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Abstract: In-wheel motors for new energy vehicles are close to the brake, which results in a high
ambient temperature. Thus, there is a high demand for cooling systems. This paper designs an oil-
spray-cooled system based on the flat structural characteristics of an in-wheel motor. A computational
fluid dynamics method with a two-phase volume-of-fluid model is applied to simulate the transient
process of oil spraying from nozzles onto the stator carrier and then dripping to the end windings.
The spatially distributed fluid interfaces with location and shape fidelity are derived. Considering the
big difference of thermal inertia between the motor solid and oil fluid, the mixed timescale method is
applied to calculate the temperature fields of the fluid and solid. Finally, a prototype is fabricated
and tested to verify the proposed oil-cooling system and simulation method.

Keywords: in-wheel motor; computational fluid dynamic; oil spray cooled; mixed timescale

1. Introduction

With the increasing concerns about the fossil energy crisis, environmental pollution,
and global warming, there is an urgent demand for the development of green energy. As
an essential branch of global green energy development, electric vehicles (EVs) are being
widely researched. The motivation to purchase EVs has been transferred from a policy-led
to a market-led approach in many countries [1–3]. As the key part of the powertrain of EVs,
electrical machines (EMs) play a crucial role in an EV’s driving performance. At present,
most electric-drive machines are integrated with gearings and differentials into the electric
axles (EAs), which are laid out between the front wheels or rear wheels and are known as
the central drive unit [4]. The vehicle space between wheels can be used to design EMs
with relatively long axial lengths. Due to the retention of the differentials, it is easy to drive
the vehicle.

As an alternative solution to making EVs drive, in-wheel motors (IWMs) are laid
out inside the wheel hub and can be called distributed drive units. The most important
feature is that the IWMs, gearing, and brakes are all integrated into the wheel hub. There
is no need for a clutch, differential, or half shaft. Therefore, IWMs allow for a high degree
of design flexibility in these vehicles and save more room for passengers and batteries.
Moreover, independently controlled wheels make some advanced driving strategies
possible [5–7]. Compared with a central drive unit, IWMs face some challenges. The
operating environment is harsh because the heat from the brakes leads to high ambient
temperature, and the compact structure makes heat dissipation difficult. To keep IWMs
from overheating under normal operating conditions, it is great of importance to design
an effective cooling system.

The current cooling systems for electric vehicles are very diverse and complex. In [8],
these systems are grouped into 15 types according to the different cooling measures for
the stator and rotor. In general, they can be classified into water cooling and oil cooling
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based on the coolant properties or classified into direct cooling and indirect cooling based
on the way the coolant acts on the end windings. For the end windings, the main heat
dissipation path is from the slot winding to the stator core, water jacket, and the coolant.
However, on this path, there is thermal resistance contributed by slot insulation and the
air between the slot windings and stator core, as well as the contact thermal resistance
between the stator core and cooling jacket. The actual temperature gradient is large, and
the temperature of the end windings is generally much higher than the coolant. To improve
the heat dissipation of the end windings and reduce the temperature gradient, direct oil
cooling is proposed for automotive traction EMs [9,10]. This direct cooling methodology
is usually divided into two types, oil-submerge-cooled and oil-spray-cooled, as shown in
Figure 1a,b. The oil-submerge cooled system cools the EM through the paths in the stator
core and end windings. A stator sleeve is usually necessary to keep the oil flow from the
rotor. An oil-spray-cooled system is a more common method for stator cooling because
it has smaller flow resistance and more flexible oil spray paths. Unlike the EMs applied
in the central drive units with a wide variety of cooling methods, IWMs mainly focus on
air cooling [11] and water or oil channel design in the cooling jacket [12–14]. However,
compared with the EMs in EAs, IWMs have a flatter structure as well as smaller surface
area, which is theoretically proportional to the heat dissipation capacity when using a
cooling jacket.
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Figure 1. Main cooling system for electric-drive motor: (a) oil-submerge-cooled for EA motor;
(b) oil-spray-cooled for EA motor; (c) oil-spray-cooled for IWM.

