interference, and output voltage harmonics [3,4]. Multilevel invert-
ers can be divided into single-power type multilevel inverters [5,6] and multi-power type
multilevel inverters [7,8] according to the number of power supplies. Single-power multi-
level inverters mainly include capacitor types [9], diode types [10], hybrid clamp types [11],
etc. The main advantages of the diode-type multilevel inverter are its simple structure,
which can easily control the flow of power; however, it is difficult to equalize the pressure
and difficult to expand [12]. The main advantage of a capacitive-type multilevel inverter
is that it can expand multiple levels, and the large number of levels makes the overall
efficiency of the inverter high [13]. However, the more the number of levels, the required
capacitance will also increase correspondingly. Then the volume will become huge, and the
reliability will deteriorate, which will bring many disadvantages to production. Combining
the advantages of the capacitor type and diode type, the hybrid diode and capacitive
multilevel inverter has the advantages of the above two inverters, but the number of diodes
and capacitors in the case of multilevel is amazing, and the control system is complex [14].
Based on the above single power supply type, a multilevel inverter with multiple DC
power supplies is proposed. Cascaded multilevel inverters are becoming a hot topic in the
multilevel converters used in new energy generation systems. The cascaded multilevel
converter uses multiple power modules to complete the entire power conversion through
superposition, by which the overall output voltage level is improved, but the voltage of
each power unit is not large [15]. The unit of cascaded multilevel inverters is mainly H-
bridge cascaded inverters, for which the main modulation strategies are developed based
on the mature two-level PWM technology [16]. Each basic unit of the traditional cascaded
H-bridge inverter is a single-phase H-bridge circuit, and its output is only determined by
the output power of a DC input unit. There is no energy transfer channel between the
three-phase outputs. Therefore, the output power between the three phases will be unbal-
anced when the output power of multiple DC input units is unbalanced. This imbalance of
output power is difficult to adjust through the power complementarity between phases.
Additionally, if the output power of one unit is reduced, the power of all other output units
can only be synchronously reduced by control to achieve the stability control of the system;
otherwise, it will cause the three-phase output imbalance of the electric drive system. The
serious imbalance of three-phase output power in the electric drive system will generate
more uncontrollable zero-sequence circulation, resulting in more losses in the microgrid
system. Additionally, the imbalance of three-phase power will produce more negative
sequence components in the system and even cause the wrong trigger of the protection
equipment, which seriously affects the stability of the microgrid system. Therefore, im-
proving the power quality of the three-phase output power in the new energy vehicles
is of great significance for improving the stability of the microgrid system. The common
modulation strategies of multilevel inverters include step wave PWM [17], carrier wave
PWM [18], and multilevel space vector PWM [19]. Step-wave PWM modulation is one of
the most typical modulation strategies for multilevel inverters. There are two methods of
step wave PWM: one is the waveform approximation method, and the other is the specific
harmonic elimination method. The step-wave PWM modulation has the advantages of
a simple algorithm, a wide modulation ratio, and easy implementation. However, when
the signal transmission performance is required to be high, the transmission bandwidth
of this control method is narrow and inappropriate. The common carrier PWM methods
are carrier phase-shifted PWM (CPS-PWM) [20], carrier cascade-disposition PWM (CD-
PWM) [21], switching frequency optimization PWM (SFOPWM), and sub-harmonics PWM
(SHPWM) [22]. The CPS-PWM method has strong suppression of low harmonics of output
voltage, which makes it the most widely used in CHB multilevel inverters and modular
MCC multilevel inverters, while the CD-PWM method has a better suppression effect on
high-order harmonics, and its control circuit is relatively simple and easy to implement,
which can be applied to most multilevel inverters. Multiple-space-vector modulation is a
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development based on the conventional SVM, in which n levels can produce 3n switching
states. Therefore, the transition of voltage synthesis is smoother, and the resultant flux is
closer to the circle in the multiple SVM. However, with the increase in level number, the
algorithm of the whole inverter control system will become gradually complicated and
difficult to realize.

For cascaded multilevel converters, both the PWM modulation strategy and the
grid-connected control strategy will affect the performance of the inverter. The control
strategies of multilevel inverters applied in microgrids mainly include constant power (P–Q)
control [23], constant voltage/frequency (V/f) control [24], droop control [25], and virtual
synchronous generator (VSG) control [26]. P–Q control generally works in grid-connected
mode, in which the microgrid inverter outputs constant active power and reactive power
according to reference values. P–Q control has the characteristics of a current source, but the
voltage adjustment and frequency adjustment of P–Q control are undertaken by the power
grid, which does not participate in the frequency and voltage regulation control and does
not provide support to the power grid. The increase in permeability for P–Q controlled
inverter power will negatively affect supply, and the power quality and stability of the
power grid will be negatively affected. V/F control is mainly used to solve the islanding
mode operation of the microgrid by providing a reference voltage and frequency. With
changing inverter power, V/F control can always maintain a stable voltage and frequency
with voltage source characteristics. Droop control has the characteristics of frequency
modulation and voltage regulation with changing loads, which can change the frequency
or voltage by regulating active power or reactive power. Droop control can operate in
isolated island mode and grid-connected mode, which is more widely used than V/F and
P–Q control.

The distributed inverter power supply is integrated into the power grid through a
large number of electronic interfaces. Due to the lack of inherent ability to autonomously
regulate frequency and voltage in the traditional synchronous generator, it cannot provide
the necessary frequency and voltage support for the power grid when a disturbance
occurs. Virtual synchronous generator control applies the energy storage unit of the
microgrid as the inertial energy storage unit and simulates the electromechanical transient
characteristics of synchronous generators in the control strategy of grid-connected inverter.
The power supply and load with power electronic interface by VSG control can be compared
with the conventional synchronous motor in terms of operation mechanism and external
characteristics, so that it can regulate the frequency and voltage independently, and the
system with VSG control also has virtual inertia and damping characteristics.

