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Abstract: This study proposes a novel approach for predicting the State of Health (SoH) and Re-
maining Useful Life (RUL) of lithium-ion batteries. The low accuracy of SoH and RUL is due to the
challenges of establishing effective feature engineering for battery attributes. To address this issue,
a SoH and RUL prediction model based on curve compression and CatBoost is proposed. Firstly,
an improved threshold selection method based on curvature analysis is introduced to enhance the
compression performance of battery attributes under different cycles. Secondly, to ensure that the
extracted feature sequences have the same length, spline interpolation and local anomaly factor
detection techniques are utilized to fill or eliminate feature points for feature length normalization.
Finally, a dynamic time regularization algorithm is applied to calculate the shortest distance between
the feature sequence and the original curve to determine the optimal feature length for input into
the CatBoost prediction model. The experimental results demonstrate that the proposed approach
outperforms other prediction models in the research object dataset, achieving R? values higher than
0.98 and MSE values around 1 x 1075, The proposed approach also achieves better prediction results
in the validation object dataset, indicating its strong generalization capability. Additionally, the
proposed model shows significant robustness by accurately predicting SoH and RUL under noisy
environmental conditions. Overall, the proposed model shows significant potential to accurately
predict SoH and RUL by efficiently addressing the challenges associated with feature engineering
for battery attributes, reducing the impact of background noise on prediction results, and exhibiting
strong robustness.

Keywords: CatBoost; curve compression; perpendicular distance threshold algorithm; RUL;
lithium-ion battery

1. Introduction

Lithium-ion batteries are widely used in various fields due to their high energy
density, long cycle life, and high safety performance. Lithium-ion batteries have become
essential in many applications, ranging from portable electronic devices to the rapid
development of new energy electric vehicles, aerospace, and other fields [1-5]. However,
they are also prone to performance degradation and uncertain failure. As the energy
supply and core component of the entire power system, battery failure can lead to a decline
in overall system performance, safety accidents, and economic losses. The performance
degradation process of lithium-ion batteries is complex and involves various physical
and chemical changes. In actual operation, the battery is subject to different charging
and discharging modes, current magnitude, environmental pressure and temperature,
as well as the battery manufacturing process itself, all of which interact with each other,
resulting in non-deterministic and non-linear characteristics that make it challenging to
accurately predict the battery degradation performance and ensure the stability and safety
of lithium-ion batteries in different operating environments. As a result, stability and safety
remain major challenges in the development of lithium-ion batteries [6-10]. To address this
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issue, it is essential to develop accurate methods for estimating the State of Health (SoH)
and Remaining Useful Life (RUL) of the battery.

In recent times, the growing sophistication of artificial intelligence, machine learning,
and data mining methodologies has led to increased interest in data-driven approaches
for predicting SoH. Researchers have utilized advanced machine learning techniques
to establish the correlation between battery SoH and Remaining Useful Life, and the
relevant features to achieve accurate prediction [11-16]. In their study, Yue et al. [17]
proposed a fresh health factor for lithium-ion batteries that relies on the amplitude of the
instantaneous voltage drop in the initial segment of discharge under a constant-current
discharge condition. To minimize noise, they employed multi-order Bezier curves to
reconstruct the new health factor data and devised an empirical degradation model for the
battery predicated on the number of cycles. Zhou et al. [18] also proposed a data-driven
model for predicting the State of Health (SoH) of batteries in the face of noise. Their
approach was based on the Temporal Convolutional Network (TCN), which consists of
multilayer causal convolution and can encode the sequence of sampling points on the
battery charging curve. They found that the proposed TCN-based SoH estimation model
achieved high accuracy and demonstrated good adaptability to different types of batteries.
Additionally, Ezemobi E et al. [19] analyzed a method to enhance the generalization of
SoH estimation using the Parallel Layer Extreme Learning Machine (PL-ELM) algorithm
to extend the application of a single SoH estimation model to a large number of cells of
the same type. Furthermore, in response to the problems of many complicated model
parameters and time-consuming existing SoH estimation methods, Feng et al. [20] propose
to characterize the battery capacity degradation using directly measurable battery constant
current charging time and discharge voltage sample entropy as Hls (Health Indicators).
The hierarchical extreme learning machine (HELM) model is introduced to establish the
SoH online estimation framework, and the two newly constructed HIs are used as inputs
to train the HELM battery degradation model offline to achieve SoH online estimation.

