
Citation: Rezk, H.; Ghoniem, R.M.

Optimal Load Sharing between

Lithium-Ion Battery and

Supercapacitor for Electric Vehicle

Applications. World Electr. Veh. J.

2023, 14, 201.

https://doi.org/10.3390/

wevj14080201

Academic Editors: Rongheng Li and

Xuan Zhou

Received: 19 June 2023

Revised: 22 July 2023

Accepted: 25 July 2023

Published: 27 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Optimal Load Sharing between Lithium-Ion Battery and
Supercapacitor for Electric Vehicle Applications
Hegazy Rezk 1,* and Rania M. Ghoniem 2

1 Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam bin
Abdulaziz University, Al-Kharj 11942 , Saudi Arabia

2 Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint
Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; rmghoniem@pnu.edu.sa

* Correspondence: hr.hussien@psau.edu.sa

Abstract: There has been a suggestion for the best energy management method for an electric
vehicle with a hybrid power system. The objective is to supply the electric vehicle with high-quality
electricity. The hybrid power system comprises a supercapacitor (SC) bank and a lithium-ion battery.
The recommended energy management plan attempts to maintain the bus voltage while providing
the load demand with high-quality power under various circumstances. The management controller
is built on a metaheuristic optimization technique that enhances the flatness theory-based controller’s
trajectory generation parameters. The SC units control the DC bus while the battery balances the
power on the common line. This study demonstrates the expected contribution using particle
swarm optimization and performance are assessed under various optimization parameters, including
population size and maximum iterations. Their effects on controller performance are examined
in the study. The outcomes demonstrate that the number of iterations significantly influences the
algorithm’s ability to determine the best controller parameters. The results imply that combining
metaheuristic optimization techniques with flatness theory can enhance power quality. The suggested
management algorithm ensures power is shared efficiently, protecting power sources and providing
good power quality.

Keywords: electric vehicle; optimization; Li-ion battery; supercapacitor

1. Introduction

Increased urban development leads to increased emissions from transportation, which
can complicate efforts to maintain a stable scenario of limiting global temperature increases
to 1.5 ◦C [1]. As a result, the transportation sector will undergo adjustments due to society’s
efforts to reduce its carbon footprint as a response to climate change by the year 2050 [2].
The transportation industry is gradually converting from traditional fossil fuels to low-
emission substitutes based on electric vehicle (EV)-based batteries or hydrogen fuel cell
technology as the energy supply system [3]. The market for EVs is now seeing significant
growth. EVs are becoming increasingly popular due to advancements in battery technology
and increased range [4]. In addition, the price of the battery, the most expensive part of the
electric vehicle propulsion system, has decreased by about 90% [5]. Moreover, the driving
distance grew from 100 to 150 km to 400 km or more [6,7]. These impressive improvements
make EVs an excellent choice for transport decarbonization.

Hybridization between batteries and supercapacitors, known as a hybrid power
system (HPS), is necessary to meet all EVs’ requirements and deliver optimum performance.
This hybridization offers numerous advantages, including energy density, power density,
discharge rate, life cycle, and cost [8]. Generally, the battery can store a lot of energy.
However, it cannot provide much power quickly because of its poor power output density,
while the SC has a small storage capacity but can provide a big burst of power [9]. The
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battery is utilized to provide a high-power supply at low loads, enhancing total efficiency,
while the SC bank is employed to meet acceleration and regenerative braking demands. The
SC and the battery can work together to provide the storage and peak current requirements.
This is accomplished by combining these energy sources in parallel [10]. Due to peak
utilization, batteries lose performance with time; hence, when EVs require unexpected
energy demand when accelerating, the battery pack alone cannot provide this requirement.
Moreover, significant currents are produced during regenerative braking, which might
reduce battery lifetime [9]. Allocating these transit currents to the SC can improve the
battery’s lifetime. However, employing the HPS requires knowing the suitable topology
and establishing an appropriate energy management strategy (EMS). In the case of active
topology, the EMS generates two power references: The supercapacitor power reference,
whose primary role is to stabilize the dc bus voltage, and the battery power reference
generated according to the SC’s SoC and the load power.

