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Abstract: The power coupling equation and energy consumption model for enhancing the fuel
economy and power performance of plug-in hybrid electric trucks (PHETs) are proposed based
on the economic velocity planning strategy (EVPS-DSIDP), which takes into account the driving
style and an improved dynamic programming (IDP) algorithm. This strategy employs a fuzzy
controller to identify the driving style, and optimizes the efficiency and accuracy of the conventional
dynamic programming (DP) algorithm by associating decision variables, dynamically adjusting
the discretization step size, and restricting the state space. Additionally, a penalty function is
introduced to enhance the robustness of the DP algorithm. Under our EVPS-DSIDP, the variation
of velocity is liberated from the constraints of fixed driving conditions, and directly correlates
with road information and driving styles, which is of significant importance for addressing energy
management issues in real-time traffic conditions. Moreover, the proposed IDP algorithm can
improve computational efficiency while ensuring calculation accuracy, thereby greatly enhancing the
potential for the practical application of this algorithm in real-world vehicle scenarios. The simulation
results demonstrate that compared to the rule-based control strategy, the application of the proposed
EVPS-DSIDP in the economy velocity planning strategy can achieve an average reduction of 2.88% in
economic costs and 10.6% in travel time across different driving styles. This approach offers a more
comprehensive optimization of both fuel economy and power performance.

Keywords: energy management strategy; plug-in hybrid electric truck; economic velocity planning;
driving style; fuzzy controller; dynamic programming

1. Introduction

Traditional internal combustion engine trucks use fossil fuels, and their emissions of
carbon dioxide and other harmful substances have a growing impact on the environment,
making it difficult to comply with increasingly stringent fuel consumption and emission
regulations. Therefore, hybrid and pure electric technologies have been rapidly developed.
Although pure electric trucks have many advantages compared to traditional trucks, such
as low emissions, low noise, and low operating costs, they also have some limitations,
including limited range, inadequate charging infrastructure, long charging times, and a
relatively lower payload capacity. Therefore, plug-in hybrid technology is considered to
have broad prospects in the trucking industry [1].

Plug-in hybrid electric trucks (PHETs) can enjoy the advantages of pure electric ve-
hicles while fully utilizing the stable power output provided by the internal combustion
engine, thus achieving a balance between fuel economy and power performance. But its
energy management strategy (EMS) directly influences their fuel economy, power perfor-
mance, and emission [2]. In order to save energy and reduce emissions, the selection of
effective algorithms for controlling hybrid electric vehicles has become a research focus [3,4].
Common EMSs include rule-based (RB) energy management strategy [5–7], equivalent
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fuel consumption minimization strategy (ECMS) [8–10], Pontryagin’s minimum principle
(PMP) [11–13], model predictive control strategy (MPC) [14–16], etc. However, these strate-
gies are mostly applied under fixed driving conditions, limiting the optimization of vehicle
performance. In real-world situations, the driving conditions of vehicles are not fixed.
In order to better optimize vehicle performance, research on optimization algorithms for
variable driving conditions has gradually emerged [17,18]. The dynamic programming (DP)
algorithm offers advantages such as finding the optimal solution, considering long-term
consequences, and being easy to understand and implement [19]. Therefore, this study
focuses on the research of economic velocity planning strategies with the DP algorithm as
the core.

The core parameters of the DP algorithm are decision variables and state variables.
The former represents all possible actions that can be taken at each stage, while the latter
represents the state of the system when these actions are executed. Both decision variables
and state variables need to be discretized on a grid [20]. The treatment of the grid in this
process is crucial, as it should avoid uncontrolled computational expansion, known as the
“curse of dimensionality” [21], while ensuring high accuracy during computation.

Currently, measures can be taken to optimize the DP algorithm, significantly reducing
computation time without compromising the overall optimization performance. In refer-
ence [22], two different methods were employed to optimize the computation grid: the first
method reduces the evaluation grid of the system model by using redundant control points,
while the second method reconstructs the system model to minimize redundant control and
system feasibility grids before conducting multidimensional interpolation. Although this
approach has proven effective for DP algorithms that involve redundant control, its effec-
tiveness has not been demonstrated for other DP algorithms that deal with non-redundant
control. Reference [23] introduces a new variable step-size grid approach for optimizing the
application of DP in economic velocity planning. It overcomes interpolation errors caused
by discretization by adjusting different discrete step sizes and improves computational
efficiency. Compared to a fixed step-size configuration, this method significantly reduces
computation time while sacrificing only a small degree of accuracy. Although this method
considers “horizontal (step size)” optimization of the grid, it does not simultaneously
consider “vertical (velocity)” optimization of the grid, leaving room for further improve-
ment. In reference [24], a two-step iterative DP algorithm was applied to optimize the
vehicle’s economic cruising velocity. In the first iteration, the range of state and control
variables was reduced to alleviate computational and storage burdens, while in the second
iteration, grid density was decreased to enhance optimization performance. Although this
method demonstrated good results for optimizing cruising velocity in electric vehicles,
its applicability to more complex PHET structures and non-cruising velocity planning
scenarios has not been established.

Additionally, with the development of high-precision maps and vehicle-to-everything
(V2X) communication [25], optimizing the velocity of vehicles through economic velocity
planning—where vehicles follow a planned velocity—can effectively improve their fuel
economy. Reference [26] developed eco-driving rules by optimizing economic velocity
and gear selection to reduce fuel consumption under various congestion conditions on the
same route. Reference [27] proposed a PMP algorithm based on traffic flow velocity, road
speed limits, and road gradients, which provides economic velocity planning for vehicles
to enhance overall fuel economy. Reference [28] developed an Eco-MS-Q algorithm that
utilizes road information collected through vehicle-to-infrastructure (V2I) communication
to predict and estimate the optimal velocity trajectory, optimizing fuel consumption when
passing through multiple signalized intersections. Reference [29] designed an economic
velocity planning strategy based on the principle of optimizing fuel economy during vehi-
cle starts, stops, acceleration, and deceleration, while maintaining smooth velocity and a
certain distance. Reference [30] explored the economic velocity planning of a P2 plug-in
hybrid electric car, based on the predictable road information of the bend ahead, in order to
achieve better energy economy while ensuring driving safety. Reference [31] proposed an
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economic velocity planning strategy-based EMS within the MPC principle, considering the
adaptive reference state of charge driving pattern. Reference [32] presented a real-time hier-
archical effective and efficient co-optimization control strategy designed to plan economic
velocity and achieve energy management in urban driving scenarios. Reference [33] pro-
posed a reinforced equivalent consumption minimization strategy based on kinetic energy
management and ECMS, which is applied to economic velocity planning. The research
findings of these scholars indicate that economic velocity planning can effectively reduce
vehicle energy consumption. However, the aforementioned studies on economic velocity
planning primarily focus on pure electric vehicles and conventional fuel vehicles, with
limited research on economic velocity planning for hybrid electric vehicles and minimal
consideration of the driver’s driving style in economic velocity planning.

In general, within the existing research on economic velocity planning strategies,
numerous scholars have conducted extensive investigations using different optimization
control methods for powertrain systems of either pure electric vehicles or conventional
fuel vehicles, resulting in significant achievements. However, most control strategies focus
only on specific environments or consider only single/partial operating conditions, thereby
lacking generality. Furthermore, the influence of driver behavior on velocity planning is
often overlooked in the majority of economic velocity planning studies. The fuel economy
and power performance of a vehicle are interrelated and mutually influenced, and failing
to control them appropriately can easily lead to a substantial increase in travel time while
attempting to reduce economic costs, ultimately resulting in suboptimal outcomes.

The innovative aspects and contributions of this article can be summarized as follows:

• Simplifying vehicle gear shifting and operating mode selection logic by associating
them with velocity.

• Implementing driving style recognition using a fuzzy controller.
• Introducing an IDP algorithm to achieve better computational efficiency and accuracy.
• Developing the EVPS-DSIDP based on the driving style and the IDP algorithm.
• Demonstrating improved fuel economy and power performance with the EVPS-DSIDP

under different driving styles.

This study aims to achieve rational economic velocity planning by employing an
adaptive control strategy that combines driving style and improved dynamic programming
(IDP), under the condition of sufficient battery state of charge (SOC). The remainder of this
study is organized as follows: Section 2 establishes a vehicle energy consumption model for
the PHET based on experimental data. Section 3 presents the economic velocity planning
strategy for the PHET by integrating driving style and the IDP algorithm. Section 4
validates the proposed economic velocity planning strategy through simulation tests.
Finally, Section 5 provides conclusions.