This paper presents the topology structure of the cascaded three-phase bridge inverter
applied to a microgrid and constructs the mathematical model of the cascaded three-phase
bridge inverter. Based on the voltage and current equations of the multilevel inverter, a
novel PWM strategy for cascaded three-phase bridge inverters is proposed in this paper,
which is named carrier phase-shifted-distributed PWM (CPSD-PWM). In this paper, the
analytical expressions of the harmonic spectrum for CPSD-PWM and CPS-PWM are solved
by dual Fourier analysis. Compared with the traditional PWM strategy, the proposed
CPSD-PWM strategy can effectively reduce the output harmonics and improve the output
balance of the multilevel inverter, by which the multilevel inverter can achieve the adaptive
balance of three-phase output power. Additionally, on this basis, this paper studies the
control strategy for the three-phase cascaded inverter in isolated island mode and grid-
connected operation mode. The output frequency and voltage of the multilevel inverter
can be accurately controlled by the active power-frequency regulation and the reactive
power-regulation of the VSG control strategy. This paper analyzes the influence of the
virtual inertia J and the virtual damping D on the stability of frequency regulation. The
experimental platform of a cascaded three-phase bridge inverter is built in this paper, and
the proposed CPSD-PWM strategy and multilevel inverter control system with VSG control
strategy are verified by the simulation analysis and experimental results.
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This paper consists of five sections, the first section describes the development status of
modulation strategy and control strategy for cascade multilevel inverter; the second section
describes the working principle of the cascaded three-phase bridge inverter, and proposes
the carrier phase-shift modulation PWM strategy; the third section describes the working
principle and parameter design method of the cascaded three-phase bridge inverter by VSG
control strategy; the operation characteristics of cascade three-phase bridge inverter under
different working conditions are simulated and analyzed under the proposed modulation
strategy and control strategy in the fourth section; and the fifth section is the conclusion,
which summarizes the core content of this paper.

2. Carrier Phase-Shifted-Distributed PWM for Cascaded Three-Phase Bridge Inverter

Figure 1 shows a topology diagram of a typical grid-connected battery system in the
microgrid.
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Figure 1. Topology diagram of a typical cascaded three-phase bridge ba ery power generation sys-
tem. (A–C are the three-phase grid-connected output of the inverter. O represents the neutral point 
of a three-phase network. A1–C3 represents the output end of each bridge arm in the cascaded three-
phase bridge inverter.) 

The front stage of the ba ery converter system uses an isolated half-bridge LLC con-
verter to transform the electric energy from the ba ery. Additionally, the rear stage real-
izes grid-connected ba ery power generation through the cascaded three-phase bridge 
inverter. The output power of the half-bridge LLC is used as the isolated DC bus voltage 
for the cascaded three-phase bridge inverter. The cascaded three-phase bridge multilevel 
inverter takes the three-phase voltage inverter module as a basic power unit cascaded into 
a hybrid connection structure form of inverter. Similar to the cascaded H-bridge multi-
level inverter, it also makes the AC side output voltage of the inverter present a multilevel 
state through the superposition of the DC side voltage of the basic module. Compared 
with the traditional cascaded H-bridge multilevel inverter, the cascaded three-phase 
bridge multilevel inverter requires fewer switching devices than the former for the same 
number of output levels. Additionally, the cascaded three-phase bridge inverter is suitable 
for a three-phase system, which can significantly improve the balance of three-phase 

Figure 1. Topology diagram of a typical cascaded three-phase bridge battery power generation
system. (A–C are the three-phase grid-connected output of the inverter. O represents the neutral
point of a three-phase network. A1–C3 represents the output end of each bridge arm in the cascaded
three-phase bridge inverter.)

The front stage of the battery converter system uses an isolated half-bridge LLC
converter to transform the electric energy from the battery. Additionally, the rear stage
realizes grid-connected battery power generation through the cascaded three-phase bridge
inverter. The output power of the half-bridge LLC is used as the isolated DC bus voltage
for the cascaded three-phase bridge inverter. The cascaded three-phase bridge multilevel
inverter takes the three-phase voltage inverter module as a basic power unit cascaded into
a hybrid connection structure form of inverter. Similar to the cascaded H-bridge multilevel
inverter, it also makes the AC side output voltage of the inverter present a multilevel state
through the superposition of the DC side voltage of the basic module. Compared with
the traditional cascaded H-bridge multilevel inverter, the cascaded three-phase bridge
multilevel inverter requires fewer switching devices than the former for the same number
of output levels. Additionally, the cascaded three-phase bridge inverter is suitable for a
three-phase system, which can significantly improve the balance of three-phase output.
With the increase of the cascade modules, the number of levels also increases step by step
and becomes more similar to the sine wave. The level number S is defined as the steps
number of the output line voltage on the inverter AC side, that is, S = 2L + 1, where L is the
number of the cascade modules. Therefore, the level number of a two-stage, three-phase
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inverter is five, which is shown in Figure 1. The two-stage cascaded inverter is composed of
three submodules; each module is connected to an independent battery, and the three line
voltages on the AC side of the converter are obtained through the cascade superposition
between the submodules.

To build the mathematical model of the cascaded three-phase bridge inverter, the
power devices in the cascaded inverter can be simplified by the unipolar binary logic
switch function Skm, which can be defined as:

Skm =

{
1 Upper bridge arm is on, lower bridge arm is off
0 Upper bridge arm is off, lower bridge arm is on

(k = a, b, c; m = 1, 2, 3) .

(1)
For a two-stage cascaded three-phase bridge converter, the output line voltage on the

AC side can be expressed as:
VAB = Va1b1 + Va2b2 = (Sa1 − Sb1)Vdc + (Sa2 − Sb2)Vdc
VBC = Vb2c2 + Vb3c3 = (Sb2 − Sc2)Vdc + (Sb3 − Sc3)Vdc
VCA = Vc3a3 + Vc1a1 = (Sc3 − Sa3)Vdc + (Sc1 − Sa1)Vdc

. (2)

According to Equation (2), the maximum number of levels of the output line voltage
in the two-stage cascade three-phase bridge converter is five, including (−2VDC, −VDC, 0,
VDC, and 2VDC), and its amplitude is 2VDC. The equivalent circuit of a two-stage, five-level
cascaded, three-phase bridge converter can be seen in Figure 2, where A–C are the three-
phase grid-connected output of the cascaded three-phase bridge inverter, A1–C3 represents
the output end of each bridge arm in the cascaded three-phase bridge inverter.)
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Figure 2. Equivalent circuit of a two-stage, five-level cascade, three-phase bridge converter.