Based on the energy demand and the set-up of the DC-DC converters, HPS can be
configured in passive, semi-active, or active topologies. In the passive topology, no power
control circuits are involved; instead, the energy storage systems (ESS) are connected to
the load in parallel. In the semi-active topology, just one DC-DC converter is used. Two
DC-DC converters are employed in the active topology [11]. Concerning the EMS, there are
two types [12]: online strategies such as rule-based, fuzzy logic, predictive models, and
filtration-based are straightforward to apply in a real-world application. Offline strategies
such as Pontryagin’s minimal principle (PMP) and dynamic programming (DP) can provide
globally optimal results. However, their usage in practical applications is complex due to
their high computational costs [13].

Using flatness control theory to improve power quality has been successfully stud-
ied and improved [14,15]. Its basic approach is establishing a reduced-order model and
designing a trajectory control law for the inverse dynamics of the reduced-order model.
However, determining the parameters of the trajectory generation is a challenging task,
and the classical methods can provide limited performance. In this study, optimizing the
trajectory generation parameters using metaheuristic optimization algorithms (MOAs) will
be assessed. Particle swarm optimization (PSO) is used since it is considered one of the
most knowledgeable and widely used metaheuristic optimization algorithms. The perfor-
mance of each algorithm will be investigated under different sizes and a variable number
of iterations. As mentioned above, to extend the HPS lifecycle, the power quality on the
common bus must be improved. In this paper, an optimized version of the flatness-based
control strategy is proposed. The main contribution of this paper is the introduction of
metaheuristic optimization algorithms to enhance the performance of a flat controller using
the PSO, which improves the power quality of the HPS. This will reduce harmonics and
extend the battery system’s lifetime.

The rest of the paper is organized as follows: Section 2 presents a description of the
HPS, including the topology and the system models. Section 3 explains the proposed EMS,
the conventional flatness-based EMS presented, and the optimization manner of its control
parameters. Section 4 presents the simulation results and the related discussion. This paper
ends with a conclusion.

2. Configuration of the Power System
2.1. HPS Description

The HPS-based EV is made in an active topology to meet the engine power. The HPS
comprises a lithium-ion battery and supercapacitor, as shown in Figure 1. The battery and
the SC are connected to the DC bus through bidirectional DC/DC boost converters. On
the other hand, the vehicle motor is powered by a bidirectional DC/AC converter, which
allows power to flow in both directions, from the DC bus to the engine in the traction case
and the reverse in the breaking scenario.
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2.2. Vehicle Traction Model

The total traction forces (FT) can be calculated as a function of the physical forces
applied to the vehicle body [16]. It can be provided as

FT = Fm + Fr + Fad + FU (1)

where Fm is the motor force, Fr is the rolling resistance force, Faero is the aerodynamic
force, and FU is the gradeability or uphill driving force. The formula of each force and the
definition of its parameters is provided in Table 1.

Table 1. Forces and their parameters.

Force Equation Parameters

Motor force Fm = Mequia =
(

mv + Jem
ρ2

R2
tire

)
dv(t)

dt

a: the acceleration
mv: the vehicle mass
Jem: the motor inertia
ρ: the air density
Rtire: the tire radius
v: the vehicle speed

Rollin resistance force Fr = crmvg cos(α)

cr: the rolling friction
coefficient
mv: the vehicle mass
g: the gravity acceleration
α: the road slop

Aerodynamic force Faero = 1
2 ρv2 ACd

ρ: the air density
v: the vehicle speed
A: the frontal area
Cd: the drag coefficient

uphill driving force FU = mvg sin(α)
mv: the vehicle mass
g: the gravity acceleration
α: the road slop

The load power required by the traction engine on the DC bus can be expressed as
a function of the electrical (ηmot), the mechanical transmission (ηtrans), and the inverter
efficiencies (ηinv) [17]. It can be formulated as

Pload(t) = PT(t) · η = v(t) · FT(t)ηmot · ηinv · ηtrans (2)
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2.3. Li-Ion Battery Description and Modeling

Several electrochemical models exist in the literature, such as the Internal resistance
battery model, the single RC network battery model (Thevenin model), and the Randles
circuit [18]. The Shepherd model is one of the most commonly used models to express the
electrical aspect [19]. The battery discharging voltage can be expressed as a function of the
open circuit voltage (Eoc), the polarization voltage losses (Vpol), the exponential voltage
losses (Vexp), and the ohmic losses (Vohm). The output voltage and the state of charge (SoC)
can be presented as
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2.4. Supercapacitor Description and Modeling 
The supercapacitor (SC), also defined as the Ultracapacitor (UC) or double-layer ca-

pacitor, differs from the regular capacitor because it has substantial capacitance [20]. The 
supercapacitor stabilizes the DC bus energy as a fast, dynamic storage device. Thus, it is 
not a replacement for batteries to store long-term energy. Immediate supply for peak 
power is met by the SC. The SC provides the difference between load demand and battery 
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where the battery parameters can be listed as follows