2. Modeling of Hybrid Power System Based on Dual Planetary Gear
2.1. Overall Structure

The subject of this study is a dual planetary power-split PHET, as shown in Figure 1.
The vehicle’s powertrain system comprises three power sources: two electric motors
(MG1, MG2) and an engine. The front-row planetary gear (PG1) serves as the power-split
mechanism, where the sun gear (S1) of PG1 is connected to the motor MG1. The carrier
(C1) of PG1 is connected to the engine through a buffer locking mechanism (BLM). The
buffer section of BLM mitigates impacts and vibrations through energy absorption, while
the locking section fixes C1 using locking and clamping mechanisms, thereby altering the
power-split mode of PG1. The ring gear (R1) of PG1 is connected to the carrier (C2) of
rear-row planetary gear (PG2), enabling power output to the gearbox. The sun gear (S2) of
PG2 is connected to the motor MG2, and the ring gear (R2) of PG2 is fixed to the housing,
creating an equivalent fixed gear ratio gear transmission mechanism. This configuration
not only decouples the engine torque and speed from the vehicle’s physical state, but also
enables smooth transition between different operating modes, fully exploiting the optimal
performance of the entire powertrain system.
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Figure 1. Configuration of the PHET.

The PHET studied in this study is applied in heavy-duty commercial vehicles used in
industries such as freight transport. The proper selection of components is crucial to ensure
its optimal performance in terms of fuel economy and power. The main parameters of each
component of the PHET are listed in Table 1.

Table 1. Parameters of PHET.

Symbol Component Parameter (Unit) Value

m

Vehicle

Vehicle curb mass (kg) 31,000
Rwh Tire rolling radius (m) 0.528

A Frontal area (m2) 7.5
CD Wind resistance coefficient 0.56
fr Rolling resistance coefficient 0.015
δ Rotational mass conversion coefficient 1.1

PMax
Eng

Engine

Maximum power (kW) 240

TMax
Eng

Maximum torque (N·m) 1400

nMax
Eng

Maximum speed (rpm) 2200

ρ f uel Fuel density(kg/L) 0.76

PMax
MG1

Motor

Maximum power (kW) 106

TMax
MG1

Maximum torque (N·m) 340

nMax
MG1

Maximum speed (rpm) 7500

PMax
MG2

Maximum power (kW) 196

TMax
MG2

Maximum torque (N·m) 375

nMax
MG2

Maximum speed (rpm) 15,000

k1,2
Transmission

PG1/PG2 characteristic parameter 4.4/5.7
ig Ratio of gear position [6.3 2.1 1 0.86]
i f d Ratio of main reducer 5.1

Cele Economic cost
Electricity cost (RMB/kWh) 1

C f uel Fuel cost (RMB/L) 7.5



World Electr. Veh. J. 2023, 14, 194 5 of 30

2.2. Model for the Key Components

The model construction and algorithm optimization in this study were carried out
in MATLAB. The models of key components are ideal models, neglecting factors such as
shifting time, frictional losses between components, and energy losses due to engine and
motor start-stop operations during simulation.

2.2.1. Engine Model

One of the key focuses of this study is to optimize the fuel economy during vehicle
operation, which essentially involves optimizing the operating points of the engine and
motors. In this study, the effective brake-specific fuel consumption (BSFC) of the engine is
obtained using chassis dynamometer experimental data. The BSFC is determined by the
engine torque (TEng) and engine speed (nEng), as shown in Figure 2.

BSFC = fBSFC(TEng, nEng) (1)
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The fuel consumption per unit time of the engine can be expressed as:

.
V

Eng
f uel =

TEng × nEng × BSFC
9550× 3.6× 106 × ρ f uel

(2)

2.2.2. Electric Motor Model

This study involves two motors, each with different operating conditions and purposes,
necessitating the use of motors with different specifications. MG2 is primarily utilized for
driving and regenerative braking, while MG1 is mainly employed for torque compensation
and controlling the engine operating point. The relationship between motor speed, torque,
and efficiency is obtained through dynamometer test data for both motors. The efficiency
maps for MG1 and MG2 are presented in Figures 3 and 4, respectively. Both motors can
function as electric motors for propulsion as well as generators for power generation. The
relationship between motor power, torque, speed, and efficiency can be expressed as:

ηMG = fe f f (TMG, nMG) (3)
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PMG_E =
TMG · nMG

9550︸ ︷︷ ︸
PMG

· η−sgn(PMG)
MG (4)

where PMG_E is the motor electric power, PMG is the motor mechanical power, TMG is
the motor torque, and nMG is the motor speed. When PMG > 0, ηMG represents motor
efficiency, and when PMG < 0, it represents generator efficiency. sgn(x) is the sign function,
and when sgn(x) = 1, x ≥ 0 is the motoring state; when sgn(x) = −1, x < 0 is the
generating state.
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The electrical power consumed/generated by the two motors during operation can be
expressed as:

Pbatt = PMG1_E + PMG2_E (5)
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2.2.3. Planetary Gear Model

In the transmission system of the PHET, power transmission is determined by the
speed and torque characteristics of dual planetary gears. The structure of the planetary
gear, including the ring gear, planetary carrier, and sun gear, is illustrated in Figure 5, with
their interconnections formed by the planetary gears.

World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 7 of 30 
 

2.2.3. Planetary Gear Model 
In the transmission system of the PHET, power transmission is determined by the 

speed and torque characteristics of dual planetary gears. The structure of the planetary 
gear, including the ring gear, planetary carrier, and sun gear, is illustrated in Figure 5, 
with their interconnections formed by the planetary gears. 

 
Figure 5. The structure of the planetary gear. 

On the PG1, 1Sn , 1Cn , and 1Rn  represent the speeds of S1, C1, and R1, respectively, 
while 1pk  is the characteristic parameter of the PG1. Similar symbol definitions apply to 
the PG2 ( )2 2 2 2, ,  and S C R pn n n k , with the difference being that R2 is fixed to the housing 

( )2 0Rn = . According to the speed balance equation between the components of the 
planetary gears, it can be determined that: 

1 1 1 1 1(1 ) 0S p R p Cn k n k n+ − + =  (6)

( )2 2 21 0S p Cn k n− + ⋅ =  (7)

Neglecting the inertia torques of the components, as well as the transmission 
efficiency losses and friction losses between gears, the power balance and torque 
equilibrium relationship of the PG1 can be derived. It can be expressed as: 

1 1 1

1 1 1 1 1 1

1 1 1

1 1

0
0

1 1

S C R

S S C C R R

S R C

p p

T T T
n T n T n T
T T T

k k

 + + =
 + + =

 = = − +

 

(8)

where 1ST , 1CT , and 1RT  are the torque on the sun gear, planetary carrier and gear ring 
of PG1, respectively. The similar formula applies to PG2 ( )2 2 2,  and S C RT T T . 

When the BLM is released, the external torque acting on C1 is provided by the engine. 

1C EngT T=  (9)

According to the relationship between the dual planetary gears, it can be determined 
that: 
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On the PG1, nS1, nC1, and nR1 represent the speeds of S1, C1, and R1, respectively,
while kp1 is the characteristic parameter of the PG1. Similar symbol definitions apply
to the PG2

(
nS2, nC2, nR2 and kp2

)
, with the difference being that R2 is fixed to the hous-

ing (nR2 = 0). According to the speed balance equation between the components of the
planetary gears, it can be determined that:

nS1 + kp1nR1 − (1 + kp1)nC1 = 0 (6)

nS2 −
(
1 + kp2

)
· nC2 = 0 (7)

Neglecting the inertia torques of the components, as well as the transmission effi-
ciency losses and friction losses between gears, the power balance and torque equilibrium
relationship of the PG1 can be derived. It can be expressed as:

TS1 + TC1 + TR1 = 0

nS1TS1 + nC1TC1 + nR1TR1 = 0
TS1
1 = TR1

kp1
= − TC1

1 + kp1

(8)

where TS1, TC1, and TR1 are the torque on the sun gear, planetary carrier and gear ring of
PG1, respectively. The similar formula applies to PG2 (TS2, TC2 and TR2).

When the BLM is released, the external torque acting on C1 is provided by the engine.

TC1 = TEng (9)

According to the relationship between the dual planetary gears, it can be deter-
mined that: 

nMG1 = nS1, nMG2 = nS2, nEng = nC1

nout = nC2, nR2 = 0, nR1 = nC2

TS1 = TMG1

TS2 = TMG2

Tout + TR1 + TC2 = 0

(10)
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where Tout is the output torque of the powertrain system.