The objective of this paper is to design an oil-spray-cooled system for IWMs through
only four pipes and use an effective method to analyze the temperature field. Figure 1c
shows a diagram of the cooling system. The oil flows through four pipes and sprays
from the nozzles to the stator carrier and drips freely to the end windings and rotor ends.
The short axial length makes it more likely that no additional rotor cooling system is
required. Directly calculating the temperature field of the oil-spray-cooled system is a one-
way procedure just considering the material parameters, structure geometries, boundary
conditions, and heat sources. In fact, the temperature variations will cause changes in the
fluid in the convective heat-transferring coefficient (HTC). And, for the cooling systems
with oil spraying and dripping, the heat transfer effect depends on the location and shape
of the oil fluid interface inside the motor. Therefore, the fluid field needs to be calculated in
advance to obtain an accurate fluid distribution. In this paper, the interaction and interfacial
behavior between oil and air are analyzed by means of a volume-of-fluid (VOF) model [15].
Considering that the thermal inertial of oil fluid is much smaller than motor solid, the
mixed timescale method is applied to derive the converged temperature field [16]. Finally,
a prototype of the proposed IWM is fabricated for testing and verification.

2. Oil Cooling Design

Due to the compact structure limitation, the IWM is designed with a combination
of 24-pole and 36-slot, which leads to a 1-slot coil pitch and a so-called concentrated
winding configuration. The outer diameter of stator and rotor and the axial length are
270 mm, 214 mm, and 45 mm, respectively. The stator and rotor core are stacked with
steel laminations with a 0.3 mm thickness. The rotor consists of 48 rare-earth magnets, all
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of which have the NdFeB-48UH grade. Each pair of magnets is laid out in a V-shape to
provide more flux and reluctance torque than the layout with surface-mounted magnets.
The designed maximum continuous torque is 130 Nm, which can be outputted up to
1000 rpm. The corresponding rated power is 54.5 kW as the sum of four wheels. Based on
the volume of active parts of the stator and rotor, the rated torque density is 50.5 kNm/m3.

The short axial distance between end windings makes it possible to place several oil
pipes with some nozzles to cross over the stator carrier. Then, the oil can spray from the
nozzles to the stator carrier. For the end windings, the oil will drip down to them if the oil
flow rate is sufficient. By referring to the standard in [17], the churning loss due to the oil
dripping to the rotor ends is analytically proportional to the 3rd power of the rotor speed
and 4.7th power of the rotor diameter. The axial length influence can be neglected because
the oil only drips to the ends. The maximum speed of the IWM is 3600 rpm, much lower
than that of the EA’s motor, which usually reaches 15,000 rpm. The churning loss is only
about 6% of an EA’s motor, with a rotor diameter 156 mm.

Figure 2a is a CAD design drawing of the proposed IWM with four oil pipes. These
pipes are distributed evenly with a certain curvature to keep both cylindrical surfaces of
the IWM dripped when the tires are titled slightly. Figure 2b shows all four oil pipes with
five drilled nozzles in each pipe. It is noted that the oil flow rate is not constant from the
nozzles if the nozzle diameter is the same. To make the total flow rate of pipe 1 and pipe 2
basically equal to pipe 3 and pipe 4, a virtual design of experiments (DOEs) method is used
to optimize the nozzle diameters in each pipe. Table 1 lists the optimized result. As seen
from the row of oil flow rate, the sum of pipe 1 and pipe 2 is 2.999 L/min, and the sum of
pipe 3 and pipe 4 is 3.001 L/min.
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Figure 2. CAD design drawing with oil pipes: (a) overview; (b) oil pipes with nozzles.

Table 1. Diameter of the nozzles and oil flow rate of the four pipes.

