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Abstract: Creating SoC algorithms for Li-ion batteries based on neural networks requires a large
amount of training data, since it is necessary to test the batteries under different conditions so that the
algorithm learns the relationship between the different inputs and the output. Obtaining such data
through laboratory tests is costly and time consuming; therefore, in this article, a neural network has
been trained with data generated synthetically using electrochemical models. These models allow
us to obtain relevant data related to different conditions at a minimum cost over a short period of
time. By means of the different training rounds carried out using these data, it has been studied
how the different hyperparameters affect the behaviour of the algorithm, creating a robust and
accurate algorithm. To adapt this approach to new battery references or chemistries, transfer learning
techniques can be employed.

Keywords: computer intelligence; Li-ion battery; estimation algorithm; state of charge; synthetic data

1. Introduction

Systems capable of measuring the state of charge (SoC) have been around for practi-
cally as long as rechargeable batteries have [1]. The SoC shows the percentage of charge
that is still available over the rated capacity of the battery [2]. SoC estimators are needed in
all kinds of applications, since, for example, in the case of an electric vehicle, it will give the
necessary information to know whether the car will reach the destination or whether it will
need to be charged in an intermediate break [3].

To estimate the SoC of a battery, there are different methods, divided into three main
groups. There are those referred to in the literature as (i) direct measurements, (ii) those
defined as model-based, and finally (iii) computer intelligence algorithms [4,5].

Within the first group of direct measurements, the well-known Coulomb counting or
Ah counting method can be found [6]. This method uses a current sensor that measures
the current and then calculates the Ah discharged or charged and calculates the SoC of
the battery with respect to the rated capacity. From the literature review, it is found that
although this method is simple to implement, the accuracy of the estimation algorithm is
directly influenced by the accuracy of the current sensor, its robustness to noise, and the
initial SoC of the battery [7]. Moreover, if the current sensors are not accurate or have a
certain reading error, this error will accumulate over time, which will cause the estimate to
be further and further away from reality.

In addition to Coulomb counting, this first group also includes the open circuit voltage
(OCV) estimation method [8]. This method estimates the SoC of the battery using the
relationship between the OCV of the battery and its SoC. Although this method can be
accurate, it is not feasible to use it in many applications, since for a correct estimation of
the SoC it is necessary for the battery to be relaxed, which can mean a battery idle time of

World Electr. Veh. J. 2023, 14, 197. https://doi.org/10.3390/wevj14070197 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj14070197
https://doi.org/10.3390/wevj14070197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0001-6250-9329
https://orcid.org/0000-0003-2367-2523
https://orcid.org/0000-0002-1361-0508
https://orcid.org/0000-0003-4012-9426
https://doi.org/10.3390/wevj14070197
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj14070197?type=check_update&version=2


World Electr. Veh. J. 2023, 14, 197 2 of 13

more than 3 h [9]. Furthermore, this method relies on an accurate voltage measurement,
which can be challenging to obtain. Especially when the OCV curve of a battery has a low
sensitivity to SoC evolution (for example, in lithium iron phosphate batteries), the accuracy
of the voltage sensor can become deficient in evaluating the SoC change.

Model-based methods are often used to solve the problems of the aforementioned
methods. These models use lithium-ion battery parameters for a model that mimics the
behaviour of a battery cell. Primarily, the measured current, voltage, and temperature are
fed to the ECM. A voltage is then estimated, and the error between the measured and
estimated voltage is obtained. That error is then used to obtain the SoC value [10]. While
these models provide satisfactory estimations in controlled conditions, such as specified
battery type and constant ambient temperature, researchers are still searching for a unified
model that describes the sophisticated behaviour of a battery in real operating conditions
on site [11,12].