2.3. Model for the Longitudinal Dynamics of Vehicle

According to the automotive theory, a mathematical model for the longitudinal dy-
namics of the PHET is established, and the Tout can be expressed as:

Tout = Rwh/i f d/ig · [mg fr cos α︸ ︷︷ ︸
Frolling

+ 1/2CDρair Aυ2︸ ︷︷ ︸
Fair

+ δmdυ/dt︸ ︷︷ ︸
Finertia

+ mg sin α︸ ︷︷ ︸
Fgradiet

] (11)

where Frolling is the rolling resistance, Fair is the air resistance, Finertia is the acceleration
resistance, and Fgradiet is the ramp resistance. fr is the rolling resistance coefficient, CD
is the wind resistance coefficient, ρair is the air density, A is the frontal area, and υ is the
vehicle velocity. α is the road ramp angle, and δ is the rotation mass conversion coefficient.
Rwh is the tire rolling radius, i f d is the transmission ratio of the main reducer, and ig is the
transmission ratio of gear position.

3. Economic Velocity Planning Strategy
3.1. Driving Style Recognition Based on Fuzzy Controller

One of the research focuses of this study is to integrate the driver’s driving style
into the economic velocity planning. In situations where braking is not required, drivers
generally reflect their driving style through variations in the accelerator pedal (AP). Based
on the longitudinal dynamics model of the vehicle, the energy consumption of the PHET
during flat road driving is mainly concentrated during acceleration and steady-state driving.
Since the velocity fluctuation is minimal during steady-state driving, this study primarily
investigates the economic velocity planning of the vehicle under acceleration tendencies.

During driving, the driver’s driving style is typically reflected through the variations
in the AP and the change in AP between adjacent sampling points (dAP). Therefore, in this
study, AP and dAP are introduced as input parameters for the driver model, and a fuzzy
controller is employed for the driving style recognition. The fuzzy controller takes AP and
dAP as input variables and outputs a power coefficient (γ). AP, dAP, and γ are divided into
five fuzzy subsets:{NM, NS, ZO, PS, PM}. The definition range of AP and γ is [0, 1], and
the definition range of dAP is [−1, 1]. The membership functions for inputs are shown in
Figure 6. Correspondingly, the fuzzy rules are presented in Table 2, and the output surface
of the fuzzy inference system is shown in Figure 7.
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Table 2. Fuzzy rules (γ).

dAP
AP

NM NS ZO PS PM

NM NM NM NM NS ZO
NS NM NM NS ZO PS
ZO NM NS ZO ZO PS
PS NM NS ZO PS PM
PM NS ZO PS PM PM
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3.2. Improved Dynamic Programming Algorithm
3.2.1. Dynamic Programming

The objective of this economic velocity planning strategy is to solve the optimal control
problem of a powertrain system with terminal constraints within a limited distance. During
this process, the DP algorithm is employed, which is described in detail as follows:

The state variables are used to describe the states of each sub-stage, and the state
of the k stage is denoted as x(k), k = 1, 2, · · · , N, which belongs to the state space X.
The decision variables are used to describe the control decisions that transfer the system
from one sub-stage to the next, and the decision variable for the k stage is denoted as
u(k), k = 1, 2, · · · , N− 1, which belongs to the decision space U. Both the state variable x(k)
and the control variable u(k) are bounded and discrete, meaning they can take values within
their respective domains. The state equation of this discrete system can be represented as

x(k + 1) = fx[x(k), u(k)] (12)

The transition cost from the current state to the next state in each sub-stage is repre-
sented by a cost function, and the cost for the k stage is denoted as L(k), k = 1, 2, · · · , N− 1.
It can be expressed as

L(k) = fL[x(k), u(k)] (13)

The cost function for the entire optimal control process can be expressed as

J =
N−1

∑
k=1

L(k) + ξ[x(N)] (14)

where ξ[x(N)] represents the terminal cost of the system.
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During the solving process, the backward induction starts from the N sub-stage, where
the cost (terminal cost) of the N sub-stage can be represented as:

J∗[x(N)] = ξ[x(N)] (15)

The optimal cost function for the k stage is J∗[x(k)], k = 1, 2, · · · , N − 1, which can be
represented as

J∗[x(k)] = min{L(k) + J∗[x(k + 1)]} (16)

After the backward induction is completed, for the control system with the initial state
x(1), the optimal cost function for the entire process is J∗[x(1)], and the optimal control
decision sequence is u∗ = {u∗(1), u∗(2), · · · , u∗(N − 1)}.

The essence of solving the problem using the DP algorithm is to traverse all possible
decisions of the state variables at each stage within the state space. It calculates the optimal
decisions for all feasible states and stores them for direct table lookup, thereby avoiding
redundant calculations. In the economic velocity planning for PHET, the original deci-
sion variables include gearbox gears, operating modes, and power allocation in different
operating modes. Due to the complexity of the vehicle structure studied in this study,
which includes four gearbox gears and three operating modes, using conventional DP
algorithms to perform economic velocity planning would require traversing and solving
for all the aforementioned factors as decision variables. This would exponentially increase
the computational burden and significantly impact the efficiency of the algorithm.

In addition, in the conventional DP algorithm, the range of the state space and the
discretization step size are fixed. However, velocity—as a state variable in economic velocity
planning—has a significant range of fluctuations and is highly sensitive to temporal changes.
If the conventional DP algorithm is used for economic velocity planning, there will be a
large number of invalid state spaces and incorrect state transitions, which will affect the
accuracy of the algorithm.

Therefore, it is necessary to optimize the DP algorithm before its application. The
efficiency and accuracy of the DP algorithm depend on the number of state variables and
decision variables, as well as the corresponding discrete grid. Since this study focuses on
velocity planning, there is only one state variable, which is velocity. The optimization of the
DP algorithm’s efficiency and accuracy can be achieved by reducing the number of decision
variables and dynamically adjusting the discrete grid, as well as limiting the state space.

3.2.2. Optimization of Decision Variables

The HET studied in this study has three operating modes: Single Electric Vehicle
(SEV), Dual Electric Vehicle (DEV), and Hybrid Electric Vehicle (HEV). The operating
modes of PHET are shown in Table 3. Additionally, the gearbox of the HET studied in
this study consists of four gears. Due to the complexity of the operating modes and the
vehicle structure, simplification is required before economic velocity planning. During the
simplification process, both the vehicle’s power performance and fuel economy need to be
considered to allow the powertrain system to achieve optimal performance.

Table 3. The operating modes of PHET.

Operating Modes MG1 MG2 Engine BLM

SEV ×
√

×
√

DEV
√ √

×
√

HEV
√ √ √

×
Note: “

√
” represents that the power sources can work, or the BLM is locked; “×” represents that the power

sources cannot work, or the BLM is released.

It can be seen from Table 3 that, in terms of power performance, the SEV mode exhibits
the weakest power performance among the various operating modes, while the power
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performance comparison between DEV and HEV varies depending on the gear position
and vehicle velocity.

Figure 8 shows the comparison of the maximum acceleration of the vehicle on a
straight road in the second gear. Before point A in the graph, DEV outperforms HEV in
terms of power performance, while the opposite is true after that point. Additionally, due
to the limitations imposed by the planetary gears structure and the maximum rotational
speed of each power source, the maximum velocities differ between the DEV and the HEV
in second gear, as indicated by segments B and C in Figure 8. Therefore, when shifting
gear and selecting the operating mode, the power performance of each component in the
powertrain system needs to be considered comprehensively.
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In terms of fuel economy, according to Figure 2, it can be observed that nEng exhibits
better fuel economy around 1200 rpm when TEng is constant. Due to the characteristics of
the dual planetary gears, in the HEV mode, the motor MG1 can control nEng at 1200 rpm
to ensure relatively good fuel economy. When controlling nEng using MG1, based on the
speed characteristics of PG1 (Equation (6)), the nMG1 can be expressed as

nMG1 =
(
1 + kp1

)
· nEng − kp1 · nc1 (17)

The nC1 can be expressed as

nC1 =
30 · υ · id · ig

3.6 · π · Rwh
(18)

According to Equations (17) and (18), it can be observed that nMG1 is negatively
correlated with vehicle velocity (υ) when nEng is fixed, with nMG1 increasing at lower υ.
Based on the external characteristic curve of MG1 (Figure 3),

∣∣TMin
MG1

∣∣ decreases with an
increase in nMG1 after reaching PMax

MG1. Additionally, according to Equations (8)–(10), the
maximum output torque (TMax

Eng_out) of the engine at this time can be expressed as:

TMax
Eng_out = min

[
TMax

Eng , (1 + kp1) ·
∣∣∣TMin

MG1

∣∣∣] (19)

where, TMax
Eng_out will be subject to restrictions imposed by

∣∣TMin
MG1

∣∣ (segments D in Figure 8)

and TMax
Eng (segments E in Figure 8). In summary, in the HEV mode, the engine may not
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be able to output maximum torque according to its external characteristics at lower υ.
Therefore, it is necessary to achieve a rational gear shifting and operating mode selection to
ensure fuel economy while avoiding the occurrence of this problem.