Oil Pipe Pipe 1 Pipe 2 Pipe 3 Pipe 4

Nozzle diameter (mm) 1.5 1.5 1.56 1.6

Oil flow rate (L/min) 1.516 1.483 1.494 1.507

Figure 3 shows a cross-section of this IWM, where the busbar is held in place by
a busbar carrier. For cooling systems using a cooling jacket, the busbar often becomes
overheated and then fails due to it being a greater distance from the coolant than the
end windings. In this oil-spray-cooled system, the thermal behavior of the busbar is
greatly improved. The oil-spray-cooled concept for IWMs described in this paper even
allows the busbar to be partially dripped when the oil flows along the stator carrier to the
end windings.
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Table 2 shows the materials, thermal conductivity, specific heat capacity, and density
of each part. The winding wraps contain the round wires, air, and varnish, so that the
density is an equivalent value obtained by considering wire diameter, coating thickness,
and gaps among round wires. For those parts with three thermal conductivities, it means
the material is anisotropic along the circumferential, radial, and axial directions, in order.
The stator and rotor cores consist of many steel laminations. Therefore, they are isotropic in
the axial cross-sectional plane but have lower thermal conductivity along the axial direction
due to the insulating coating and the air present between the laminations. The copper
windings consist of many round wires. They are laid out from the slot’s opening along the
outward radial direction to the slot’s bottom. This makes the wires denser and provides a
slightly better heat transfer capability along the radial direction than the circumferential
direction. Empirical values of 2 W/m·k and 5.5 W/m·k are employed.

Table 2. Thermal parameters of the stator and rotor materials.

Part Description Thermal Conductivity
(W/m·k)

Specific Heat Capacity
(J/kg·K)

Equivalent Density
(kg/m3)

Stator carrier 43 465 7850
Stator core 21/21/4.43 460 7650

Rotor core 21/21/4.43 460 7650
Rotor magnet 7.5 460 7500

Slot copper wire 2/5.5/314 460 7296
Slot insulation 0.25 1180 1990

Slot varnish 0.2 1700 1400

Busbar copper 390 385 8920
Busbar carrier 0.25 1180 1990

3. Analysis Method
3.1. Governing Equations

The N-S equations describing the heat conduction between the various solid parts of
the motor and the convective heat exchange between the fluid and the solid mainly consist
of the continuity equation, the momentum equation, and the energy equation, whose
differential forms in the 3D Cartesian coordinate system are as follows:

∂ρ

∂t
+ div(ρV) = 0 (1)

∂(ρu)
∂t + div(ρuV) = div(µgradu)− ∂P

∂x + Su
∂(ρv)

∂t + div(ρvV) = div(µgradv)− ∂P
∂y + Sv

∂(ρw)
∂t + div(ρwV) = div(µgradw)− ∂P

∂y + Sw

(2)
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∂(ρT)
∂t

+ div(ρVT) = div
(

λ

c
gradT

)
+ ST (3)

In (1)–(3), t represents time; ρ is the density of the fluid; V is the velocity vector; u,
v, and w are the velocity components in the x, y, and z directions, respectively; µ is the
dynamic viscosity of the fluid; P is the pressure; cp is the specific heat capacity; and S is the
generalized source term.

The heat transfer between solids, such as windings and insulation, only requires the
solution to Equation (3), whereas the complete flow information of the oil is obtained
by solving all three equations in conjunction with the effect of the flow state on the heat
dissipation of the motor, which is generally turbulent.

In this paper, the two-equation k-ε eddy viscosity model [18] is used to determine the
turbulent viscosity µt to solve the fluid flow field, with which the corresponding transport
equation in tensor form is:

∂(ρk)
∂t

+
∂(ρkui)

∂xi
=

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Gk + Gb − ρε − YM−Sk (4)

∂(ρε)

∂t
+

∂(ρεui)

∂xi
=

∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ C1ε

ε

k
(Gk + C3εGb)− C2ερ

ε2

k
+Sε (5)

where i and j take values in the range (1,2,3); Gk is the generation term of turbulent energy
k due to the mean velocity gradient; Gb is the generation term of turbulent energy k
due to buoyancy; YM represents the contribution of pulsation expansion in compressible
turbulence; C1ε, C2ε, and C3ε are empirical constants; σk and σε are the Prandtl numbers
corresponding to turbulent energy k and dissipation rate ε, respectively; and Sk and Sε are
the source terms.