Finally, computer intelligence-based algorithms can be found. This group of algo-
rithms has gained popularity in recent years due to two main factors. On the one hand, the
speed of training has been reduced, due to increasingly faster GPUs, which has meant that
training has been reduced from days or weeks to a few hours [13]. On the other hand, in
recent years, due to improvements in connectivity and Industry 5.0, it has become easier to
collect data during the application. Due to this ease of data collection, more training data
are available, which enables the training of computer intelligence algorithms. In addition,
the increasingly faster processing units in BMSs or the use of edge devices mean that SoC
estimates can be made in a few milliseconds, if a trained model is used. In addition to all
these factors, there are more and more resources, such as libraries or dedicated software
tools, that help the implementation and use of these types of algorithms, thus simplifying
development [14].

Computer intelligence-based algorithms include neural networks. Based on their
nonlinear mapping and self-learning capabilities, some neural network techniques can
execute the lithium-ion battery SoC prediction task [15]. However, due to their relatively
basic structure, the feed-forward neural networks are marked by slow convergence and a
poor capacity to handle time series data. In contrast, deep learning techniques can handle
time series data, but they also have the drawback of creating too complex and therefore
difficult-to-apply algorithms [16,17].

The algorithms called recurrent neural networks (RNN) show high robustness to
dynamic loads, nonlinear dynamic nature, hysteresis, aging, and parametric uncertain-
ties [18]. While making use of historical information, the RNN presents a better estimation
of the battery SoC when compared to other neural networks [19]. But RNNs are unable
to describe long-term dependencies because they suffer from a vanishing gradient effect,
which causes neural networks to have a short-term rather than a long-term memory [14].
To overcome this problem, another type of unit called long short-term memory (LSTM)
is used by using a memory cell. An LSTM decides what to remember and what to forget,
using different gates (input, output, and forget) [20].

Although training times have been reduced due to powerful GPUs, the development
of SoC estimation algorithms requires several tests to be performed on batteries under
different operating conditions (temperature, currents, SoH or SoC), usually in a laboratory
environment, which is both costly and time consuming. A major problem in this field
of research is that an estimation model developed for a particular reference cell is not
necessarily suitable for a different cell (different manufacturer, size, chemistry, etc.). This
limitation implies that every time, an estimation algorithm must be developed for new cells,
and all the laboratory tests must be started anew, which implies a significant investment
in resources.

Since obtaining this volume of data can be costly and requires a lot of laboratory
testing, techniques such as transfer learning (TL) can be used [21–23]. The use of neural
networks in conjunction with the TL technique allows the use of data and prior knowledge
generated from references of previously tested or deployed cells, whether or not they are
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cells or batteries of different chemistry, capacity, or format. In order to achieve a successful
TL, it is necessary to create a base model that is robust and has been trained with as many
conditions as possible, so that the amount of data or conditions required to perform the TL
on a new Li-ion battery chemistry or reference will be reduced [24,25]. Therefore, the aim
of this paper is to create a robust base model that can then be adapted to any battery using
the transfer learning technique and a limited amount of training data.

As mentioned above, to achieve a robust and accurate SoC estimation algorithm, it
is critical to have an extensive database in which the battery has been cycled under a
wide range of temperature and current conditions. Getting this data through laboratory
testing can be time consuming and expensive. To obtain such a database as quickly and
cost-effectively as possible, a well-accepted electrochemical model was employed. This
model is based on simulating the behaviour of an LCO/graphite-based cell known as the
Doyle cell [26]. By means of such an electrochemical model, the voltage response to a
wide range of operating conditions can be simulated, instead of measuring experimentally
within lab tests the actual performance of such a cell. This approach allows significantly
shortening the amount of time required to generate the dataset required to train the SoC
estimation algorithm.

Thus, this article is organized as follows: (i) the architecture based on computer
intelligence to create the SoC estimation algorithm will be explained; (ii) it will be explained
more specifically which data are used to train the algorithm, how they have been obtained,
and how the partitioning of these data for training, validation, and testing has been
performed; (iii) thirdly, the results obtained from different configurations of the neural
network and the results obtained from the selected neural network will be explained;
(iv) finally, the conclusions drawn from this study will be presented, and the results
obtained from the selected neural network will be presented.

2. SoC Estimation Algorithm

In this section, an LSTM network is proposed as a way to model the nonlinear dynam-
ics of lithium-ion batteries and compute the SoC of the battery using observed variables
such as temperature, current, and voltage. Time series data processing is better suited for
the LSTM units since they use hidden cell memories to store data from previous inputs.
The LSTM network is discussed in depth below.