In this study, to address the aforementioned issues, gear shifting and operating mode
selection is correlated with the AP and velocity, as shown in Figure 9. The determination of
gear shift velocity takes into account the speed characteristics (Table 1) of the electric motor
and the engine, as well as the driver’s driving behavior; and the determination of operating
modes considers the speed and torque characteristics (Table 1) of the electric motor and the
engine, as well as the driver’s driving behavior.
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By employing this approach, the computational efficiency of DP is improved by
reducing the decision variables, while ensuring that the vehicle achieves optimal power
performance when transitioning between different operating modes.

To differentiate between different driving styles, they can be classified based on the
AP and operating modes. The specific classification (I to IV in Figure 9) is as follows:

I. Economical Driving (0–40%): In economical driving, the vehicle has relatively weak
power demand. The HET operates only in the SEV, where only motor MG2 is engaged.
There is no need to consider operating mode selection or power allocation during
the drive.

II. Comfortable Driving (40–60%): In comfortable driving, the vehicle has moderate
power demand. The HET operates only in the DEV mode, with both motor MG1
and motor MG2 engaged. There is no need to consider operating mode selection, but
power allocation between the two motors needs to be taken into account.

III. Aggressive Driving (60–80%): In aggressive driving, the vehicle has strong power
demand. The PHET alternates between the DEV and HEV, with a higher propor-
tion in the DEV. Operating mode selection and power allocation between different
components of the powertrain system need to be considered in this driving style.

IV. Dangerous Driving (80–100%): In dangerous driving, the vehicle has the strongest
power demand. The driving situation of the PHET is similar to aggressive driving,
but with a higher proportion of the HEV during this driving style. Additionally, when
the vehicle’s battery is low, gear shifting and operating mode selection will follow the
rules of this driving style, although the power allocation strategy may differ.
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3.2.3. Optimization of Step Size

When applying the DP algorithm to solve problems, it is common to divide the
problem into multiple decision stages in the time domain, and then calculate the optimal
performance indicators and decision variables for each sub-stage. In the context of economic
velocity planning, the system disturbances are based on spatial factors such as road gradient
and lane speed limits. If the optimization problem is discretized in the time domain,
significant variations in vehicle velocity can occur in the spatial domain across different
sub-stages, thereby affecting the planning results. Additionally, in this study, it is necessary
to obtain road condition information ahead of time through V2X communication before
conducting economic velocity planning.

Discretizing the optimization problem in the time domain alone would not accu-
rately correspond the time domain to the spatial domain. Therefore, in this study, the
DP algorithm based on spatial domain discretization is employed for the economic ve-
locity planning strategy of the PHET. When determining the discretization step size
(∆s(k), k = 1, 2, · · · , N − 1) in the k stage, setting it as a constant value can lead to cer-
tain issues. For instance, if ∆s(k) is set to be too large, it can result in significant differences
in velocity between adjacent nodes, thus impacting the accuracy of velocity planning and
the effectiveness of the actual plans. On the other hand, if ∆s(k) is too small, it would re-
quire a larger number of steps in the planning space, thereby increasing the computational
complexity. To effectively address this issue, this study sets ∆s(k) as a mathematical model
that is correlated with the predicted velocity υp(k), and a gear adjustment factor χgp(k) in
the k stage:

∆s(k) = υp(k) · χgp(k), χgp(k) ∈ (0.05, 0.1) (20)

where υp(k) will be discussed in the next section, while χgp(k) is positively correlated with
the predicted gear position.

3.2.4. Optimization of State Space

Before optimizing the DP algorithm’s state space, it is necessary to determine the
terminal state. In the context of economic velocity planning, the terminal state refers to the
desired final vehicle velocity. The variation in vehicle velocity during travel is influenced
by spatial domain information. Therefore, in the process of economic velocity planning, the
terminal velocity is affected by the vehicle’s current state, driver’s driving style, and road
information. In this study, the terminal velocity within each planning cycle is determined
using a velocity prediction equation. It assumes that within each stage, the road slope and
speed limit remain constant, and any variations in driving resistance due to changes in
velocity are ignored. Additionally, the vehicle acceleration is assumed to be constant. The
velocity prediction equation can be expressed as

υp(k + 1) = 3.6

√
2 · ap(k) · ∆s(k) + [

υp(k)
3.6

]
2

(21)

where ap(k) is the predicted vehicle acceleration in the stage k. It can be expressed as:

ap(k) =
3.6

δ ·m · Rwh

{
Fp(k)− Rwh[F

p
roll(k) + Fp

aero(k) + Fp
slope(k)]

}
(22)

where Fp
roll(k), Fp

air(k), and Fp
gradiet(k) represent the predicted rolling resistance, predicted

air resistance, and predicted gradient resistance for the k stage, respectively. These values
can be computed by incorporating road condition information obtained from V2X and
Equation (11). Fp(k) represents the predicted driving force on the tire in the k stage, and
can be expressed as

Fp(k) = γ(k)max
[

Fp
out(k)

]
(23)
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Fp
out(k) = τ(k) · Tp

out(k) · i f d · ig/Rwh (24)

where τ(k) represents the torque relaxation factor, which is correlated with the driving
style and road surface information. Its purpose is to avoid prolonged operation of the
powertrain system under high-load conditions, which could impact the lifespan of the
motor or engine. Tp

out(k) represents the predicted torque output of the powertrain system
during the k stage.

The constraint conditions are as:

TMin
MG1 ≤ Tp

MG1(k) ≤ TMax
MG1, TMin

MG2 ≤ Tp
MG2(k) ≤ TMax

MG2

nMin
MG1 ≤ np

MG1(k) ≤ nMax
MG1, nMin

MG2 ≤ np
MG2(k) ≤ nMax

MG2

TMin
Eng ≤ Tp

Eng(k) ≤ TMax
Eng

PMin
Batt ≤ Pp

Batt(k) ≤ PMax
Batt

aMin
p ≤ ap(k) ≤ aMax

p

∆sMin ≤ ∆s(k) ≤ ∆sMax

(25)

where TMin
MG1 and TMin

MG2 (TMax
MG1 and TMax

MG2) are the minimum (maximum) output torques
provided by motors MG1 and MG2, respectively. nMin

MG1 and nMin
MG2 (nMax

MG1 and nMax
MG2) are

the minimum (maximum) output speeds provided by motors MG1 and MG2, respec-
tively. TMin

Eng and TMax
Eng are the minimum and maximum output torques, respectively, that

are provided by the engine. PMin
Batt and PMax

Batt are the upper and lower limits of battery
power, respectively. aMin

p and aMax
p are the minimum and maximum predicted acceleration,

respectively. ∆sMin and ∆sMax are the minimum and maximum step size, respectively.
In the DP algorithm, the number of grid points is crucial in determining the compu-

tation results. Increasing the number of discrete grid points can lead to more accurate
results, but a longer computation time. Conversely, reducing the number of grid points
can yield faster computation results, but may introduce distortion in the obtained results.
To address this issue, this study proposes an IDP algorithm that reduces grid points by
constraining the state space without compromising the overall optimization performance.
The principle is illustrated in Figure 10, where the discrete state variables of each stage on
the spatial domain are transformed from the global state space (Xg) to a local predictive
state space (Xlp). The spatial constraints consist of two boundary components, namely the
predictive boundary (Bpr) and the planning boundary (Bpl). Among them, Bpr represents
the boundaries predicted during the forecasting stage based on road information and
driving style. The upper predictive boundary Bu

pr(k + 1), k = 1, 2, · · · , N − 1 and the lower
predictive boundary Bl

pr(k + 1), k = 1, 2, · · · , N − 1 can be expressed as

Bu
pr(k + 1) = fBpr

{
Bu

pr(k), ∆s(k), max
[

Fp
out(k)

]}
(26)

Bl
pr(k + 1) = fBpr

{
Bl

pr(k), ∆s(k), min
[

Fp
out(k)

]}
(27)
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The upper planning boundary Bu
pl(k), k = 1, 2, · · · , N − 1 and lower planning bound-

ary Bl
pl(k), k = 1, 2, · · · , N − 1 are determined based on terminal velocity x(N), and are

calculated by reverse planning. They can be expressed as

Bu
pl(k) = fBpl

{
Bu

pl(k + 1), ∆s(k), min
[

Fp
out(k + 1)

]}
(28)

Bl
pl(k) = fBpl

{
Bl

pl(k + 1), ∆s(k), max
[

Fp
out(k + 1)

]}
(29)

Please refer to Equation (21) for the specific calculation method.
Combining Bpr(k), Bpl(k), AP, and road velocity limit (υroad

Max and υroad
Min), the Xlp(k) for

k stage in the IDP algorithm can be obtained. The upper bound Bu(k), k = 2, · · · , N − 1
and lower bound Bl(k), k = 2, · · · , N − 1 of Xlp(k) can be expressed as:

Bu(k) = min
[

Bu
pr(k), Bu

pl(k), υAP
Max(k), υroad

Max(k)
]

(30)

Bl(k) = max
[

Bl
pr(k), Bl

pl(k), υroad
Min(k)

]
(31)

where υAP
Max(k) represents the maximum vehicle velocity constrained by the accelerator

pedal in the k stage, as referenced in Figure 9. υroad
Max(k) and υroad

min (k) are the maximum and
minimum velocity limits of the road, respectively, which can be obtained through V2X.