- K is a polarization constant,
- Q is the nominal capacity (Ah),
- it is the current battery charge (Ah),
- A denotes the exponential zone amplitude (V)
- B denotes the exponential zone time constant inverse in the exponential zone (Ah−1)
- Rint is the internal resistance (Ω),
- i and i* are the battery current and the filtered current (A),
- SoC0 is the initial state of charge.

The scheme of this model is illustrated in Figure 2.
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2.4. Supercapacitor Description and Modeling

The supercapacitor (SC), also defined as the Ultracapacitor (UC) or double-layer
capacitor, differs from the regular capacitor because it has substantial capacitance [20]. The
supercapacitor stabilizes the DC bus energy as a fast, dynamic storage device. Thus, it
is not a replacement for batteries to store long-term energy. Immediate supply for peak
power is met by the SC. The SC provides the difference between load demand and battery
power during short periods. According to ref. [20], the model of the SC consists of an
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equivalent series resistance RS representing charging/discharging resistance, a capacitance
Ccell representing the SC capacity, and an equivalent parallel resistance RR representing
self-discharge losses. Its output voltage and SoC are presented as reported in [21] as

VCell = iCell RS +
1

Csc

∫
icdt

SoCSC(t) =
(

VCell(t)
Vnom

)2 (4)

where VCell is the SC nominal voltage, the equivalent circuit of the SC unit is shown in
Figure 3.
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2.5. Power System Modeling

The dc bus energy (Ebus) must be adjusted to meet the desired value, where the dc
energy is determined as a function of its voltage (vbus) and capacitance (Cbus). Its equation
can be formulated as:

Ebus = 0.5 · Cbusv2
bus (5)

On the other hand, the bus power can be presented as a function of the battery and
the SC power as follows:

.
Ebus = PBat._out + PSC_out − Pload (6)

where PBat_out is the battery converter output power, PSC_out is the SC converter output
power, and Pload is the motor load power. They can be expressed as:

PBat._out = PBat. − rBat

(
PBat.

/
vBat.

)2

(7)

PSC._out = PSC − rSC

(
PSC

/
vSC

)2

(8)

where rBat and rSC are the battery’s internal resistance and the SC converters.

3. The Proposed Energy Management System
3.1. Flatness Control Theory

Due to the system’s nonlinearity, the linear control techniques may be more com-
plicated. As a result, differential flatness theory was used to lower the order of the
model. Consequently, the alternative model allows for the definition of the dynamics
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of the trajectories [15]. The reduced-order model may be written using flatness control
theory as

x = ϕ
(
y,

.
y,

..
y, · · · yβ

)
y = χ

(
x, u,

.
u, · · · uα

)
u = ψ

(
y,

.
y,

..
y, · · · yβ+1) (9)

where x, y, u are the state variables, the outputs and the inputs of the reduced flat model,
ϕ, χ, Ψ are three mapping functions, respectively, α and β and are a limited number
of derivations.

3.2. Flatness Control on the HPS

The reduced-order model for the EV nonlinear model is based on the studies reported
in ref. [22–24]. From Equation (6), the SC power reference can be expressed as

Pre f
SC =

.
Ebus + Pload − PBat_out.

=
.
Ebus + vbus · iload − PBat_out.

(10)

The parameters of the reduced-order model can be expressed as

x = vbus
y = Ebus

u = Pre f
SC

(11)

From Equation (5), the state variable can be expressed as

x =

√√√√2vbus

/
Cbus

=

√√√√2y
/

Cbus
= ϕ(y) (12)

Whereas the flat input can be concluded from Equations (5)–(8) as

u = 2Plim
SC


1 −

√√√√√√√
1 −

√√√√√√ .
y+


√√√√√2y
/

Cbus

·iload−PBat_out

Plim
SC


= ψ

(
y,

.
y
)

Plim
SC = 4vSC

rSC

(13)

In the steady state, Equation (6) equals zero; in this case, the battery supplies the total
load power. This means that the value of the SC power reference depends on the bus energy.
A second-order filter-based generation trajectory law is applied to ensure the control of this
flat variable.