2.1. LSTM Network

The proposed SoC estimator architecture is shown in Figure 1. It consists of an input
layer, an LSTM layer, a fully connected layer, and an output layer. There are four variables
that are used as input for the network to perform the SoC estimation: the voltage (Vk), the
current (Ik), the ambient temperature (Tk), and the time step (∆tk). It has been considered
very useful to include this last input, since the time step may vary depending on the
application and its hardware. For example, an application with fast dynamics, where the
current changes rapidly, will need a faster sampling time in order to correctly estimate the
SoC, whereas in an application where the dynamics are slow, such a fast sampling time
will not be necessary.

Data flow from the input layer to the LSTM where the most influential temporal
relationships between the input variables will be found. Then, data flow into a fully
connected layer where the output value is calculated, giving the estimated SoC value in the
output layer.



World Electr. Veh. J. 2023, 14, 197 4 of 13
World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 4 of 14 
 

 

Figure 1. Proposed architecture using LSTM units [27]. 

Data flow from the input layer to the LSTM where the most influential temporal re-

lationships between the input variables will be found. Then, data flow into a fully con-

nected layer where the output value is calculated, giving the estimated SoC value in the 

output layer.  

2.2. Long Short-Term Memory Units 

LSTMs are employed to resolve the gradient vanishing issue of the RNN, as it has 

been described in Section 1. To reduce the gradient vanishing rate and capture long-term 

dependencies, the LSTM creates a new activation function. The LSTM’s core principle is 

the cell memory, which, if unpacked, streams down the entire chain subject to an affine 

transformation. The architecture of a typical LSTM unit is illustrated in Figure 1, where 

𝑐𝑡 denotes the unit memory at time 𝑡. 

As depicted in Figure 1, LSTM networks use three different gates. The input gate 

decides what information will be passed to the cell state 𝑐𝑡. The forget gate controls which 

information should be saved and which should be forgotten from the previous cell state. 

The output gate, on the other hand, decides what the next hidden state should be [28,29]. 

The following steps are taken during an LSTM unit’s forward pass: first, the previous 

hidden state and the new input data are concatenated or combined (called from now on 

“combination”). That combination flows to the forgetting layer, where non-relevant data 

are removed. Next, a candidate layer is created using the combination. The combination 

in turn enters the input layer where it is decided which candidate data should be added 

to the new cell state. Thus, after computing the forgetting, candidate, and input layers, the 

  

  

  

   

    

    

    

    

    

    

    

    

    

    

    

Figure 1. Proposed architecture using LSTM units [27].

2.2. Long Short-Term Memory Units

LSTMs are employed to resolve the gradient vanishing issue of the RNN, as it has
been described in Section 1. To reduce the gradient vanishing rate and capture long-term
dependencies, the LSTM creates a new activation function. The LSTM’s core principle is
the cell memory, which, if unpacked, streams down the entire chain subject to an affine
transformation. The architecture of a typical LSTM unit is illustrated in Figure 1, where ct
denotes the unit memory at time t.

As depicted in Figure 1, LSTM networks use three different gates. The input gate
decides what information will be passed to the cell state ct. The forget gate controls which
information should be saved and which should be forgotten from the previous cell state.
The output gate, on the other hand, decides what the next hidden state should be [28,29].

The following steps are taken during an LSTM unit’s forward pass: first, the previous
hidden state and the new input data are concatenated or combined (called from now on
“combination”). That combination flows to the forgetting layer, where non-relevant data
are removed. Next, a candidate layer is created using the combination. The combination in
turn enters the input layer where it is decided which candidate data should be added to the
new cell state. Thus, after computing the forgetting, candidate, and input layers, the new
cell state is computed with those vectors and the previous cell state. Then, the output is
computed. Finally, the new hidden state is computed by pointwise multiplying the output
and the new cell state [30].