By constraining the state space, the number of grid points can be effectively reduced.
However, in this study, gear shifting and operating mode selection are based on the vehicle
velocity and AP. Within the local predicted state space Xlp(k), different gears and operating
modes may be present. During the backward planning process, the vehicle state of the
previous stage is derived from the vehicle state of the subsequent stage. This may lead to
the situation where some state variables from the previous stage cannot be transferred to
the subsequent stage during the forward transition, as shown in Figure 11.
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1 
 

 
Figure 11. State transition from stage k to stage k + 1.

In Figure 11, the Xlp(k) of stage k is derived by backward propagation from Xlp(k + 1)
of stage k + 1. However, due to the differences in the vehicle’s working mode and gear
during forward transitions and backward propagation, there can be discrepancies between
the true state space (Xtrue(k + 1)) and Xlp(k) of stage k + 1. To address this issue, this study
introduces a penalty function (ϕ) to adjust the cost function (L). The underlying principle
can be expressed as

Lk(i, j) = ϕk[x(i), u(j)] · L[x(i), u(j)] (32)

where ϕ is dependent on the state variables x(i), i = 1, 2, . . . , NX and control variables
u(j), j = 1, 2, . . . , NU at stage k. During the computation process of the IDP algorithm, if an
infeasible state transition occurs, the introduction of the penalty function can significantly
increase the overall cost. This allows for the avoidance of such situations in determin-
ing the optimal control decisions, and enhances the robustness of the algorithm during
state transitions.

The optimized structure of the IDP algorithm, as shown in Figure 12, is presented in the
previous sections. In this figure, N represents the number of stages in each planning cycle,
NX denotes the number of discrete state variables, NU represents the number of discrete
decision variables, Xgrid represents the discrete state variable function, Ugrid represents the
discrete decision variable function, L represents the cost function of each sub-stage, and J
represents the overall cost function.

Firstly, the terminal velocity x(N) and step sizes ∆s for each substage are obtained
through predictive calculations. Secondly, the boundaries Bu(k) and Bl(k) are estimated
using forward prediction and backward planning. Thirdly, Xlp(k), which satisfies the

imposed constraints, is discretized to obtain X(i)
grid(k). Based on the characteristics of

X(i)
grid(k), U(J)

grid(k, i) is determined. Subsequently, X(i)
grid(k) is reevaluated to determine its

capability to successfully accomplish the state transition. If it cannot do so, the cost at that
moment is amplified through the use of a penalty function (γ(i,j)(k)). Finally, the minimum
J(I)(k) in this state is calculated.
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3.3. Economy Velocity Planning Strategy Based on Driving Style and IDP

In this section, an economy velocity planning strategy based on driving style and
the IDP algorithm (EVPS-DSIDP) is proposed to address the economic velocity planning
problem while driving under different driving styles (Figure 13).

In EVPS-DSIDP, the driving style is first identified based on driver behavior (AP and
dAP). Subsequently, the IDP algorithm is employed for offline iterative optimization to
obtain the optimal velocity trajectory under the current driving conditions. Finally, the
optimized results are applied to an online EMS to dynamically solve the optimal control
problem in real-time.

Given the determination of driving style and road information, the variation of vehicle
velocity and the power allocation between the electric motor and the engine constitute a
typical multi-objective optimization problem. The PHET studied in this study is a type
of commercial vehicle, where the focus of optimization lies in prioritizing fuel consump-
tion, battery energy consumption, and travel time. Under the assumption of neglecting
battery life degradation and component wear, both battery energy consumption and engine
fuel consumption can be regarded as economic costs, while travel time and acceleration
can be considered as power performances. The objective of this study is to construct a
multi-objective optimization problem with the optimization targets of economic costs and
power performances.
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In summary, when constructing the optimal control problem, the fuel consumption of
the engine, battery energy consumption, and travel time are all considered as cost functions.
Firstly, to account for power dynamics, a power coefficient (γ) is introduced to dynamically
adjust the weight of power cost. Secondly, due to the significant difference in magnitude
between economic cost and travel time cost, a cost weighting factor (β) is introduced to
adjust this disparity. Finally, a penalty function (ϕ) is introduced to ensure the correct
transition of state variables. The objective function of this multi-objective optimization
optimal control problem can be expressed as:

minJ = ϕ · (Lc + β · γ · t) (33)

By transforming Equation (33) into a discrete form with respect to distance, the optimal
indicator function can be expressed as:

minJ(k) = ϕk ·
[

Lc(k) + β · γ(k) · ∆s(k)
υ(k)

]
(34)

where Lc(k) represents the economic costs of stage k, which can be expressed as:

Lc(k) = 3.6 · ∆s(k)
υ(k)

·
.

V
Eng
f uel(k) · C f uel +

1
1000

· ∆s(k)
υ(k)

· Pbatt(k) · Cele (35)

where υ(k) represents the predicted average velocity of stage k, which can be expressed as:

υ(k) =
1
2
[υ(k + 1) + υ(k)] (36)
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In addition, the consideration of driving and ride comfort, as well as vehicle ac-
celeration and deceleration performance, is required for power cost analysis. Excessive
acceleration can decrease driving and ride comfort and may also increase economic costs.
Similarly, excessive deceleration can negatively impact the driving experience and energy
recovery efficiency. Therefore, it is necessary to impose reasonable constraints on vehicle
acceleration. Taking into account driving safety, comfort, economic costs, and travel time
costs, the acceleration constraints for each stage can be determined as follows:

−2 ≤ a(k) ≤ 2 (37)

The constraint conditions are as follows:

TMin
MG1 ≤ TMG1(k) ≤ TMax

MG1, TMin
MG2 ≤ TMG2(k) ≤ TMax

MG2

nMin
MG1 ≤ nMG1(k) ≤ nMax

MG1, nMin
MG2 ≤ nMG2(k) ≤ nMax

MG2

TMin
Eng ≤ TEng(k) ≤ TMax

Eng , nMin
Eng ≤ nEng(k) ≤ nMax

Eng

PMin
Batt ≤ PBatt(k) ≤ PMax

Batt

−2 ≤ a(k) ≤ 2

(38)

4. Simulation Results and Analysis

To validate the effectiveness of the proposed EVPS-DSIDP, this study conducts a
comparative analysis with three other control strategies. The analysis examines the velocity
variation during initial acceleration on a flat road (with sufficient SOC) under different
control strategies, as well as the associated economic cost and travel time required for
simulation. A lower economic cost and travel time indicate better economy and power
performance. Furthermore, considering that shifting conditions, operating modes, and
maximum vehicle velocities differ across various driving styles, to enhance the robustness
of the simulation results, the simulation conditions are set to include continuous driving
over three planning cycles under different driving styles.

The selected comparative control strategies are as follows: rule-based constant ac-
celeration control strategy (CACS-RB), economy optimization control strategy based on
IDP (EOCS-IDP), and power optimization control strategy based on IDP (POCS-IDP). The
characteristics of these three strategies are as follows:

I. CACS-RB: Under this strategy, the velocity changes uniformly within each planning
cycle, and the primary power source during driving is the motor MG2. Only when
the power of motor MG2 is insufficient will the engine or motor MG1 participate. This
strategy serves as the main control group.

II. EOCS-IDP: Under this strategy, the velocity planning only considers economy, with
the primary goal of minimizing economic cost.

III. POCS-IDP: Under this strategy, the velocity planning considers both economy and
power performance, but with a greater emphasis on power performance.

4.1. Simulation Results
4.1.1. Economical Driving

Figure 14 shows the impact of different control strategies on the velocity during
economical driving, I to III represent three driving stages. In economical driving, only
motor MG2 is involved, and the torque and efficiency of MG2 during its operation are
shown in Figure 15. The economic cost and travel time under different stages are presented
in Table 4.
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Table 4. The Total Cost of Economical Driving.