d
(

yre f − y
)

dt
+ k1

(
yre f − y

)
+ k2

∫ (
yre f − y

)
dt = 0 (14)

where k1 and k2 are control parameters that usually calculated as

k1 = 2 · ξ · ωn
k2 = ωn

2 (15)

where ξ is a damping factor, and ωn is the natural frequency.
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On the other hand, using a PI controller, the battery supplies the load and maintains
the SC voltage at the reference value. The battery power reference can be provided as

Pre f
Bat = Pload + Preq

SC

Preq
SC = kp

(
SoCre f

sc − SoCSC

)
+ ki

∫ (
SoCre f

sc − SoCSC

)
dt

(16)

where SoCre f
SC is the SC’s SoC reference value, kp and ki are the PI controller parameters.

3.3. Trajectory Generation Parameters Optimization

Determining the numerical values of the trajectory generation parameters is chal-
lenging due to the absence of an exact model that imitates the physical system. For this
reason, enhancing these parameters using metaheuristic optimization algorithms will be
performed. The key idea is to generate random candidate solutions in a limited search
space. These candidate solutions will be sent to the HPS, and based on its behavior, the
sum square error (SSE) between the reference and the measured DC bus voltage will be
calculated. The optimizers update the candidate solutions depending on the obtained SSE,
representing the fitness value. The objective function formulation is presented as

min( f (t)) = ∑N
t=1

(
Ere f

bus − Ebus(t)
)2

(17)

3.4. Particle Swarm Optimization

Particle swarm optimization (PSO) is one of the most well-known metaheuristic
algorithms. PSO was created by Kennedy and Eberhart [25] by imitating the behavior of a
swarm of birds and a fish. The PSO is widely used due to its ease of implementation and
limited number of parameters. Despite the algorithm’s simplicity, it produced excellent
results when used to tackle diverse optimization issues across practically all branches of
science and engineering. The enormous number of research publications that employ the
PSO confirms this. PSO is created by simulating birds flying in multidimensional space. It
uses several particles (called search agents or individuals) that fly in the search space to
identify the optimal solution. Simultaneously, the particles in their pathways are all looking
for the best solution. Each particle (ith) tries to update its position based on its position (xi),
velocity (vi), and the distance between it and its best one (pbest) or the global best (gbest). The
following equation can modify the velocity of each agent:

vi(t + 1) = w · vi(t) + c1 · r1(pbest
i (t)− xi(t))

+c2 · r2(gbest(t)− xi(t))
(18)

where w represents the inrtia weight, c1 and c2 defined as acceleration coefficients, r1 and r2
are random numbers in (0,1). The following equation can be used to update the particle’s
position after updating its velocity:

xi(t + 1) = xi(t) + vi(t + 1) (19)

The main steps of the PSO are presented in detail in Figure 4.
The PSO has been chosen in this paper for several reasons, including its simplicity

of implementation and the limited number of arguments. However, the most interesting
thing is that it is the only one that can escape from the local optima compared with other
metaheuristic optimization algorithms such as the salp swarm algorithm (SSA), the coot
algorithm (COOT), and the marine predator algorithm (MPA). The global scheme of the
proposed EMS is presented in Figure 5.
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4. Results and Discussion

To approve the contribution of the proposed method, optimized versions of the flat
controller will be applied to enhance the power quality of an HPS. The model of the
proposed HPS is developed on Matlab, and its parameters are presented in Table 2 [26]. The
considered engine load profile is shown in Figure 6. This profile includes both acceleration
and breaking cases in a short time. The first 50 present a positive load demanded by the
motor in the traction system. The power becomes negative (breaking case). This allows
investigation of the system in both charging and discharging cases. The power becomes
positive after t = 100 s.

Table 2. The hybrid power system (HPS) parameters.

Parameter Value Unit

DC bus voltage (vbus) 400 V
Battery nominal voltage 200 V
Battery rated capacity 1500 Ah

Battery internal resistance 1.3333 mΩ
SC rated voltage 200 V
SC rated capacity 120 F

DC-ERS 6.3 mΩ
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Figure 6. Motor load current (A).