The entire system, including LSTM layers, has been implemented using the Python
programming language and TensorFlow, a robust open-source deep learning framework.
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A key element of the system is hyperparameter tuning, a process that refines model
parameters to enhance performance, as will be depicted more deeply in Section 4. This
procedure has been done using the Weights & Biases (W&B) library, a tool renowned for its
capabilities in tracking and visualizing metrics. This combined approach ensures a system
with optimized LSTM layers for superior accuracy and efficiency.

3. Dataset

Cell behaviour and mechanisms occurring inside batteries can be analysed through
electrochemical models to hasten the data-driven model’s development. As mentioned
in Section 1 of this article, the dataset used to train, validate, and test the neural network
has been obtained by using a physics-based model. The pseudo-two-dimensional model
(P2D) has been implemented considering the cell described by Doyle et al. in [24] as a
compromise between accuracy and fast computational time to allow the required inputs
for the data-driven model. The model can simulate any insertion cell, if physical properties
and system parameters are given, and is based on the porous electrode and concentrated
solution theory. It is not possible to describe perfectly the complex multiphysics behavior
of batteries, and for this reason, a clarification of the continuum model approach and
model assumptions must be well defined to establish the model framework. More detailed
information on the P2D model description can be found in [24]. This continuum model
consists of a 1D macroscopic model coupled with a pseudo dimension.

As depicted in Table 1, three different types of profiles were simulated, with the
purpose of subjecting the SoC estimation algorithm to operating conditions of a diverse
dynamic nature.

Table 1. Simulated profiles for training/validating/testing the SoC estimation algorithm.

Profile Type Used for Temperatures C-Rate CHA C-Rate DCH

Designed profile Training 0 ◦C, 10 ◦C, 25 ◦C and 45 ◦C 0.05C, 0.2C, 0.5C and 1C 0.05C, 0.2C, 0.5C, 1C, 2C and 4C
HPPC Validation 0 ◦C, 10 ◦C, 25 ◦C and 45 ◦C Pulses of 1C and 2C Pulses of 1C and 2C

Driving cycles Test 0 ◦C, 10 ◦C, 25 ◦C and 45 ◦C Driving profiles
Ù (NEDC, WLTC, US06, HWFET, NYCC, and UDDS)

The first profile was specifically designed to train the neural network. Throughout
the profile, the cell was taken to different SoC states performing constant current (CC) and
constant current–constant voltage (CC–CV) charges and discharges. Finally, pause times
were included so that the algorithm could learn how all these events affect the battery SoC
estimation. This profile was simulated at different temperatures and different charge and
discharge currents. More specifically, it was simulated at four different temperatures (0 ◦C,
10 ◦C, 25 ◦C, and 45 ◦C), at four different charge C-rates (0.05C, 0.2C, 0.5C, and 1C) and
six different discharge C-rates (0.05C, 0.2C, 0.5C, 1C, 2C, and 4C). In total, the cell was
simulated under 24 different conditions. Figure 2 shows an example of the simulation
corresponding to 25 ◦C, 1C charge, and 1C discharge.

The second simulated profile corresponds to a hybrid pulse power characterization
(HPPC) test profile. Although this type of test is not necessary when training the neural
networks, it was implemented because it can be very interesting to see in the phase of
validation if the algorithm has been able to learn the effect of the battery’s internal resistance
when introducing current peaks in both charging and discharging phases.

The test consists of applying charge and discharge current pulses of 17 s sequentially
at 1C and 2C over the whole voltage range of the cell, starting from fully charged to
completely discharged at 5% SoC steps. Then, the same process is applied but starting
from a discharged battery until fully charged. The test was repeated under four different
ambient temperature conditions (0 ◦C, 10 ◦C, 25 ◦C, and 45 ◦C).