By using Kirchhoff’s current law, the current relationship between different modules
can be expressed as: 

ia1 + ib1 + ic1 = 0
ia2 + ib2 + ic2 = 0
ia3 + ib3 + ic3 = 0

, (3)


ia2 = −ib1
ib3 = −ic2
ic1 = −ia3

, (4)

where ikNn (k = a, b, and c, and n = 1, 2, and 3) is the current of the kth submodule.
If each submodule of the cascade three-phase bridge converter is controlled syn-

chronously and the three-phase current on the AC side is symmetrical, as shown in Figure 2,
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it can be seen that the sum of the fundamental wave components of the inner loop current
ia3, ib1, and ic2 is 0, that is, ia3 + ib1 + ic2 = 0.

Using Kirchhoff’s voltage law, the phase loop equation of a cascaded three-phase
bridge multilevel converter is established as:

ea − L f
dia
dt − Ria = vaN1 + vNO1

eb − L f
dib
dt − Rib = vbN2 + vNO2

ec − L f
dic
dt − Ric = vcN3 + vNO3

, (5)

where vkNn (k = a, b, and c and n = 1, 2, and 3) is the voltage from kn to the neutral point
Nn of the power supply, and vNOn (n = 1, 2, and 3) is the voltage from point Nn to the load
neutral point O. R = Rf + Rs, where Rs is the equivalent resistance of the power device and
RL is the equivalent resistance of the synchronous filter inductor.

ea − L f
dia
dt − Ria − eb + L f

dib
dt + Rib = vDC1(Sa1 − Sb1) + vDC2(Sa2 − Sb2)

eb − L f
dib
dt − Rib − ec + L f

dic
dt + Ric = vDC2(Sa2 − Sc2) + vDC3(Sb3 − Sc3)

ec − L f
dic
dt − Ric − ea + L f

dia
dt + Ria = vDC3(Sc3 − Sa3) + vDC1(Sc1 − Sa1)

. (6)

From Equation (6), the relationship between the switch function is as follows:

Sb1 + Sc2 + Sa3 = Sc1 + Sa2 + Sb3. (7)

As b1 is connected to a2, c1 is connected to a3, and c2 is connected to b3 in the cascaded
three-phase bridge inverter, the voltages with O as the reference point can be expressed as:

vNO1 + vDCSb1 = vNO2 + vDCSa2
vNO1 + vDCSc1 = vNO3 + vDCSa3
vNO2 + vDCSc2 = vNO3 + vDCSb3

. (8)

For a three-phase symmetric system, the voltage and current can be described as:
ea + eb + ec = 0
ia + ib + ic = 0

vDC = vDC1 = vDC2 = vDC3

. (9)

From Equations (6)–(9), the neutral point voltage can be expressed as:

vNO1 =
vDC(−Sa1 − Sb1 − Sc1 + Sa2 − Sb2 + Sa3 − Sc3)

3
= −vDCSa1 + va0. (10)

Furthermore, the voltage of the submodules can be obtained as:
vb1O = va2O
vc1O = va3O
vc2O = vb3O

. (11)

The effective value of the three-phase voltage output by the AC side of the inverter is
supposed to be V, which can be expressed as:

vaO =
√

2V sin(ωt)
vbO =

√
2V sin(ωt− 120◦)

vcO =
√

2V sin(ωt + 120◦)
. (12)
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When three modules are in synchronous PWM modulation strategy, the output phase
voltage of each submodule can be expressed as:

va1−N1 = va2−N2 = va3−N3 =
√

2
2 V sin ωt

vb1−N1 = vb2−N2 = vb3−N3 =
√

2
2 V sin

(
ωt− 120

◦)
vc1−N1 = vc2−N2 = vc3−N3 =

√
2

2 V sin
(
ωt + 120

◦) . (13)

According to the expected output voltage of each submodule, the PWM control signal
of each bridge arm can be calculated. The traditional PWM strategy mainly includes sinu-
soidal pulse-width modulation (SPWM), space vector pulse-width modulation (SVPWM),
CPS-PWM, and phase disposition PWM (PD-PWM). SPWM and CPS-PWM are the most
commonly used control strategies. SPWM is easy to implement; however, it cannot achieve
the multilevel circuit characteristics of a cascaded three-phase bridge inverter. The CPS-
PWM strategy of the cascaded multilevel inverter is shown in Figure 2.

The modulated waves in Figure 3 are sinusoidal waves ua, ub, and uc. The carrier
wave is triangular wave m1, m2, and m3, and its phase lag is Ts/3 (Ts is the triangular carrier
period). The carrier phase-shifted PWM modulation applies a plurality of triangular carriers
with the same amplitude and phase lag at a certain angle to compare with the modulated
wave. The generated PWM pulses control each switching device of the multilevel inverter,
respectively. The CPS-PWM method is usually applied in the cascade H-bridge inverter,
and the cascade H-bridge inverter under the CPS-PWM control method can achieve very
good output characteristics.
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For the cascaded three-phase bridge inverter, the basic unit of the cascade inverter is
adjusted from a single-phase H-type circuit to a three-phase half-bridge circuit. Moreover,
the connection mode of a basic cascaded unit is also different, and the equivalent circuit of
a cascaded three-phase bridge inverter is also different from that of a cascaded H-bridge
inverter. Therefore, the traditional CPS-PWM makes it difficult to make the cascaded
three-phase bridge inverter circuit work in the best condition. According to the topology
and working characteristics of a three-phase bridge inverter circuit, a three-phase bridge
inverter system based on carrier phase-shifted-distributed PWM (CPSD-PWM) is proposed
in this paper. The proposed CPSD-PWM in this paper is not a combination of traditional
CPS-PWM and PD-PWM. Figure 4 shows the modulation logic of CPSD-PWM for the
cascaded three-phase bridge inverter in Figure 1.