The optimization problem has two optimization variables in a bi-dimensional search
space. The evolution of the particles, as well as the global best (marked in bold and
black) for various parameters, is presented below. The search space is a bi-dimensional
search space where the upper limits are: [502; 2 × 0.6 × 50] × 10, and the lower limits
are [502; 2 × 0.6 × 50] × 0.1. For Tmax = 2, the evolution for N = 20, 25, and 30 is shown
in Figure 7. Figure 8 illustrates their evolution for Tmax = 30, whereas their evolution for
Tmax = 40 is presented in Figure 9.
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From these figures, the global best shifts its position according to the received infor-
mation from the other particles and the fitness of each one. It can be noticed that the rising
maximum number of iterations of the population size affects the evolution of the global
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best position. From Figure 7, in cases N = 20 and N = 25, the global best falls into a local
optimum, and the received information from the other particles is not enough to escape
from it. However, a single run is insufficient to approve its results due to its stochastic be-
havior. Ten runs for each case have been performed, and the obtained results are presented
and analyzed.

4.1. N = 15

Only 15 particles will be used in the population, with three numbers of iterations
(20, 30, 40). The obtained results, including best, worst, mean, and standard deviation
(STD), are presented in Table 3. The best results from these are marked in bold.

Table 3. The results for N = 15.

Parameter Tmax = 20 Tmax = 30 Tmax = 40

Run c1 c2 Fitness c1 c2 Fitness c1 c2 Fitness

1 383.0774 288.413 0.744101 15,222.15 141.1117 0.303494 24,189.45 165.2947 0.714826
2 2438.373 528.738 0.040471 848.3922 563.5098 0.372431 8865.301 83.49805 0.125425
3 7776.441 114.5011 0.233842 5429.146 194.2079 3.356814 8298.91 196.3338 0.041407
4 3703.151 368.4953 0.509587 1732.424 510.514 1.506235 7149.533 198.2457 0.060143
5 13,474.91 215.1098 0.193174 3937.523 448.4599 0.046181 3865.512 117.1225 0.276141
6 6445.147 514.2326 0.060138 6154.555 260.8997 0.041670 18,994.34 231.8808 0.040459
7 13,450.97 185.8164 1.261541 355.1203 365.4031 0.048072 14,981.46 146.3911 0.076724
8 4232.249 240.9958 0.041322 8334.283 104.0531 0.261079 5944.419 237.6877 0.042208
9 8190.019 111.7732 5.092025 20,151.94 235.7241 0.183018 19,443.92 221.3938 0.235585

10 9269.388 188.8361 0.0668 12,302.57 12.41503 0.5107 8661.424 391.4463 0.05599
Best 0.040471 0.041670 0.040459

Worst 5.092025 3.356814 0.714826
Mean 0.6630 0.8243 0.1669
STD 1.5507 1.0953 0.2102

Obviously, when the number of iterations rises, the accuracy of the obtained results
increases, and the optimizer’s robustness increases against its stochastic behavior, as
confirmed by the STD results.

4.2. N = 20

In this case, 20 particles will be used in the population with three numbers of iterations
(20, 30, 40). The obtained results are presented in Table 4. The best results from these are
marked in bold.

Table 4. The results for N = 20.

Parameter Tmax = 20 Tmax = 30 Tmax = 40

Run c1 c2 Fitness c1 c2 Fitness c1 c2 Fitness

1 11,826.76 93.19765 2.245826 1361.706 450.704 0.87594 7739.252 283.6269 0.87594
2 14,837.47 156.4969 0.040997 15,500.24 203.0249 0.040704 7414.114 179.625 0.040704
3 5297.442 487.0256 1.951761 8875.964 172.0122 1.548547 23,109.18 282.9629 1.548547
4 4816.494 203.6002 0.055405 8700.802 337.4453 0.092213 13,219.59 218.262 0.092213
5 10,121.86 213.8215 0.126862 4794.793 291.548 0.042652 894.5254 454.2255 0.042652
6 5883.825 476.9306 0.12185 5459.857 200.4839 0.043839 24,525.24 240.4441 0.043839
7 7375.051 384.4963 0.442556 13,096.74 248.0717 0.075598 3564.287 150.9713 0.075598
8 4974.259 367.2208 0.09791 15,878.71 214.7461 0.040997 550.6795 472.2166 0.040444
9 5779.193 266.0327 2.425997 8730.815 319.7181 0.048494 18,777.06 214.7125 0.048494

10 9557.76 167.3051 0.051499 995.5619 409.6813 0.11786 866.7844 415.0205 0.11786
Best 0.040997 0.040704 0.040444

Worst 2.425997 1.548547 1.548547
Mean 0.756066 0.292684 0.292629
STD 1.0147 0.5106 0.2576
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Similar to the previous case, when the number of iterations rises, the quality of the
obtained results increases, and the STD value decreases.