Finally, the battery was simulated under standardised driving cycles. The battery was
charged up to 100% SoC, and then standard driving profiles were simulated. Once the
profile was completed, the battery was charged at a constant current up to 100% SoC and



World Electr. Veh. J. 2023, 14, 197 6 of 13

discharged at a constant current 5% SoC, and the same profile was simulated again. The
same process was repeated, discharging after each charge 5% more SoC than the previous
time until the lower voltage limit of the battery was reached. This same test was repeated
for each of the six simulated driving cycles (NEDC, WLTC, US06, HWFET, NYCC, and
UDDS) and at four different temperatures (0 ◦C, 10 ◦C, 25 ◦C, and 45 ◦C). In Figure 3, the
cycle is depicted that corresponds to the WLTC driving cycle at 25 ◦C, starting at a different
SoC each time.
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One of the most important points when training a neural network is the correct
portioning of training, validation, and test data [31,32]. In the present study, a test has
been specifically designed and used to train the neural network (the first one presented
in Figure 2). The HPPC test has been used to validate the neural network, since this
type of test includes, in addition to the charge and discharge pulses, constant charge and
discharge phases, making it a good test to observe the behaviour of the neural network
during training. Finally, the driving cycle tests are the ones that most closely resemble a
real-life application; they are the ones that have been used to test the neural network.

4. Algorithm Configuration and Hyperparameter Tuning

To create the most accurate and robust SoC estimator possible, different parameters
that compose the algorithm must be carefully selected. To do so, it is necessary to perform
different trials by changing the different parameters in order to get the configuration that
best suits the problem. For this purpose, in this study, different tests were performed by
changing—as described below—some parameters, such as the windowing of the data,
different dropout values, or the number of neurons composing the LSTM layer. Thus, the
results obtained from the different trainings and the steps followed to find the configuration
that best suits the application are presented below.

The MAE will be employed to determine the optimal value of the different hyper-
parameters in the different tests that are going to be performed. The MAE is calculated
according to the following formula:

MAE =
1
N

N

∑
i=1
|yi − ŷi| (1)

where N is the number of examples, yi is the real SoC value, and yi is the estimated
SoC value.

4.1. Window Length

Data windowing, also known as sequence chunking or sliding window, is a crucial
preprocessing technique used in long short-term memory (LSTM) networks and other
sequence-based models. It involves dividing the input time series data into smaller win-
dows, which are then fed into the LSTM network. This approach enables the model to
capture temporal dependencies and patterns within the data, allowing it to make more
accurate predictions for time series forecasting tasks [33].

The choice of window size is an important factor that can significantly impact the
performance of an LSTM network. A smaller window size may not capture long-term
dependencies in the data, leading to inaccurate predictions. On the other hand, a larger
window size may increase the complexity of the model, resulting in longer training times
and a higher risk of overfitting.

4.2. Dropout

Dropout is a regularisation method in which the input and recurrent connections
are probabilistically excluded from activation and weight updates during training of a
network. This procedure typically has the effect of reducing overfitting and improving the
performance of the model [34].

4.3. Batch Size

Batch size is an important parameter to consider, as it can significantly impact the
model’s performance and training time. The batch size refers to the number of training
samples that are processed simultaneously during each iteration of the training process.
By adjusting the batch size, one can control the trade-off between computational efficiency
and the granularity of weight updates [35].
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A smaller batch size can lead to more frequent weight updates, which may result
in faster convergence and improved generalization performance. This possibility exists
because smaller batches introduce more noise into the gradient estimates, which can help
the model escape local minima and explore the solution space more effectively. However,
smaller batch sizes also require more iterations to process the entire dataset, which can
increase the overall training time. On the other hand, larger batch sizes can lead to more
stable gradient estimates and faster training times due to the increased computational
efficiency of processing multiple samples at once [36].

4.4. LSTM Layer Size and Number of Hidden Layers

It is very important to find an adequate relationship between the number of layers
of the neural network and the number of nodes in each layer. On the one hand, a neural
network with only one layer but with many nodes will tend to memorize the output but
will not be good at generalizing, so when trying to estimate situations not contemplated
during the training, it will have a poor performance. On the other hand, increasing the
number of layers will make the network have a better generalization capacity, since through
the different layers it will learn the necessary features to estimate correctly from the inputs.
However, if the number of layers is too high, or in other words, if the network is too deep,
there is a risk because the network will tend to overfit, so that it will be very accurate on
training data but very inaccurate on test data [37,38].