CPSD-PWM makes the carrier signal on each bridge arm within each module lag (or
lead) Ts/3 in phase sequence, and the carrier signal on the corresponding bridge arm in
each module lag (or lead) Ts/3 in phase sequence, by which the CPSD-PWM can balance
carrier signal distribution. The CPSD PWM can be divided into two types depending
on the carrier’s selected form. One can be described as ual-N1, which is obtained from ua
and m1, ubl-N1, which is obtained from ub and m1, ua2-N2, which is obtained from ua and
m2, and ub2-N2, which is obtained from ub and m3. This modulation method is allocated
according to the lag Ts/3, which belongs to the class I strategy of CPSD PWM. The other
modulation method is allocated according to lead Ts/3, which is named the class II strategy
of CPSD PWM. Compared with traditional CPS-PWM, CPSD-PWM mode has a larger
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cumulative carrier signal difference and is center symmetric, which is more suitable for
the cascaded three-phase bridge inverter and effectively improves the three-phase output
symmetry of cascaded multilevel inverters. Based on the topological characteristics of a
cascaded three-phase bridge inverter circuit, the output power of each phase is provided
by a multiphase DC input unit. Therefore, the cascaded three-phase bridge inverter system
based on CPSD-PWM control technology proposed in this paper can effectively improve
the output symmetry of the three-phase inverter and the balance of three-phase power
generation, and even realize the adaptive balance of three-phase output power through the
mutual transmission of power generation between different units, which will significantly
improve the stability and reliability of the microgrid system.
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The PWM output voltage of an inverter can be obtained by variables x(t) and y(t),
where x(t) is carrier single, and y(t) is fundamental (sinusoidal) single.

x(t) = ωct (14)

y(t) = ωst (15)

where ωc is the carrier angular frequency and ωs is the fundamental angular frequency.
For a submodule of the cascaded three-phase bridge inverter, the output voltage of

the A-phase bridge arm in the asymmetric regular sampling can be expressed as:

vao(x, y) =
{ E

2 , x ≤ π
2 (M sin y + 1) + 2kπ or x > −π

2 (M sin y + 1) + 2π(k + 1)
− E

2 , π
2 (M sin y + 1) + 2kπ < x ≤ −π

2 (M sin y + 1) + 2π(k + 1)
, (16)

where M is the modulation ratio and E is the DC voltage of the submodule.
Based on the double Fourier integral analysis, the time-varying function vao(x,y) can

be expressed as a summation of harmonic components:

vao(x, y) = A00
2 +

∞
∑

n=1
(A0n cos(ny) + B0n sin(ny)

+
∞
∑

m=1
(Am0 cos(mx) + Bm0 sin(mx))

+
∞
∑

m=1

+∞
∑

n=±1
(Amn cos(mx + ny) + Bmn sin(mx + ny))

, (17)

where A00 is the DC offset. A0n and B0n are fundamental components and base-band
harmonics. Am0 and Bm0 are carrier harmonics. Amn and Bmn are side-band harmonics.

Based on the double Fourier integral analysis, the fundamental component and har-
monics can be calculated as

Cmn = Amn + jBmn =
2

(2π)2

∫ π

−π

∫ π

−π
uao(x, y)ej(mx+ny)dxdy, (18)
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Therefore, the harmonics of the output voltage in the A phase by CPS-PWM can be
calculated as:

vao = M E
2 sin(ωst) + 2E

π ∑∞
m−1,3,···

Jn(mMπ
2 )

m sin mπ
2 · cos(mFωst)

+ 2E
π ∑∞

m=1,2,···n−±1,+2,···
∑n(mMπ

2 )
m sin

(m+n
2 π

)
· cos

[
(mF + n)ωst− nπ

2
] , (19)

The harmonics of the output voltage in the B phase of CPS-PWM can be expressed as:

vbo = M E
2 sin

(
ωSt− 2π

3
)
+ 2E

π

∞
∑

m=1,3,3,···

Jn(mMπ
2 )

m sin mπ
2 · cos

[
mF
(
ωSt− 2π

3
)]

+ 2E
π

∞
∑

m=1,2,···n=±1,±2,···

+∞
∑
n

Jn(mMπ
2 )

m sin
(m+n

2 π
)
· cos

[
(mF + n)

(
ωSt− 2π

3
)
− nπ

2
] . (20)

From Equations (19) and (20), the harmonic spectrum of the output line voltage in the
cascade three-phase bridge inverter by CPS-PWM can be expressed as:

vab_CPS = (vao1 − vbo1) + (vao2 − vbo2)
= (vao1 + vao2)− (vbo1 + vbo2)

= 2
√

3A · cos(ωst− π
3 ) + {B· {cos[(mF)ωst]− cos

[
mF
(
ωst− 2π

3
)]}

+C ·
{

cos
[
(mF + n)(ωst)− nπ

2
]
− cos

[
(mF + n)

(
ωst− 2π

3
)
− nπ

2
]}}
·
[
1 + ejm 2π

3

] ,

(21)
where intermediate variables A, B, and C can be described as:

A = M E
2

B = 2E
π

∞
∑

m=1,3,5,···

Jn(mMπ
2 )

m sin
(mπ

2
)

C = 2E
π

∞
∑

m=1,2,···n=±1,±2,···

Jn(mMπ
2 )

m sin
(m+n

2 π
) . (22)

However, the harmonics of the output voltage in the B phase by CPSD-PWM can be
expressed as:

vbo = M E
2 sin

(
ωSt− 2π

3
)
+ 2E

π

∞
∑

m=1,3,5,···

Jn(mMπ
2 )

m sin mπ
2 e−jmα′ · cos

[
mF
(
ωSt− 2π

3
)]

+ 2E
π

∞
∑

m=1,2,···n=±1,±2,···

±∞
∑
m

Jn(mMπ
2 )

m sin
(m+n

2 π
)
e−jmα′ · cos

[
(mF + n)

(
ωSt− 2π

3
)
− nπ

2
] ,

(23)
where α is the phase angle between the carrier and modulated wave.

Therefore, the harmonic spectrum of the output line voltage by CPSD-PWM can be
described as:

vab_CPSD = (vao1 − vbo2) + (vao2 − vbo3)
= (vao1 + vao2)− (vbo2 + vbo3)

= 2
√

3A · cos(ωst− π
3 ) + {B· {cos[(mF)ωst]− ejm 2π

3 cos
[
mF
(
ωst− 2π

3
)]}

+C ·
{

cos
[
(mF + n)(ωst)− nπ

2
]
− ejm 2π

3 cos
[
(mF + n)

(
ωst− 2π

3
)
− nπ

2
]}}
·
[
1 + ejm 2π

3

] .