3.2. Two-Phase Model

VOF models are widely used in solving two-phase problems, which is a method of
tracking the location and motion of a free surface between two or more immiscible fluids in
a fixed Eulerian reference system using the mass conservation equation:

∂
(
αqρq

)
∂t

+ div
(
αqρqVq

)
= Sq +

n

∑
p=1

( .
mpq −

.
mqp

)
(6)

where αq is the volume fraction of q phase; Sq is the mass source for q phase; mqp is the mass
transferred from phase q to phase p; and mpq is the mass transferred from phase p to phase
q. As for this oil-cooled e-motor, the q and p phases are defined as oil and air, respectively,
and the mass-transferred term is ignored. The implicit method is used to solve the upper
equations with a high-accuracy interface-tracking scheme, which is compressive in Fluent.
Based on the variable αq, the free surface of the volume fraction of fluid at different times is
constructed and tracked. If αq = 1, the computation cell is fully occupied by the q phase. If
αq = 0, the cell is occupied by the p phase. If 0 < αq < 1, the cell consists of two phases, and
there is an interface. For each cell, the sum of the volume fraction is equal to one unit.

3.3. Fluid–Solid Thermal Coupling

The thermal inertia of the solid parts of the motor is much greater than that of the oil
coolant. The solid temperature field takes more than 20 min to reach a thermal equilibrium
state, whereas the oil temperature field reaches a thermal equilibrium state in only dozens of
seconds. Based on this big deviation in timescales, the mixed timescale method is employed
to solve for the temperature field, rather than solving the fluid and solid temperature fields
together [19]. Specifically, this method uses different solvers for the fluid and solid domain
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calculation, then couples them by exchanging the information of all the conjugate surfaces.
Figure 4 shows the flowchart of the simulations.
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The detailed procedures for processing the simulations of fluid and thermal problems
in the EMs are described as follows.

(1) Separate the solid parts of the motor from the fluid domain and identify the interfaces
between the fluid and the solid.

(2) Assume a suitable initial temperature, e.g., 80 ◦C, on all surfaces of the fluid in contact
with the solid parts.

(3) Use the unsteady solver to simulate the two-phase fluid domain consisting of air and
oil as a VOF model in a time step 0.001 s and monitor the velocity, pressure, and
temperatures at multiple locations. The flow field is considered to converge when
the inlet and outlet flows in the oil circuit system reach equilibrium and when the
physical quantities at multiple spatial locations remain essentially constant.

(4) Extract the temperatures, 3D coordinates, and convective HTC at the center of the
first boundary layer mesh of the fluid, which can be seen from Figure 5b, and then
map them in the form of a field to all solid surfaces intersecting the fluid.

(5) Perform the steady-state solution for the solid heat transfer simulation until con-
vergence, then map the results for the temperature fields on all the solid surfaces
in contact with fluid back to the ∆T in the solid that is less than 0.5 ◦C. Then, the
temperature field of the fluid and solid is obtained for the given operating point.
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3.4. Meshing for Fluid and Solid

The 3D geometry of the IWM is modeled using the America CAD design software
Creo 7.0. After importing the model into the general computational fluid dynamics (CFD)
software, Ansys Fluent, the fluid domain is discretized using the Fluent-meshing tool. The
total number of polyhedral meshes is about 30 million. Figure 5a shows an overview of the
fluid mesh. Finer cells with a surface size of 0.1 mm are applied in regions of obviously
expected oil flow and coarser mesh in other regions. To capture the oil film on the surfaces
of the stator carrier and copper wires, the surface cell sizes are further refined. To improve
the accuracy of the turbulence and heat transfer solution, a 10-layer prismatic mesh was
profiled along the boundaries, as shown in Figure 5b.