Therefore, it is necessary to find an optimal relationship between the number of nodes
in each layer and the number of layers. Moreover, the larger the network, either because
it has more nodes or because it is deeper, the longer the time required for the network to
be trained.

4.5. Hyperparameter Tuning

In order to perform hyperparameter tuning and achieve the best possible hyperpa-
rameters, Bayesian optimisation has been used to effectively find the best hyperparameters
for the network. Bayesian optimisation is a technique for hyperparameter tuning that
leverages Bayesian logic to reduce the time required to obtain an optimal parameter set,
improving the performance of test set generalization tasks. This optimization technique
takes into account previously seen hyperparameter combinations when determining the
next set of hyperparameters to evaluate. This approach allows the algorithm to intelligently
explore the hyperparameter space, focusing on regions that are more likely to yield better
results and avoiding areas that have already been proven suboptimal [39,40].

The core of Bayesian optimization lies in the use of Gaussian processes to model the
objective function, which represents the relationship between hyperparameters and model
performance. By maintaining a probabilistic model of the objective function, Bayesian
optimization can estimate both the mean and the uncertainty of the performance for any
given hyperparameter combination. The algorithm then selects the next hyperparameter set
to evaluate based on an acquisition function. This approach enables Bayesian optimization
to efficiently search the hyperparameter space, often leading to quicker convergence and
better generalization performance on test sets compared to traditional tuning methods [36].

Figure 4 shows the results obtained after performing the Bayesian optimisation. Dur-
ing the optimisation, the different hyperparameters listed throughout this Section 4 have
been tested. For example, as depicted in Figure 4, various network sizes were tested,
ranging from a single LSTM layer to eight LSTM layers and from eight neurons per layer to
120 neurons per layer. The results indicate that the optimal configuration, which yielded
the best outcomes, consists of three LSTM layers with 50 neurons per layer.

From all the different tests performed, the one that showed the best compromise
between the MAE and the maximum error was chosen. Table 2 shows, therefore, the
configuration of hyperparameters that will form the network.
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Figure 4. Hyperparameter tuning.

Table 2. Network hyperparameters.

Window length 15
Dropout 0
Batch Size 512
LSTM Layers 3
LSTM units per layer 50

5. Results

After performing all the tests, the parameters that yielded the best results were selected,
and 10 extra training sessions were carried out in order to select the one that produced the
best result.

Figure 5 shows an example of how the algorithm behaves with the training data. In
this case, it shows the results for the profile designed at 25 ◦C and charge and discharge
at 0.5C. The MAE error in the training data is 1.48% and in the validation data 1.54%; the
maximum error is 10.85% for training and 13.21% for validation.
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Figure 5. Model estimation for training data at 25 ◦C and 0.5CCHA and 0.5CDCH.

The figure provides an illustration of how effectively the algorithm tracks the actual
SoC with an MAE of less than 1.5%, demonstrating a high level of accuracy. However, it is
noteworthy that there are instances of elevated error peaks, particularly when alterations in
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the current occur. This anomaly becomes even more pronounced during periods of rapid
battery dynamics, as evidenced in the concluding stages of the specified cycle.

As mentioned in Section 4, the data corresponding to the EV profiles have been used
to test the algorithm. Figure 6 shows how the algorithm behaves and the error it yields for
the WLTP profile at 0 ◦C, 10 ◦C, 25 ◦C, and 45 ◦C.
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Figure 6. Model estimation at 0 ◦C, 10 ◦C, 25 ◦C, and 45 ◦C.

The left column of Figure 6 showcases the estimations made by the algorithm (repre-
sented in red) juxtaposed against the actual data (depicted in blue). From this comparison,
it becomes apparent how closely the algorithm mirrors the true trajectory of the SoC. A
notable discrepancy between the estimated SoC and the real SoC is observed during the
transition from the CC discharge phase to the WLTP cycle. Despite this occurence, the
disparity is largely momentary and is swiftly rectified by the algorithm autonomously.