(24)
The Equation (24) shows that, compared with the harmonics of line voltage obtained

by CPS-PWM, the mathematical factors ejnθ are added into the expression of each harmonic
component for CPSD-PWM, which makes CPSD-PWM have smaller components on the
carrier harmonics and side-band harmonics. CPSD-PWM can improve the unbalance of
three-phase output, and compared with the traditional CPS-PWM, the CPSD-PWM is more
suitable for cascaded three-phase bridge multilevel inverters.

The harmonic characteristics of the output voltage in the cascaded three-phase bridge
inverter under different modulation modes are simulated by MATLAB, and the simulation
results are shown in Figure 5.
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SPWM and (b) CPSD-PWM. 
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SPWM and (b) CPSD-PWM.

Figure 5 shows that the traditional three-phase inverter has only two output levels
under SPWM, and the harmonic distortion rate of its output voltage is relatively large
(THD = 61.57%), which puts forward higher requirements for the design of the filter circuit.
Large harmonics at the same switching frequency will directly affect the stability of the
microgrid, and the loss of electrical equipment in the microgrid system will also increase.
Additionally, the output voltage of the two-level inverter is limited by the voltage level
of the power device, and only the power device with a higher voltage level can achieve a
higher voltage grid-connected output. Figure 5 also shows that the cascaded three-phase
bridge multilevel inverter with CPSD-PWM in this paper makes the output voltage contain
a variety of different levels through the cascade combination of multiple basic units, so that
the grid-connected output of high voltage level can be realized through the cascaded power
devices of low voltage level. The grid-connected output voltage of a microgrid is no longer
limited by the voltage level of power devices. Additionally, the proposed CPSD-PWM
strategy can effectively decrease the output harmonics of cascaded three-phase bridge
inverters, and the THD is only 31.32% under the same fundamental output. Compared
with the traditional inverter by SPWM, the grid-connected output voltage THD of the
cascaded three-phase bridge inverter based on CPSD-PWM is significantly reduced by
49.13%, which effectively reduces the design difficulty of the grid-connected filter circuit
and improves the operation stability of the microgrid system.

The line voltage and phase current at rated operation by traditional CPS-PWM and
proposed CPSD-PWM are shown in Table 1.

Table 1. The simulation results at rated operation by CPS-PWM and CPSD-PWM.

Line Voltage Phase Current

Modulation
Strategy Phase

Fundamental
Amplitude
(V)

THD (%)
Three-Phase
Asymmetry
(%)

Fundamental
Amplitude
(A)

THD (%)
Three-Phase
Asymmetry
(%)

CPS-PWM
A 380.1 43.40

1.24
8.039 1.37

1.22B 372.6 44.72 7.894 1.17
C 380.1 43.40 7.894 1.17

CPSD-PWM
A 381.8 43.10

0.01
8.039 1.37

0.01B 381.8 43.10 8.039 1.32
C 381.8 43.09 8.038 1.42

The traditional CPS-PWM strategy is proposed for the cascaded H-bridge inverter
structure, which cannot give full play to the topological advantages of the cascaded three-
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phase bridge inverter. Compared with the traditional CPS-PWM strategy, the CPSD-PWM
strategy proposed in this paper can give full play to the topological characteristics of
cascaded three-phase bridge multilevel inverters. On the basis of reducing the harmonic
distortion rate of inverter output voltage and current, Table 1 shows that the asymmetry
between three-phase outputs can be significantly reduced by more than 99%, and the
stability and reliability of electric drive systems can be improved in the state of microgrid-
connected power generation. Based on the fact that each phase of the output power of the
cascaded three-phase bridge inverter is provided by the multiphase input power supply,
the CPSD-PWM strategy proposed in this paper can realize the interconnectivity and
conversion of the interphase power. When the three-phase input power is unbalanced,
the CPSD-PWM strategy can realize the adaptive adjustment and automatic balance of
the three-phase output power, thus significantly improving the output capacity of the
electric drive system under abnormal conditions and the stability of the microgrid system
operation.

3. Virtual Synchronous Generator Control Strategy for Cascade Three-Phase Bridge
Inverters

Compared with the traditional generation system, the output core of the new energy
distributed generation system is the power electronic converter, which has no damping or
inertia. Therefore, the traditional grid-connected control strategy cannot match the stable
requirements of a microgrid. Based on the VSG control strategy, this paper studies the
island mode operation and grid-connected mode operation of the cascaded three-phase
half-bridge inverter under active power-frequency control and reactive power–voltage
control and analyzes the influence of key parameters (virtual inertia J and virtual damping
D) in the control strategy on frequency.

This paper ignores the influence of damping winding, the core saturation effect, eddy
current loss, and other nonlinear factors on the synchronous generator. Then, when the
rotor pole log is equal to 1, the motion equation of a typical hidden pole synchronous
generator can be expressed as:

J
dω

dt
=

Pm

ω
− Pe

ω
− D(ω−ω0), (25)

where J is the rotary inertia and D is the coefficient of damping. Tm and Te are the me-
chanical torque and electromagnetic torque, and Pm and Pe are the mechanical power and
electromagnetic power. ω0 is the angular velocity, which corresponds to the reference
frequency.

In the microgrid system, the cascaded three-phase bridge inverter can be equivalent
to a synchronous generator, in which the mechanical input power is equivalent to VSG
input active power and Pe is equivalent to VSG output power. Then the Tm and Te can be
approximately expressed as: {

Tm = Pm
ω ≈

P
ω0

Te =
Pe
ω ≈

P
ω0

. (26)

The voltage equation of a typical synchronous generator system can be expressed as
follows:

uabc = M f i f
dθ

dt
sin θ −M f

di f

dt
cos θ − Ls

diabc
dt
− Riabc (27)

where uabc and iabc are the terminal voltage and stator current of each phase winding in the
generator, and if is the rotor excitation current. R is the resistance of the armature winding,
Ls is the stator inductance, and Mf is the mutual inductance of the stator windings and
rotor windings.
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Based on the VSG control strategy, the cascaded three-phase bridge inverter can be
equivalent to a typical non-salient synchronous generator, whose mechanical equation and
voltage equation can be expressed as:{ •

E =
•
U +

•
I(Ra + jXd)