Strategy

Stages

I II III

Cost (RMB) Time (s) Cost (RMB) Time (s) Cost (RMB) Time (s)

CAC-RB 0.1031 11.47 0.2476 9.58 0.3439 9.27
EO-IDP 0.0884 25.53 0.2369 10.07 0.3364 9.64
PO-IDP 0.102 6.98 0.2497 8.34 0.3440 8.91

EVPS-DSIDP 0.1012 7.59 0.2449 9.09 0.3392 9.47

In Segment I of Figure 14, EOCS-IDP adopts a strategy of accelerating and then
decelerating to reduce economic cost and optimize economy. At this time, TMG2 and ηMG2
are as shown in Segment A of Figure 15. Although EOCS-IDP achieves relatively good
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optimization in terms of economy, it overlooks power optimization due to excessive pursuit
of economy, resulting in a significant increase in travel time compared to CACS-RB, and
ultimately leads to suboptimal results. In Segment II of Figure 14, POCS-IDP also exhibits
the acceleration-deceleration pattern. This is because the initial power in the planning cycle
is too strong, requiring deceleration in the later stage to achieve the target velocity. The
TMG2 during deceleration is shown in Segment B of Figure 15. Similar situations occur
in other driving styles, which are not repeated in the following text. This strategy has
the best power optimization among the various strategies but lacks satisfactory economy
optimization due to an excessive focus on power optimization. In contrast, the proposed
EVPS-DSIDP in this study achieves a more balanced improvement in both power and
economy by identifying the driving style.

4.1.2. Comfortable Driving

Figure 16 shows the impact of different control strategies on the velocity during
comfortable driving, I to III represent three driving stages. In comfortable driving, both
motor MG1 and motor MG2 are involved, and their torque and efficiency during oper-
ation are shown in Figures 17 and 18, respectively. The economic cost and travel time
under different stages are presented in Table 5. In Segment I of Figure 17, EOCS-IDP
also exhibits the acceleration-deceleration pattern, but due to the higher target velocity,
the distance of deceleration coasting is smaller compared to economical driving. From
Figures 17 and 18, it can be observed that, compared to EOCS-IDP and EVPS-DSIDP, the
motors MG1 and MG2 under the POCS-IDP strategy operate in areas with lower efficiency
to pursue stronger power. On the other hand, the motor efficiency is the poorest in CACS-
RB without velocity planning, which further demonstrates the practicality of conducting
economy velocity planning.

World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 21 of 30 
 

EVPS-DSIDP 0.1012 7.59 0.2449 9.09 0.3392 9.47 

In Segment I of Figure 14, EOCS-IDP adopts a strategy of accelerating and then 
decelerating to reduce economic cost and optimize economy. At this time, 2MGT  and 2MGη
are as shown in Segment A of Figure 15. Although EOCS-IDP achieves relatively good 
optimization in terms of economy, it overlooks power optimization due to excessive 
pursuit of economy, resulting in a significant increase in travel time compared to CACS-
RB, and ultimately leads to suboptimal results. In Segment II of Figure 14, POCS-IDP also 
exhibits the acceleration-deceleration pattern. This is because the initial power in the 
planning cycle is too strong, requiring deceleration in the later stage to achieve the target 
velocity. The 2MGT  during deceleration is shown in Segment B of Figure 15. Similar 
situations occur in other driving styles, which are not repeated in the following text. This 
strategy has the best power optimization among the various strategies but lacks 
satisfactory economy optimization due to an excessive focus on power optimization. In 
contrast, the proposed EVPS-DSIDP in this study achieves a more balanced improvement 
in both power and economy by identifying the driving style. 

4.1.2. Comfortable Driving 
Figure 16 shows the impact of different control strategies on the velocity during 

comfortable driving, I to III represent three driving stages. In comfortable driving, both 
motor MG1 and motor MG2 are involved, and their torque and efficiency during 
operation are shown in Figure 17 and Figure 18, respectively. The economic cost and travel 
time under different stages are presented in Table 5. In Segment I of Figure 17, EOCS-IDP 
also exhibits the acceleration-deceleration pattern, but due to the higher target velocity, 
the distance of deceleration coasting is smaller compared to economical driving. From 
Figures 17 and 18, it can be observed that, compared to EOCS-IDP and EVPS-DSIDP, the 
motors MG1 and MG2 under the POCS-IDP strategy operate in areas with lower efficiency 
to pursue stronger power. On the other hand, the motor efficiency is the poorest in CACS-
RB without velocity planning, which further demonstrates the practicality of conducting 
economy velocity planning. 

 
Figure 16. Velocity and accelerator pedal in comfortable driving. Figure 16. Velocity and accelerator pedal in comfortable driving.

4.1.3. Aggressive Driving

Figure 19 shows the impact of different control strategies on the velocity during
aggressive driving, I to III represent three driving stages. In aggressive driving, both motor
MG1, motor MG2, and the engine are involved, and their torque and efficiency/BSFC
during operation are shown in Figures 20–22 respectively. The economic cost and travel
time under different stages are presented in Table 6. The vehicle operates alternately in
DEV and HEV, as illustrated in Figure 9.
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Table 6. The Total Cost of Aggressive Driving.

Strategy

Stages

I II III

Cost (RMB) Time (s) Cost (RMB) Time (s) Cost (RMB) Time (s)

CAC-RB 0.5038 11.02 0.6438 9.35 0.6589 9.14
EO-IDP 0.4655 14.44 0.6248 9.53 0.6295 9.10
PO-IDP 0.4843 8.16 0.6490 8.98 0.6424 8.93

EVPS-DSIDP 0.4823 8.19 0.6399 9.30 0.6360 9.02

The power distribution between the motor and engine, whether in DEV or HEV, needs
to consider overall cost, road information, and vehicle status. Taking the HEV mode in this
simulation as an example, the planning results of EOCS-IDP and EVPS-DSIDP indicate that
during this period, minimizing overall cost requires the engine to be inactive. However, due
to the stronger power demand in POCS-IDP, there are certain moments in the simulation
where the engine needs to participate, as indicated by the BSFC of the engine in Figure 22,
Segment B. Additionally, the BSFC of the engine under CACS-RB is shown in Figure 22,
Segments A and C. It can be observed from the figures that the engine’s BSFC is significantly
lower under POCS-IDP compared to CACS-RB.

4.1.4. Dangerous Driving

Figure 23 shows the impact of different control strategies on the velocity during
dangerous driving, I to III represent three driving stages. In dangerous driving, motor MG1,
motor MG2, and the engine are all involved, and their torque and efficiency/BSFC during
operation are shown in Figures 24–26 respectively. The economic cost and travel time
under different stages are presented in Table 7. Compared to aggressive driving, the vehicle
operates more in hybrid mode during dangerous driving, and the driver has a stronger
intention for acceleration. Due to the higher target speed obtained through prediction in
this driving style, EOCS-IDP no longer exhibits the acceleration followed by deceleration
pattern, as indicated in Figure 23. It can be observed from Figure 23 that the economically
planned velocities by EOCS-IDP and EVPS-DSIDP are similar, indicating that under this
driving style, EOCS-IDP and EVPS-DSIDP yield similar optimal controls.
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Table 7. The Total Cost of Dangerous Driving.

Strategy

Stages

I II III

Cost (RMB) Time (s) Cost (RMB) Time (s) Cost (RMB) Time (s)

CAC-RB 0.5811 10.96 0.9272 9.35 1.0035 9.12
EO-IDP 0.5382 10.63 0.8553 8.99 0.9786 9.27
PO-IDP 0.5544 8.72 0.8647 8.86 0.9901 9.19

EVPS-DSIDP 0.5397 8.90 0.8609 8.99 0.9830 9.26

However, due to the stronger power demand in POCS-IDP, there are instances of
brief engine start-stop during the planning process, as shown in Segments A and B of
Figure 26, which is undesirable in practice. In this driving style, motor MG1 is mainly used
to regulate the engine operating point, thus its torque variation trend is similar to that of
the engine. Additionally, from the BSFC variation curve in Figure 26 (Segments C and D), it
can be observed that reasonable velocity planning enables the engine to operate in a more
efficient region.

4.2. Analysis

Due to slight differences in the starting and ending velocities of different strategies
within a single planning cycle, there may be deviations in the results. In order to provide
a more comprehensive comparison of the power and economy optimization effects of
different control strategies, Figure 27 displays the required economic cost and travel time
after accelerating for three planning cycles under different driving styles, and under the
same conditions.

From the simulation results, it can be concluded that

I. In economical driving, compared to CACS-RB, both EOCS-IDP and EVPS-DSIDP can
reduce economic costs by 4.29% and 1.32%, respectively. However, due to EOCS-IDP’s
excessive pursuit of economic optimization, it leads to an increase in travel time
by 49.18%. On the other hand, POCS-IDP effectively optimizes power, resulting in
a 20.07% reduction in travel time, but with a slight increase in economic costs by
0.16%. In contrast, by identifying the driving styles, EVPS-DSIDP achieves a 13.75%
reduction in travel time while decreasing economic costs.