The mesh of the solid’s domain consists of polyhedral and hexahedral elements and in-
cludes the regions shown in Figure 3. The solids are connected to each other by 32 interfaces,
in which 8 face groups are created in contact with fluid domains for temperature field
and convective heat transfer mapping. The distributed winding in the slot is not created
separately but by a bulk region to equate the copper wire and the insulating varnish, as
shown in Figure 6a. To improve the simulation accuracy, the surface of the equivalent
winding is arranged with three prismatic thermal boundary layers, as shown in Figure 6b.
To improve the accuracy of the heat transfer calculation of the air gap, the mesh in the
radial direction of the air gap is divided into 10 layers.
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3.5. Losses and Boundaries

Compared with EMs applied in the central units, the copper loss makes more con-
tributions than the iron loss in most operating conditions due to the relatively low speed.
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Cooling systems only using a cooling jacket make the heat dissipation of the end windings
and rotor difficult. For the proposed cooling system, the heat dissipation is much improved
because both end windings and rotor ends can be directly cooled by the dropped oil. Due
to the shorter axial length than EAs’ motor, the overheat risk in the axial middle position
is also reduced. All losses, including the windage loss and bearing loss, are mapped to
the corresponding motor parts. The values of these losses are shown in Table 3. They are
related to the rated point of 130 Nm at 1000 rpm.

Table 3. Losses of the proposed IWM.

Part Loss (W) Part Loss (W)

Stator teeth 88 Rotor core 21

Stator yoke 59 Windage and friction 15

Cooper wire 926 Magnet 3.6

The temperature boundary inside the IWM rotor is set to 110 ◦C by considering the
heat impact from the brake, and the ambient temperature is 80 ◦C. The inlet oil temperature
is 80 ◦C, and the flow rate is 6 L/min, with a viscosity, density, and specific heat capacity of
4.43 × 10−3 kg/(m·s), 852 kg/m3, and 2360 J/(kg·K), respectively.

4. Analysis Results

Initially, the fluid domain is full of air, and the oil is input through inlet boundary at
6 L/min. A pressure condition is applied at the outlet boundary, and the gravity direction
is specified as the downward vertical direction. The simulation time step is 0.001 s. Even
with the calculation method shown in Figure 4, it took a workstation with 44 cores about
240 h to calculate 5 s of the simulation. However, it would take much more time if solving
the fluid and solid together, which have about 50 million mesh elements in total.

The oil-wetted area fraction, which is defined as the ratio of the area of the wetted
surface to the total interface surface, quantitatively indicates this transient variation.
Meanwhile the heat dissipation capability of all motor parts can be reflected by these
fraction values. Figure 7 shows the calculated curves of the most critical parts, namely
the winding and stator carrier. The quasi-steady state is reached in about 3.5 s. In
addition, the variation in the inlet pressure is also shown in Figure 7. It shows that the
pressure maintains a nearly constant value 16.7 kPa, starting at about 0.8 s. Figure 8
displays four typical moments from the initial state to the steady state of oil flow and
accumulation. As shown in Figure 8a, the oil starts spraying from nozzles at about 0.14 s.
Then, at 0.86 s, as interpreted in Figure 7, the inlet oil pressure reaches an equilibrium
state, which means the pipes are nearly full of oil and all the nozzles start spraying. This
moment is shown in Figure 8b, in which the oil area fraction of the winding surfaces
is just over 0.1. It can also be found that two streams of oil mainly spraying from
pipe 2 and pipe 3 start colliding and splashing. Figure 8c illustrates the moment that oil
began to visibly accumulate at the bottom. The oil area fraction of the winding surfaces
reached over 0.3. The height of the oil level will not stop rising until the oil reaches a
balance between the inlet and outlet. This state is shown in Figure 8d, when the oil area
fractions of winding surfaces and stator carrier surfaces are about 0.41 and 0.54. It can be
noticed that the final height of the oil level must not exceed the airgap height; otherwise,
additional unneglected churning loss shall be incurred [20].
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Figure 8. Typical moments during the change in phase oil volume fraction: (a) start of partial
spraying; (b) start of full spraying; (c) start of accumulation; (d) start of equilibrium.