J d∆ωm
dt = Tm − Te − D∆ωm = Pm

ωm
− Pe

ωm
− D∆ωm

, (28)

where
•
E is equivalent electromagnetic electromotive force and

•
U is equivalent terminal

voltage. Ra is equivalent electronic armature resistance, and Xd is synchronous reactance.
Based on Equation (25), the VSG control strategy applies the stator voltage equation

to the cascaded three-phase bridge inverter control to simulate the electromagnetic char-
acteristics of the synchronous generator. Additionally, the rotor motion equation is also
used to calculate the power angle of VSG as the voltage phase of the inverter output, by
which the frequency control of the inverter output can be realized. Through the active
power-frequency control and reactive power–voltage control of the VSG control strategy,
the cascaded multilevel inverter can be effectively controlled in island mode and grid-
connected mode. Although there is no rotor in the cascaded multilevel inverter, the VSG
control brings virtual inertia and virtual damping into the inverter control system, which
can reduce the overshoot and accommodation time of active power regulation and suppress
frequency oscillation with changing system loads.

(1) Active power-frequency control

The VSG control strategy applied the active power-frequency (P-f) control to simulate
the synchronous generator primary frequency modulation process. Based on the rotor
motion equation of the generator, the synchronous generator frequency adjustment factor
can be expressed as:

Kω = −
Pre f − P
ωre f −ω

= − ∆P
∆ω

, (29)

where Pref and ωref are the VSG’s reference power and reference angular frequency, respec-
tively.

The frequency regulation of the VSG can be realized through the virtual frequency
modulator, and the frequency modulation control expression of the VSG can be expressed
as:

Pm = Pre f + Kω

(
ωre f −ω

)
, (30)

where Pm is the output active power of the inverter, Pref is the reference active power, and
ω is the angular frequency of the inverter output.

From Equations (28)–(30), the VSG control strategy applies active power-frequency
control to realize the primary frequency modulation process on the cascade three-phase
bridge inverter, which is shown in Figure 6.
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(2) Reactive power–voltage control

The synchronous generators regulate voltage by field current, which can be ex-pressed:

i f = G(s)
(

Ure f −U
)

, (31)
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where G(s) is the transfer function of the field current regulator, Uref is the reference voltage,
and U is the output voltage.

The VSG control strategy makes the multilevel inverter simulate the reactive power–
voltage droop characteristics of a synchronous generator with primary voltage regulation,
which can be described as:

Ure f = Un +
1

Dq

(
Qre f −Q

)
, (32)

where Dq is the droop coefficient of reactive power–voltage characteristics. Qref is the
reference reactive power, and Q is the actual reactive power.

Since VSG does not need to control the excitation current; it only needs to make the
multilevel inverter simulate the droop characteristic of SG, the VSG control can apply
the voltage amplitude E directly equivalent to the excitation current. Then the reactive
power–voltage expression of VSG control can be expressed as:

E =
[

Dq(Un −U) +
(

Qre f −Q
)] 1

Ks
, (33)

where K is the integration coefficient.
To eliminate the static difference, the reactive power–voltage control can be im-proved

as:

E =

[
Dq(Un −U) +

(
Kp +

Ki
s

)(
Qre f −Q

)] 1
Ks

, (34)

where Kp and Ki are the parameters of the PI controller.
From Equation (34), the reactive power–voltage control of the VSG control strategy is

shown in Figure 7.
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Based on Equations (28) and (34), the VSG control strategy for the cascade three-phase
bridge inverter can accurately adjust the amplitude and frequency of the inverter output
through active power-frequency control and reactive power–voltage control, which are
shown in Figure 8.

The VSG control strategy can import inertia into the cascaded three-phase bridge
inverter, which is important to the power system. However, inertia and damping will also
affect the system’s performance. The increasing inertia will reduce the damping ratio of
the system and aggravate the active power pulsation, and the introduction of damping
will increase the frequency-droop coefficient of the VSG. Therefore, reasonable settings of
inertia and damping coefficient can take advantage of VSG control compared with sagging
control for the multilevel inverter.
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From Equations (29) and (31), the relationship between P-ω and the rated speed can
be expressed as:

∆ω

∆P
= − 1

Jω0s + Dω0 + Kω
. (35)

The power frequency characteristics of VSG can be regarded as a first-order inertia
link whose dynamic response time is determined by Kω, J, and D. Therefore, both J and D
need synchronous, comprehensive optimization to achieve the best system performance.

The VSG control strategy is composed of the active power-frequency controller and
the reactive power–voltage controller. The active power-frequency controller is used as
the virtual governor, and the reactive power–voltage controller is applied as the electrical
exciter. The VSG controller forms a feedback system of speed and voltage and then uses
the active power-frequency controller and reactive power–voltage controller to adjust the
mechanical power and excitation voltage of the prime mover in real time to maintain the
stability of the system frequency and voltage. The active power-frequency and reactive
power–voltage controllers applied to cascade three-phase bridge inverter systems, which
are discussed in Figure 8, can be directly used as virtual synchro controllers in theory.
However, it is difficult to optimize the parameters of the VSG controller. Because the
inertia parameters, damping coefficient, and sag coefficient of the synchronous generator
cannot be directly introduced into the controller. Therefore, a design method for key control
parameters for the VSG controller is presented in this paper. As Equation (32) shows,
although the damping component can improve and optimize the power loop and enhance
the damping effect of the system, the value of the D component is relatively limited and
cannot be increased indefinitely. Therefore, the damping coefficient needs to be considered
together with the inertial component. For this reason, the active power-frequency controller
loop can be simplified as a second-order system based on Figure 6. The damping ratio
and undamped oscillation angular frequency of this second-order system are related to the
damping coefficient and inertia coefficient of the synchronous generator. Therefore, the
damping ratio and undamped oscillation angular frequency of the second-order system
can be designed to meet the performance requirements of the grid-connected system. This
paper designs the grid-connected system with the VSG controller as an underdamped
system. On this basis, the damping coefficient and inertia coefficient in the VSG control
strategy can be calculated by algebraic calculation. The reactive power–voltage controller
achieves voltage control of synchronous generator reactive power. When the reactive
power–voltage controller works in the grid-connected mode, the voltage is clamped by
the large grid, and only the specified reactive power needs to be delivered to the grid;
when the reactive power–voltage controller operates independently with a load in the
island mode, the output reactive power is determined by the load size, and voltage support
needs to be provided to control the output voltage of the inverter. The key parameter
in the reactive power–voltage controller is Dq, which can be calculated according to the
typical parameter of synchronous generators with the same power capacity as the virtual
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synchronous generator. Thus, the key control parameters of a cascaded three-phase bridge
inverter based on the VSG control strategy are designed.