4.3. N = 25

In this case, 25 particles will be used in the population. The obtained results are
presented in Table 5. The best results from these are marked in bold.

Table 5. The results for N = 25.

Parameter Tmax = 20 Tmax = 30 Tmax = 40

Run c1 c2 Fitness c1 c2 Fitness c1 c2 Fitness

1 21,239.27 156.5408 0.199961 821.5885 302.5806 1.464763 3855.402 143.0495 0.070714
2 3252.432 432.9943 0.158742 4958.868 240.8672 0.054227 450.852 284.8996 0.124811
3 6478.996 149.5211 0.049922 6839.962 143.2368 0.520202 5347.225 343.5532 0.518617
4 5601.85 133.5292 0.73102 9794.622 154.9952 0.141705 4891.362 480.2033 0.060821
5 12,269.83 104.837 0.457274 8643.765 112.1261 0.850277 12,406.41 118.1735 0.260117
6 4562.328 73.11393 2.887429 6039.013 578.624 0.044073 22,572.78 139.345 0.426515
7 5026.632 286.4911 6.182282 9602.378 79.68568 0.65234 11,330.41 92.04818 0.042805
8 14,973.17 114.3648 6.56357 5243.316 370.1021 5.236458 4747.913 373.9807 0.062921
9 9656.716 149.2054 0.06042 21,962.56 172.9125 2.95518 4755.602 366.1609 0.070322

10 1033.751 514.0229 0.203469 7822.553 180.0342 0.167949 6877.921 177.4643 0.152653
Best 0.049922 0.044073 0.042805

Worst 6.56357 5.236458 0.518617
Mean 1.749409 1.208717 0.17903
STD 2.5796 1.6720 0.1681

Similar to the previous cases, when the number of iterations rises, the quality of the
obtained results increases, and the STD value decreases. However, compared with the best
result from the previous case (0.040444), the best result (0.042805) is not better due to the
stochastic searching mechanism of the PSO.

4.4. N = 30

In this last case, the number of particles in the swarm is increased to 30. The obtained
results are presented in Table 6. The best results from these are marked in bold.

Table 6. The results for N = 30.

Parameter Tmax = 20 Tmax = 30 Tmax = 40

Run c1 c2 Fitness c1 c2 Fitness c1 c2 Fitness

1 8354.616 212.3834 0.127434 3044.51 444.3849 0.346717 7067.059 237.6387 0.23582
2 7517.356 290.0919 0.326639 20,815.15 195.7481 0.110693 2859.644 356.6027 0.036413
3 4839.241 165.5752 0.203772 24,214.03 87.34257 0.050091 5593.393 508.3409 0.10063
4 8214.519 341.0167 0.217441 7519.267 179.8408 0.072317 12,603.48 164.4501 0.024219
5 5279.422 258.5353 0.155199 1079.613 469.6823 0.040409 440.3446 155.6074 0.041211
6 9634.918 228.373 0.126743 5276.985 115.2335 0.040706 1823.321 478.1531 0.043018
7 8398.724 229.1724 0.183014 10,393.05 109.113 1.320182 5527.736 429.3406 0.042232
8 10,275.87 276.8559 0.058362 2602.681 97.45093 0.046891 4213.783 510.2678 0.188963
9 14,010.6 149.9359 0.237414 2616.825 465.4587 0.564528 12,566.89 117.8922 0.775534

10 7711.38 503.7738 0.096414 23,525.33 153.5922 0.176081 9058.189 144.518 0.078604
Best 0.058362 0.040409 0.024219

Worst 0.326639 1.320182 0.775534
Mean 0.173243 0.276862 0.156664
STD 0.777 0.4044 0.2287

Similar to the previous cases, when the number of iterations rises, the quality of the
obtained results increases, as does their robustness (STD decreased).
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The results of the different combinations of the number of particles and the number of
iterations are presented in Table 7 to easily see the best combination.

Table 7. The hybrid power system (HPS) parameters.

Population Size Number of Iterations

20 30 40

15 0.040471 0.041670 0.040459
20 0.040997 0.040704 0.040444
25 0.049922 0.044073 0.042805
30 0.058362 0.040409 0.024219

From these results, the best combination is 40 iterations with a population size of
30 agents. This can be explained by the increased ability of exploitation (large population
size) and exploration (large number of iterations).