The algorithm’s performance was found to be significantly more robust at elevated
temperatures, specifically at 45 ◦C, where it achieved the smallest error. This finding
suggests a temperature-dependent behaviour of the algorithm, indicating it potentially has
greater accuracy in high-temperature environments.

As can be seen in Figure 6 and in Table 3 where the results obtained by the algorithm
created are presented, it can be seen that the MAE always remains below 2% and that the
maximum error remains close to 11%. From the results obtained in the training, validation,
and test data, it can be concluded that the network has not suffered from overfitting, as the
results obtained are similar in all cases.
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Table 3. Model estimation MAE and maximum error for the different datasets.

MAE Max Error

Training 1.48% 10.85%
Validation 1.54% 13.21%
Test 1.64% 11.50%

6. Conclusions and Future Work

In this paper, an SoC estimator based on neural networks has been created; more
specifically, LSTM nodes have been used. As it has been observed throughout this article,
the use of this type of neuron makes the network behave especially suitably when used for
time series data. One of the main benefits of using neural networks with respect to other
methods used in the literature is that it is not necessary to use or perform any specific test
to ensure the correct operation of the algorithm, since this type of estimator automatically
searches for the relationship between the input data and the output.

One of the big drawbacks of neural network-based algorithms is that they need a large
amount of data to correctly find the relationship between input and output data. To feed the
neural network, this study uses data from an electrochemical model. The benefit of using
this type of model to generate the data necessary for a correct training of the network is that
it allows the creation of a large database in which various conditions (current, temperature,
etc.) are taken into account, using a fraction of the cost of money and time that they would
if carried out in a laboratory.

Throughout this article, the importance of a correct adjustment of the hyperparameters
(number of layers, nodes, etc.) has been noted. Equally important is the correct use of
the data and a division between training, validation, and test data. For the training of the
algorithm, in this article, a specific profile has been created to train the neural network
(presented in Section 3). This profile takes the cell to different SoC and voltage conditions,
as well as different pause times, so that the network is able to learn how a cell behaves
under different operating conditions. Within the training, but as validation data, data from
HPPC tests have been used, as this type of test includes DC and peak current charges and
discharges. Finally, for the algorithm test, realistic car profiles have been used, as this type
of test resembles the operation of a cell under real operating conditions.

From the results obtained, it can be concluded that the algorithm has a great capacity
to extract the relationships between the different inputs to correctly estimate the SoC, since
the profiles used for testing are more dynamic than those used in training, which means a
higher level of complexity for the network. Despite this, the algorithm estimates the SoC
with an MAE of less than 1.7% and maximum peak errors of 11.5% for the testing data.

The algorithm, despite its merits, does have certain limitations and considerations that
warrant attention. Since it has been trained using synthetic data devoid of noise, it becomes
imperative to assess its performance when exposed to noisy signals. Additionally, the
computational power required for the algorithm to run effectively on onboard hardware is
another crucial factor to consider. Upon analysing the results, it is evident that certain points,
particularly during the transition from discharge to charge, exhibit a higher error between
the estimated and actual SoC, reaching up to 10%. This discrepancy could potentially be
mitigated by implementing filtering techniques to enhance the accuracy of the estimated
SoC values. By addressing these concerns, the algorithm’s performance can be refined and
more precise SoC estimations ensured.

Moreover, it is essential to investigate how the algorithm performs when applied
to other battery chemistries, such as LFP (lithium iron phosphate). By addressing these
aspects, comprehensive understanding of the algorithm’s capabilities and potential areas
for improvement can be gained.

Finally, considering the great number of different conditions that have been used to
develop this model, it is believed that this model can be a great base to implement the
transfer learning technique and thus be capable of applying all the knowledge acquired
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during training to create SoC estimators for other batteries by retraining with a reduced
amount of data.

To propel the algorithm’s advancement, the logical next steps would involve gath-
ering data from actual cells in real-world applications or controlled laboratory settings.
By leveraging the algorithm outlined in this article, one could retrain its layers to accom-
modate fresh data obtained from real cells. This iterative process of data collection and
algorithm refinement is crucial for enhancing the algorithm’s performance and adaptability
in practical scenarios.
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