Figures 9–11 show the steady-state temperature distribution of IWM’s solid parts.
Figure 9 shows the temperature distribution of the stator carrier. A few areas of the surface
in dark blue indicate they are first to be sprayed by oil and exhibit a low temperature. The
temperature distribution of the stator and rotor is shown in Figures 10 and 11. The hot spots
are found in the lower-left area of the stator windings and reach about 130 ◦C, especially in
the axial middle position, which is near position T2. This phenomenon is already reflected
in Figure 9. The main reason is that this area is the furthest away from the oil spray inlet
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but close to the outlet. Furthermore, the oil cannot directly spray this area and can only
rely on gravity to shower along the carrier surfaces. The rotor rotates in a counterclockwise
direction, but the temperature difference in the stator windings depends on the distance to
the oil inlet or outlet. For the rotor, in addition to the temperature boundary, the maximum
temperature is also found in the axial center.
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5. Testing and Validation

To verify the accuracy of the proposed analysis method for the designed IWM, a
prototype was built and tested. Figure 12 shows a front view of the setup. Three orange
cables provide three-phase power from the inverter, and two blue tubes provide the oil
channel from the inlet and to the outlet. Four thermal couples (TCs) are inset into the end
windings, according to the positions shown in Figure 10b. Before running the specified
operation point, 130 Nm at 1000 rpm, the oil at a temperature of 80 ◦C keeps flowing to
ensure that the IWM starts at about 80 ◦C.
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Figure 12. IWM prototype on the test bench.

Figure 13 shows the temperature change curves of the four pre-built thermal sensors,
which are numbered as T1–T4, and the applied torque curves. The temperatures of four
TCs start rising once the torque is activated and reach a steady state after about 15 min.
Table 4 shows a comparison of the measurement results and the simulation results. A good
agreement is found between them. The maximum error occurs at position T2, and the error
is only 2.68%. Due to the space limitation for mounting the TCs, the test did not capture
the real hot spot. But a reasonable value can be deduced based on the simulation results in
Figure 10b.
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Table 4. Comparison between simulated and measured steady-state temperatures.

Part Description T1 T2 T3 T4

Simulated (◦C) 122.5 129.3 126.3 122

Measured (◦C) 122 128 123 120

Error (%) 0.41 1.02 2.68 1.67
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6. Conclusions

With the increasing torque and power density of the EMs in new energy vehicles,
there is a trend, suggesting, not only for EMs in the central-drive units but also for IWMs,
that it is better for the heat to be removed from winding surfaces directly. Due to the
compact structure of IWMs, a new cooling design is proposed by directly crossing the stator
carrier in the axial direction with only four pipes. Based on the flowchart of the calculation
procedures, it is easy to extract information and iterate calculations between the unsteady
solver for oil fluid and steady solver for EM solids. The transient process of oil distribution
is quantitatively represented by changing oil-wetted area fraction, in which four typical
moments are illustrated in contour with the color filled. Analysis and test results show that
the stator surfaces, end windings, and rotor ends are well-sprayed and dripped. Even the
temperatures of the axial middle part of the windings and magnets are only higher about
3 ◦C than both sides because of the short axial length. In summary, three conclusions can
be drawn:

(1) An oil-spray-cooled concept for IWMs is offered. The flat structure makes the oil flow
design more flexible. In this paper, both end windings and rotor ends are effectively
cooled by the oil from four pipes.

(2) A complete geometry model without simplification is created. The combination
of CFD with a two-phase VOF model and mixed timescale method was employed
and proved to be accurate at predicting the temperature distribution of IWMs. The
iteration procedures by mapping the temperature of the interfaces back to the fluid
were implemented through programming. It could be a reference for solving similar
thermal problems.

(3) Although the mixed timescale method is applied, this calculation is still very time
consuming to simulate the transient heat rising or other complex variable cycles
under current hardware conditions. However, due to the real geometry model and
high numerical calculation accuracy, it provides the possibility that some simplified
thermal models seriously rely on some thermal parameters that can be calibrated on
the basis of analysis results.
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