The obtained results from another point will be compared in terms of population size.
Figure 10 presents the fitness evolution for the same number of iterations (Tmax = 20) and
N = 15, 20, 25, and 30.
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These curves show that the group with 20 particles provides the best results. This
can be explained by the small number of iterations where random particle behavior affects
their outcomes.

Figure 11 presents the fitness evolution for the same number of iterations Tmax = 30.
These curves show that the group with 30 particles provides the best results. Rising

the number of iterations increases the exploitation ability of the PSO, whereas expanding
the population size increases its exploration ability. The results of the swarm that has
25 particles do not get the expected results because stochastic behavior affects its perfor-
mance.
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Finally, Figure 12 presents the fitness evolution for the same number of iterations
Tmax = 40. In this case, the swarm with 30 particles is expected to provide the best results
due to the increased number of iterations.
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As the number of iterations increases, the personal best for each particle becomes
closer to the global particle. After that, the results for the studied groups that included
different population sizes became close. The curves in Figure 12 confirm the effect of the
number of repetitions on PSO behavior compared with population size. Choosing the
best combination of population size and max number of iterations is challenging in the
metaheuristic optimization algorithm since there is no exact formula for determining them.
They are chosen empirically. In addition, determining the search space limits in some
applications is not easy.

The results of the best-optimized version of the flat controller are compared with those
of the conventional one, where c1 = 502 and c2 = 2 × 0.6 × 50. The DC bus voltage for
each controller is presented in Figure 13. From this figure, the fluctuations in the DC bus
voltage have been successfully reduced using the optimized version compared with the
conventional one.
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PSO successfully updates the parameters of the flat controller. The most exciting
thing about this study is that the authors used other modern optimization algorithms
such as the salp swarm algorithm (SSA), the coot algorithm (COOT), and the marine
predator algorithm (MPA). Unlike the PSO, they did not contribute to developing suitable
parameters for the flat console. This confirms the theory of no free lunch (NFL) [27]. In
addition, using this optimized version of the control strategy for real-world applications
can provide excellent performance for the HPS. However, its implementation requires fast
calculators for using the PSO in online optimization mode. The rapid changes in load
demand make it a very challenging task to optimize the control parameters in a short
time. However, with technological advancement, the calculators’ processing speed will
significantly increase in the coming years. Moreover, the performance of the HPS can be
further investigated, including more degrees of freedom, such as the power electronic
converters, the battery degradation, and the motor constraints under more realistic profiles,
as reported in [28].
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The SC voltage is presented in Figure 14. The optimized controller successfully holds
the DC voltage at the reference level, keeping its SoC at the desired value. Moreover, the
battery SoC is illustrated in this figure. The battery discharges during the traction phase,
where the SC voltage increases to maintain the DC voltage at the reference level. The battery
SoC increases in the traction phase by absorbing the excess power in the common bus.
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5. Conclusions

This research provided an effective energy management strategy for an electric vehicle
powered by a hybrid power system (HPS). The hybrid power system comprises a lithium-
ion battery and a supercapacitor (SC) bank. The main objective is to deliver high-quality
power to the traction system. This suggested energy management aims to attenuate
the bus voltage fluctuations while satisfying the load demand under different driving
profiles. Enhancing the power quality will extend the battery lifecycle and improve driving
performance. A flatness-based control theory has been used in his study. The controller
parameters are extracted using the particle swarm optimization algorithm. Its performance
has been investigated with different population sizes and the number of iterations. This
study will look at how they affect controller performance. According to the obtained results,
the number of iterations substantially impacts the algorithms’ performance in determining
the appropriate settings for the controller. The results show that combining flatness theory
and a metaheuristic optimization algorithm can produce superior power quality. The
suggested management algorithm provides efficient power sharing while protecting power
sources and delivering excellent power quality. The obtained parameters are obtained
based on the objective function, which is based on the usage model.

Based on the no-free-lunch theory, other metaheuristic optimization algorithms can
better optimize the flat controller. This will be investigated in our following work. In
addition, applying these strategies to online applications is a challenging task. The online
processing of the objective function requires a fast calculation processor. Increasing the
number of iterations or the population time requires more calculation time, which may
affect the optimization performance. Therefore, a reasonable combination between the
population size and the iteration number regarding the physical limitations of the calculator
is needed.
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