4. Simulation and Experimental Results

The performance of the two-stage, three-phase bridge inverter system in island and
grid-connected operation is simulated and analyzed by the Simulink software. The simula-
tion parameters of the system in island mode are shown in Table 2

Table 2. Simulation parameters of a cascaded three-phase bridge inverter.

Circuit Parameters Value Control Parameters Value

DC bus voltage of
submodule 350 V Virtual inertia 0.8 kg·m2

Peak phase voltage 311 V Damping coefficient 4 N·m·s/rad

Rated frequency 50 Hz Reactive droop
coefficient 500

Inverter-side
inductance 5 mH

Proportionality
coefficient of current

loop
20.3

Filter capacitance 5 µF Integration coefficient
of the current loop 562.21

Proportionality
coefficient of the

voltage loop
0.05

Integration coefficient
of the voltage loop 8.9

(1) Simulation in the island mode

The initial load power of the microgrid system is set as P = 10 kW and Q = 500 var
in the island operation mode, and the system power is set as P = 15 kW and Q = 1000 var,
which are connected to the microgrid system at 0.025 s, and the load is disconnected from
the microgrid system at 0.05 s. The simulation results of the multilevel inverter are shown
in Figure 9.

Figure 9 shows that the output voltage and current of the multilevel inverter controlled
by the VSG control are the standard three-phase sine wave. The voltage and current only
fluctuate slightly at the moment when the load is added and removed, and they instantly
recover to stable voltage and current. As the load is increased at 0.025 s, Figure 9 shows
that the inverter output voltage remains constant and the current amplitude increases
from 21 A to 31 A, which shows the frequency–voltage control characteristics of the VSG
control. The system adjustment time under variable load is 0.0055 s. Figure 10 shows the
simulation results of THD analysis for the A-phase current waveform. It can be seen from
Figure 10 that the THD of the phase A current waveform is less than 5%, which meets the
requirements of the power microgrid.

Figure 11 shows the simulation results for active power and power factor, which
increased rapidly at the beginning of the simulation. After a short time, the system output
achieves a stabilized active power of 10 kW and a reactive power of 500 var. Then the
active power is increased to 15 kW and the reactive power is increased to 1000 var when the
system is connected to the microgrid system for 0.025 s. Additionally, the load is removed,
and the active and reactive power are restored immediately. Figure 10 shows the system
enters a steady state after a period of simulation time, and the active and reactive power
adjustment time under variable load is 0.0055 s. Whether the load changes or not, the
frequency remains basically unchanged at 50 Hz. Additionally, even if the load is switched,
the fluctuation of the system frequency is less than 0.01 Hz, which meets the needs of a
microgrid connection.
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Figure 11. (a) Simulation results of active power and reactive power. (b) Simulation results of
frequency.

(2) Simulation in the grid-connected mode

The simulation condition of a multilevel inverter system in grid-connected mode is set
to 1 s. The reference power of the microgrid system is Pref = 100 kW, Qref = 0 var, and the
grid-connected voltage is 220 V in the initial state. At 0.5 s, the reference power increases to
Pref = 110 kW and Qref =0 var. Simulation results of phase voltage and current at 0–0.5 s are
shown in Figure 12.
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Figure 12 shows that the inverter output voltage quickly becomes stable at 220 V after 
the cascaded inverter connects to the grid. Additionally, the current reaches a steady state 
at 0.25 s, and then the current is kept at 214.27 A. In the process of dynamic regulation, the 

Figure 12. Simulation results of phase voltage and current.

Figure 12 shows that the inverter output voltage quickly becomes stable at 220 V after
the cascaded inverter connects to the grid. Additionally, the current reaches a steady state
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at 0.25 s, and then the current is kept at 214.27 A. In the process of dynamic regulation, the
overshoot of the current is less than 10%. Figure 13 shows that the system reaches a steady
state at 0.25 s after a short transition and stabilizes at 100 kW. It can be seen that the phase
voltage and current are always in the same phase, and the power factor is 1. The current
distortion degree of grid-connected current is lower with the VSG control than with the
traditional double-loop control, and the THD values are 0.78%. All these performances
meet the IEEE standard 519-2014.
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Figure 14 shows that the voltage remains at 220 V whether the active power changes 
at 0.5 s. Additionally, Figures 15 and 16 show the current transitions from the original 
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Figure 13. Simulation result of active power.

Figure 14 shows that the voltage remains at 220 V whether the active power changes at
0.5 s. Additionally, Figures 15 and 16 show the current transitions from the original steady
state to the new steady state when the output active power is increased. Figure 16 shows
that after about 0.2 s, the peak current is stable at 235.7 A, and the steady output power
achieves 110 kW at 0.7 s.
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Figure 16. Simulation results of active power.

The frequency regulation performance of the multilevel inverter under grid-connected
state control by VSG is shown in Figures 17 and 18. As the frequency of the power grid
decreases by 0.25 Hz from 50 Hz at 0.4 s and restores to 50 Hz at 0.7 s, Figure 16 shows that
due to the decrease in the grid frequency at 0.4 s, the multilevel inverter will increase the
active power to reduce the decrease in system frequency as the primary frequency modu-
lation. Additionally, the active power is emitted to the original power when the system
frequency is restored to 50 Hz. During the whole process of primary frequency modulation,
the output frequency of a multilevel inverter system remains basically unchanged.
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(3) Experimental results

This paper builds an experimental platform of cascading three-phase bridge inverters
based on the VSG control strategy, which is shown in Figure 19. The VSG controller is
mainly composed of a control circuit and a sampling circuit. The VSG control strategy and
CPSD-PWM strategy are implemented by the DSP and FPGA dual chips in the control
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circuit, as are the current hall sensors, voltage sensors, and DC-DC source. Due to limited
laboratory equipment, this paper adopted a miniaturized experiment to verify the proposed
CPSD-PWM control strategy and VSP control strategy. The 20 Ω resistance is selected as the
experimental load, and three 100 V isolation voltage sources are used as the DC bus voltage
of the submodule. The experimental results of a cascaded three-phase bridge inverter in
island mode are shown in Figure 20. The initial load is 20 Ω, and after a period of time, the
switching load condition of twenty ohms is simulated.
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and (b) current in three phases. (Red, blue and black are simulation waveforms of phase A, phase B
and phase C respectively).