II. In comfortable driving, comparing CACS-RB to EOCS-IDP, POCS-IDP, and EVPS-
DSIDP, they can all reduce economic costs by 3.48%, 1.07%, and 2.40%, respectively.
Although EOCS-IDP achieves the best optimization in terms of economy, it results in a
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16.57% increase in travel time. In this driving style, both POCS-IDP and EVPS-DSIDP
can reduce travel time while lowering economic costs, with travel time reductions of
12.71% and 10.25%, respectively.

III. In aggressive driving, the optimization in terms of economy is slightly higher com-
pared to comfortable driving. Comparing CACS-RB to EOCS-IDP, POCS-IDP, and
EVPS-DSIDP, they can all reduce economic costs by 4.80%, 1.71%, and 2.68%, respec-
tively. However, EOCS-IDP increases travel time by 12.08% while POCS-IDP and
EVPS-DSIDP decrease travel time by 11.68% and 10.68%, respectively.

IV. In dangerous driving, comparing CACS-RB to EOCS-IDP, POCS-IDP, and EVPS-
DSIDP, they can all reduce economic costs while decreasing travel time. The reduction
in economic costs is 5.36%, 4.36%, and 5.10%, respectively, while the reduction in
travel time is 1.82%, 8.97%, and 7.73%, respectively.
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From the simulation results, it can be concluded that

I. In economical driving, compared to CACS-RB, both EOCS-IDP and EVPS-DSIDP can
reduce economic costs by 4.29% and 1.32%, respectively. However, due to EOCS-IDP’s
excessive pursuit of economic optimization, it leads to an increase in travel time
by 49.18%. On the other hand, POCS-IDP effectively optimizes power, resulting in
a 20.07% reduction in travel time, but with a slight increase in economic costs by
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0.16%. In contrast, by identifying the driving styles, EVPS-DSIDP achieves a 13.75%
reduction in travel time while decreasing economic costs.

II. In comfortable driving, comparing CACS-RB to EOCS-IDP, POCS-IDP, and EVPS-
DSIDP, they can all reduce economic costs by 3.48%, 1.07%, and 2.40%, respectively.
Although EOCS-IDP achieves the best optimization in terms of economy, it results in a
16.57% increase in travel time. In this driving style, both POCS-IDP and EVPS-DSIDP
can reduce travel time while lowering economic costs, with travel time reductions of
12.71% and 10.25%, respectively.

III. In aggressive driving, the optimization in terms of economy is slightly higher com-
pared to comfortable driving. Comparing CACS-RB to EOCS-IDP, POCS-IDP, and
EVPS-DSIDP, they can all reduce economic costs by 4.80%, 1.71%, and 2.68%, respec-
tively. However, EOCS-IDP increases travel time by 12.08% while POCS-IDP and
EVPS-DSIDP decrease travel time by 11.68% and 10.68%, respectively.

IV. In dangerous driving, comparing CACS-RB to EOCS-IDP, POCS-IDP, and EVPS-
DSIDP, they can all reduce economic costs while decreasing travel time. The reduction
in economic costs is 5.36%, 4.36%, and 5.10%, respectively, while the reduction in
travel time is 1.82%, 8.97%, and 7.73%, respectively.

During the simulation process, the selection of the power coefficient (γ) is a key factor
in obtaining different simulation results. For EOCS-IDP and POCS-IDP, γ is set to 0 and
1, respectively, representing the absence of power optimization and a strong emphasis
on power optimization. In the case of EVPS-DSIDP, the γ is determined through the
identification of driving styles, as shown in Figure 28.
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From Figure 28, it can be observed that the value of γ under EVPS-DSIDP varies
across different planning cycles for different driving styles. Since in this study, AP is
varied starting from 0 in each simulation, the initial dAP is significant (65% and 85%) for
aggressive and dangerous driving, respectively. This results in a larger power coefficient in
the first stage compared to the subsequent stages, thereby demonstrating the effectiveness
of fuzzy control.

5. Conclusions

To enhance the fuel economy and performance of PHET, this study proposes an
economic velocity planning strategy based on driving style and IDP algorithm: EVPS-
DSIDP. The feasibility and effectiveness of the proposed strategy are validated through
simulation tests under different driving styles. The main tasks include:

First, in this study, the correlation between gear shifting and operating mode selection
with accelerator pedal and vehicle velocity is established. While ensuring good fuel



World Electr. Veh. J. 2023, 14, 194 29 of 30

economy and performance during vehicle operation, the computational efficiency of the
DP algorithm is improved by reducing the decision variables. Secondly, the computational
efficiency and accuracy of the DP algorithm are enhanced by dynamically adjusting the
discretization step and constraining the state space. Simultaneously, a penalty function
was introduced in the calculations to enhance the robustness of state transitions. Finally,
a fuzzy controller is utilized to process the accelerator pedal information and obtain the
power coefficient, which dynamically addresses the performance optimization objective of
the vehicle under different driving styles. In different driving styles, compared to CACS-
RB, EVPS-DSIDP exhibited an average reduction of 2.88% and 10.6% in economic costs
and travel time, respectively. Compared to EOCS-IDP, EVPS-DSIDP exhibited an average
reduction of nearly 22.75% in travel time. Compared to POCS-IDP, EVPS-DSIDP exhibited
an average reduction of nearly 1.19% in economic costs.

In the future, the proposed strategy will be validated in actual vehicles, and the impact
of SOC and complex road conditions on the economic velocity planning strategy will
be investigated.

Author Contributions: Conceptualization, Y.L. and R.Y.; methodology, Y.L.; software, Y.L.; validation,
Y.L. and Z.W.; formal analysis, Y.L. and R.Y; investigation, M.X. and W.H.; resources, Y.L., R.Y. and
W.H.; data curation, Y.L. and Z.W.; writing—original draft preparation, Y.L.; writing—review and
editing, Y.L.; visualization, Y.L.; supervision, R.Y.; project administration, W.H.; funding acquisition,
W.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Major Project of Guangxi, China,
grant number AA22068062 and AA22068061.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, F.; Crawford, C.; Feng, Y.; Lin, Z.; Li, S. Environment-economic analysis of diesel, hybrid electric, plug-in hybrid electric

trucks in China. Transp. Res. Part D Transp. Environ. 2023, 117, 103661. [CrossRef]
2. Xue, Q.; Zhang, X.; Teng, T.; Zhang, J.; Feng, Z.; Lv, Q. A Comprehensive Review on Classification, Energy Management Strategy,

and Control Algorithm for Hybrid Electric Vehicles. Energies 2020, 13, 5355. [CrossRef]
3. Zhu, Y.; Li, X.; Liu, Q.; Li, S.; Xu, Y. Review article: A comprehensive review of energy management strategies for hybrid electric

vehicles. Mech. Sci. 2022, 13, 147–188. [CrossRef]
4. Khayyam, H.; Bab-Hadiashar, A. Adaptive intelligent energy management system of plug-in hybrid electric vehicle. Energy 2014,

69, 319–335. [CrossRef]
5. Bingzhan, Z.; Mi, C.C.; Mengyang, Z. Charge-Depleting Control Strategies and Fuel Optimization of Blended-Mode Plug-In

Hybrid Electric Vehicles. IEEE Trans. Veh. Technol. 2011, 60, 1516–1525. [CrossRef]
6. Li, X.; Evangelou, S.A. Torque-Leveling Threshold-Changing Rule-Based Control for Parallel Hybrid Electric Vehicles. IEEE Trans.