Figure 20 shows that before the load change, the inverter output voltage and current
were symmetric three-phase sinusoidal signals. Additionally, when the load is changing,
the current and voltage of the cascaded inverter are shown in Figures 21 and 22.
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Figures 21 and 22 show that the output voltage and current of the cascaded inverter
only mutate slightly after the load is switched and quickly stabilize to the new state after a
short time. In addition, the three-phase voltage only has a slight mutation when the load
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is removed, and after a period of time, it returns to its original stable state. Three-phase
current RMS is about 3.5 A, three-phase voltage RMS is 71.7 V, and the three-phase current
voltage waveform is smooth without distortion.

In addition, it can be seen from Figures 21 and 22 that the output voltage of the
cascaded three-phase bridge multilevel inverter will undergo a short, sudden change when
the load is put in, then quickly return to the original stable state after a short time and
remain unchanged. The moment the load is removed again, the three-phase voltage has
a slight mutation, and it recovers after a period of time. The peak voltage impulse of the
cascaded three-phase bridge inverter system based on the VSG control strategy is about
125 V when the load is put in, while the voltage impulse of the traditional two-loop control
method is about 175 V. Compared with the conventional system, the proposed cascade
inverter system has a small voltage impulse fluctuation and rapid dynamic response and
can quickly achieve the expected effect with a small fluctuation. When the load is removed,
the former also quickly returns to a stable state with small voltage fluctuations.

The experimental results of a cascaded three-phase bridge inverter in grid-connected
mode are shown in Figure 22. The voltage of the isolated DC bus source for each submodule
is set to 200 V, the reference active power is 500 W, and the reference reactive power is 0
kvar. Figure 23 shows that the output current of the cascaded inverter in the grid-connected
mode is symmetric three-phase current, and it can be seen from Figure 24 that the output
current in any phase of the three-phase inverter and the voltage of the corresponding phase
are kept in the same phase, so that the power factor is maintained at 1.
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Due to the limited experimental equipment, the voltage of the power grid is introduced
into the system through the three-phase voltage regulator. Therefore, the RMS values of
the three-phase voltage are not the same, caused by the asymmetry in the grid voltage and
voltage regulator, which will introduce some errors into the experimental results. Although
the experimental conditions are unfavorable, the THD of grid-connected voltage is still
only about 2.5% and less than 5% to meet the grid-connected requirements. which is
shown in Figure 25. However, the harmonic distortion rate of the output voltage within
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the traditional double closed-loop control will reach about 3.9%. Although it is still less
than 5%, which can meet the needs of the grid-connected operation, more harmonics
will cause more loss and affect microgrid stability. Therefore, compared with traditional
control methods, the cascaded three-phase bridge inverter system based on VSG control
and CPSD-PWM control strategies can effectively reduce the THD of inverter output and
improve power quality.
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5. Conclusions

Aiming at improving the multilevel inverter operation characteristics, this paper pro-
poses a cascaded three-phase bridge inverter topology that can improve the balance of
three-phase output compared with the traditional cascaded H-bridge inverter. The mathe-
matical model of a three-phase cascaded bridge inverter is built in this paper to analyze
the relationship between voltage, current, and power. Based on the inverter model, a new
modulation strategy named CPSD-PWM is proposed in this paper, which is more suitable
for cascaded three-phase bridge inverters. The analytical expression of the output voltage
harmonic spectrum of CPSD-PWM is derived by dual Fourier analysis. Compared with
the traditional modulation strategy, the proposed CPSD-PWM can reduce the harmonics
and significantly improve the three-phase output balance of the cascaded three-phase
bridge inverter, through which the multilevel realizes the three-phase adaptive balance.
In addition, this paper studies the cascaded multilevel power generation system based
on VSG control. According to the work needs of the cascaded three-phase bridge inverter
applied in microgrid operation in isolated island and grid-connected operation, the output
frequency and voltage of the inverter can be accurately controlled through active power-
frequency control and reactive power-regulating control. This paper optimally designs the
virtual inertia and virtual damping to improve the stability of frequency regulation so that
the multilevel cascaded inverter by VSG control applied in the microgrid can realize the
primary frequency modulation and primary voltage regulation and effectively improve the
operation stability in the island model and grid-connected model. This paper builds the
experimental platform of a cascaded three-phase bridge inverter, and the simulation and
experimental results verify that the cascaded three-phase bridge inverter system based on
the CPSD-PWM modulation strategy and VSG control strategy can achieve effective and
accurate control of the output voltage and frequency in the power system.

Although the PWM modulation strategy and the grid-connected control strategy based
on a virtual synchronizer proposed in this paper can effectively improve the stability of the
new energy power generation system, there are still some shortcomings. Since the cascaded
three-phase bridge inverter system adopts the direct grid-connection form to eliminate the
transformer, there is parasitic capacitance between the grid-connected system and the earth,
and the grid-connected filter element forms a common mode resonance loop with the grid
impedance, by which the common mode voltage generated by the CPSD-PWM method
will generate common mode current in the microgrid system. Common mode current will
increase the harmonics, reduce the quality of grid-connected current, and cause serious
EMI noise, which will bring great potential hazards and stability problems to the microgrid
system. Therefore, in future research, further optimization and improvement of the CPSD-
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PWM strategy will be studied to reduce the output common-mode voltage component of
the inverter system and improve the operation reliability of the microgrid system. The
cascaded three-phase bridge grid-connected system proposed in this paper based on the
VSG control strategy can obtain good quality inverter output and fast and smooth network
access. However, its parameter design is difficult, and it is relatively easy to be affected
by system parameters and external interference, which may easily cause unstable system
operation and complicated control parameter design under complex working conditions.
In the next phase of research, it is necessary to further improve and optimize the VSG
control strategy for the cascaded three-phase bridge inverter system to comprehensively
improve the system response speed, robustness, and output voltage waveform quality.
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