Veh. Technol. 2019, 68, 6509–6523. [CrossRef]
7. Farhadi Gharibeh, H.; Farrokhifar, M. Online Multi-Level Energy Management Strategy Based on Rule-Based and Optimization-

Based Approaches for Fuel Cell Hybrid Electric Vehicles. Appl. Sci. 2021, 11, 3849. [CrossRef]
8. Lee, J.; Lee, H. A New HEV Power Distribution Algorithm Using Nonlinear Programming. Appl. Sci. 2022, 12, 12724. [CrossRef]
9. Chen, Z.; Liu, Y.; Zhang, Y.; Lei, Z.; Chen, Z.; Li, G. A neural network-based ECMS for optimized energy management of plug-in

hybrid electric vehicles. Energy 2022, 243, 122727. [CrossRef]
10. Rezaei, A.; Burl, J.B.; Zhou, B.; Rezaei, M. A New Real-Time Optimal Energy Management Strategy for Parallel Hybrid Electric

Vehicles. IEEE Trans. Control Syst. Technol. 2019, 27, 830–837. [CrossRef]
11. Zhang, N.; Ma, X.; Jin, L. Energy management for parallel HEV based on PMP algorithm. In Proceedings of the 2017 2nd

International Conference on Robotics and Automation Engineering (ICRAE), Shanghai, China, 29–31 December 2017; pp. 177–182.
[CrossRef]

12. Schmid, R.; Buerger, J.; Bajcinca, N. Energy Management Strategy for Plug-in-Hybrid Electric Vehicles Based on Predictive PMP.
IEEE Trans. Control Syst. Technol. 2021, 29, 2548–2560. [CrossRef]

13. Sun, X.; Zhou, Y.; Huang, L.; Lian, J. A real-time PMP energy management strategy for fuel cell hybrid buses based on driving
segment feature recognition. Int. J. Hydrogen Energy 2021, 46, 39983–40000. [CrossRef]

14. Rabinowitz, A.; Araghi, F.M.; Gaikwad, T.; Asher, Z.D.; Bradley, T.H. Development and Evaluation of Velocity Predictive Optimal
Energy Management Strategies in Intelligent and Connected Hybrid Electric Vehicles. Energy 2021, 14, 5713. [CrossRef]

https://doi.org/10.1016/j.trd.2023.103661
https://doi.org/10.3390/en13205355
https://doi.org/10.5194/ms-13-147-2022
https://doi.org/10.1016/j.energy.2014.03.020
https://doi.org/10.1109/TVT.2011.2122313
https://doi.org/10.1109/TVT.2019.2916720
https://doi.org/10.3390/app11093849
https://doi.org/10.3390/app122412724
https://doi.org/10.1016/j.energy.2021.122727
https://doi.org/10.1109/TCST.2017.2775184
https://doi.org/10.1109/ICRAE.2017.8291376
https://doi.org/10.1109/TCST.2020.3048129
https://doi.org/10.1016/j.ijhydene.2021.09.204
https://doi.org/10.3390/en14185713


World Electr. Veh. J. 2023, 14, 194 30 of 30

15. Li, X.; Wang, W.; Yuan, Y.; Li, H.; Guo, L.; Qiu, S. An online optimal energy management strategy for a dual-mode power-split
hybrid electric vehicle based on hybrid MPC Algorithm. J. Phys. Conf. Ser. 2021, 1754, 12135. [CrossRef]

16. He, H.; Wang, Y.; Han, R.; Han, M.; Bai, Y.; Liu, Q. An improved MPC-based energy management strategy for hybrid vehicles
using V2V and V2I communications. Energy 2021, 225, 120273. [CrossRef]

17. Hong, J.; Wang, Z.; Chen, W.; Wang, L.; Lin, P.; Qu, C. Online accurate state of health estimation for battery systems on real-world
electric vehicles with variable driving conditions considered. J. Clean. Prod. 2021, 294, 125814. [CrossRef]

18. Xie, S.; Hu, X.; Liu, T.; Qi, S.; Lang, K.; Li, H. Predictive vehicle-following power management for plug-in hybrid electric vehicles.
Energy 2019, 166, 701–714. [CrossRef]

19. de Souza, E.A.G.; Nagano, M.S.; Rolim, G.A. Dynamic Programming algorithms and their applications in machine scheduling:
A review. Expert Syst. Appl. 2022, 190, 116180. [CrossRef]

20. Bellman, R.; Lee, E. History and development of dynamic programming. IEEE Control Syst. Mag. 1984, 4, 24–28. [CrossRef]
21. Li, D.; Wang, Q.; Wang, J.; Yao, Y.R. Mitigation of Curse of Dimensionality in Dynamic Programming. IFAC Proc. Vol. 2008, 41,

7778–7783. [CrossRef]
22. Harselaar, W.M.W.; Schreuders, N.; Hofman, T.; Rinderknecht, S. Improved implementation of dynamic programming on the

example of hybrid electric vehicle control. IFAC-PapersOnLine 2019, 52, 147–152. [CrossRef]
23. Ye, Z.; Li, K.; Stapelbroek, M.; Savelsberg, R.; Gunther, M.; Pischinger, S. Variable Step-Size Discrete Dynamic Programming for

Vehicle Speed Trajectory Optimization. IEEE Trans. Intell. Transp. Syst. 2019, 20, 476–484. [CrossRef]
24. Dong, H.; Yin, G.; Zhuang, W.; Chen, H.; Zhou, Y.; Wang, Y. Economic Cruising Velocity Optimization Using Iterative Dynamic

Programming of Connected Electric Vehicle. Ji Xie Gong Cheng Xue Bao 2021, 57, 121. [CrossRef]
25. Bazzi, A.; Berthet, A.O.; Campolo, C.; Masini, B.M.; Molinaro, A.; Zanella, A. On the Design of Sidelink for Cellular V2X:

A Literature Review and Outlook for Future. Access 2021, 9, 97953–97980. [CrossRef]
26. Saboohi, Y.; Farzaneh, H. Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption.

Appl. Energy 2009, 86, 1925–1932. [CrossRef]
27. Shen, P.; Zhao, Z.; Guo, Q.; Zhou, P. Development of Economic Velocity Planning Algorithm for Plug-in Hybrid Electric Vehicle.

IEEE Trans. Intell. Transp. Syst. 2022, 23, 5501–5513. [CrossRef]
28. Yang, H.; Almutairi, F.; Rakha, H. Eco-Driving at Signalized Intersections: A Multiple Signal Optimization Approach. IEEE Trans.

Intell. Transp. Syst. 2021, 22, 2943–2955. [CrossRef]
29. Xu, Y.; Li, H.; Liu, H.; Rodgers, M.O.; Guensler, R.L. Eco-driving for transit: An effective strategy to conserve fuel and emissions.

Appl. Energy 2017, 194, 784–797. [CrossRef]
30. Xiao, M.; Zhao, Z. Economic Velocity Planning and Gear Decision of Plug-In Hybrid Electric Car Passing through the Bend. SAE

Technical Paper; SAE International: Warrendale, PA, USA, 2022. [CrossRef]
31. Lin, X.; Wu, J.; Wei, Y. An ensemble learning velocity prediction-based energy management strategy for a plug-in hybrid electric

vehicle considering driving pattern adaptive reference SOC. Energy 2021, 234, 121308. [CrossRef]
32. Chen, Z.; Wu, S.; Shen, S.; Liu, Y.; Guo, F.; Zhang, Y. Co-optimization of velocity planning and energy management for autonomous

plug-in hybrid electric vehicles in urban driving scenarios. Energy 2023, 263, 126060. [CrossRef]
33. Ju, F.; Zhuang, W.-C.; Wang, L.-M.; Liu, J.-X.; Wang, Q. Velocity planning strategy for economic cruise of hybrid electric vehicles.

Zhejiang Da Xue Xue Bao. Gong Xue Ban 2021, 55, 1538.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1088/1742-6596/1754/1/012135
https://doi.org/10.1016/j.energy.2021.120273
https://doi.org/10.1016/j.jclepro.2021.125814
https://doi.org/10.1016/j.energy.2018.10.129
https://doi.org/10.1016/j.eswa.2021.116180
https://doi.org/10.1109/MCS.1984.1104824
https://doi.org/10.3182/20080706-5-KR-1001.01315
https://doi.org/10.1016/j.ifacol.2019.09.024
https://doi.org/10.1109/TITS.2018.2812921
https://doi.org/10.3901/JME.2021.06.121
https://doi.org/10.1109/ACCESS.2021.3094161
https://doi.org/10.1016/j.apenergy.2008.12.017
https://doi.org/10.1109/TITS.2021.3054732
https://doi.org/10.1109/TITS.2020.2978184
https://doi.org/10.1016/j.apenergy.2016.09.101
https://doi.org/10.4271/2022-01-7011
https://doi.org/10.1016/j.energy.2021.121308
https://doi.org/10.1016/j.energy.2022.126060

	Introduction 
	Modeling of Hybrid Power System Based on Dual Planetary Gear 
	Overall Structure 
	Model for the Key Components 
	Engine Model 
	Electric Motor Model 
	Planetary Gear Model 

	Model for the Longitudinal Dynamics of Vehicle 

	Economic Velocity Planning Strategy 
	Driving Style Recognition Based on Fuzzy Controller 
	Improved Dynamic Programming Algorithm 
	Dynamic Programming 
	Optimization of Decision Variables 
	Optimization of Step Size 
	Optimization of State Space 

	Economy Velocity Planning Strategy Based on Driving Style and IDP 

	Simulation Results and Analysis 
	Simulation Results 
	Economical Driving 
	Comfortable Driving 
	Aggressive Driving 
	Dangerous Driving 

	Analysis 

	Conclusions 
	References