In data-driven battery SoH prediction, it is necessary to extract typical features from the
capacity degradation data of the battery and establish a mapping relationship between these
features and the health state. In previous research, Liu et al. [21] used the ratio of current
capacity to the nominal capacity of lithium-ion batteries as HI. However, this approach
can ignore useful information during training and degrade generalization performance.
Che et al. [22] proposed an efficient health factor extraction method for battery cells based
on partial charge and discharge data while considering a feature generation strategy for
battery pack capacity decay and inconsistency and using dual time scale filtering and
a battery pack equivalent circuit model to broaden the application scope of the feature
extraction method. Finally, a Gaussian process-based regression algorithm framework
is used to improve the estimation accuracy and reliability, and the method improves the
accuracy of battery system health state estimation as well as its adaptability in widely
used scenarios. In their study, Liu et al. [23] utilized an improved Douglas—Peucker
compression algorithm to compress the discharge voltage curve of the battery dataset
from the University of Maryland and build an XGBoost model. However, their approach
extracted fewer features, and the generalization ability of the model with fewer features
in the actual prediction needs to be demonstrated. On the other hand, Zhang et al. [24]
propose a method for estimating the health state of lithium-ion batteries based on the
incremental energy method and Bi-directional Gated Recurrent Network (BiGRU) Dropout.
Firstly, the maximum peak height in the incremental energy curve is extracted as the new
health factor of the battery SoH. The mapping relationship between the health factor and
SoH is derived from the BiGRU network built by the flip-flop layer and the gated recurrent
network layer, and its experimental results show that the method can estimate the battery
SoH quickly and accurately under different charging multiplier conditions.

The technique of curve compression, also known as curve simplification or point set
extraction thinning, is a useful data compression technique that reduces the amount of
data by removing some data points while ensuring sufficient accuracy. Curve compression
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is commonly used in mapping, road network analysis, robot path planning, and various
other fields. The utilization of curve compression algorithms can significantly reduce the
data volume while still maintaining the main shape features and path direction information
of the original curve without affecting the importance of the original data. Among curve
compression algorithms, the perpendicular distance threshold algorithm and the Douglas—
Peucker algorithm are the most widely used. The Douglas—Peucker algorithm requires
more computational resources and many iterations. On the other hand, the perpendicular
distance threshold algorithm calculates the distance from each point to the line segment,
resulting in lower computational complexity and a significant advantage when dealing
with large amounts of data. Additionally, the parameters of the perpendicular distance
threshold algorithm can be adjusted according to specific needs and have better retention
of some key core curve features.

In the field of data-driven SoH and RUL prediction for lithium-ion batteries, neural
networks, Unsupervised learning, and ensemble learning algorithms are commonly used.
Unsupervised learning can be used to detect abnormal conditions in battery operation,
such as excessive temperature, abnormal voltage, capacity drop, etc. By modeling the
normal behavior of the battery, the state of the battery can be monitored in real time, and
potential problems can be detected in time so that early action can be taken to avoid battery
failure [25]. Ensemble learning algorithms combine multiple learners and have better
learning performance. Gradient Boosting Decision Tree (GBDT) is a powerful ensemble
learning algorithm that reduces total error and enhances robustness by minimizing bias. It
has been successfully applied in various fields, such as transportation, finance, medicine,
and lithium battery lifetime prediction. CatBoost, a machine learning library founded by
Yandey, is based on the GBDT framework and was introduced in 2017. Compared to other
GBDT algorithms like XGBoost and LightGBM, CatBoost offers several improvements. It
addresses gradient bias during iteration through the use of the ordering principle, ordering
enhancement algorithms, and a greedy strategy to reduce overfitting, optimize model
speed, and enhance the model’s robustness and accuracy. Moreover, CatBoost uses a
weighted random negative sampling method and symmetric tree splitting to increase
the generalization ability of the tree model. It has exhibited excellent performance in
transformer fault diagnosis and has become a popular choice when dealing with large-scale
datasets with high dimensionality and multiple discrete variables [26].

To address the issue of low accuracy in predicting SoH and RUL of lithium-ion batteries
due to the difficulty of feature engineering, this study proposes a SoH and RUL prediction
model based on curve compression and CatBoost. Firstly, a threshold selection method that
integrates curvature analysis for improvement is proposed to improve the unsatisfactory
compression results of the classic perpendicular distance threshold algorithm when applied
to compressing the original curve. Second, cubic spline interpolation and the Local Outlier
Factor (LOF) method are used to fill or eliminate the feature to ensure that the extracted
feature sequences are of the same length and can be easily input into the prediction model.
Then, the dynamic time regularization algorithm is used to calculate the shortest distance
between the feature sequence and the original curve and use it as the basis for judgment
to determine the optimal length, and the feature is used as the input to the CatBoost
prediction model for SoH estimation and RUL prediction of lithium-ion batteries. Finally,
to verify the superiority of the established feature engineering and the model used in this
study, experiments such as comparison of the effects of different prediction models, model
generalization validation, and model robustness validation are conducted to demonstrate
the different dimensions.

2. Algorithm Introduction
2.1. Curve Compression Algorithm
The essence of curve compression is to reduce the amount of information while

maintaining the key characteristics of the curve. The main idea is to select a subset x
from the dataset X that constitutes the curve that can represent the curve’s characteristics
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within an allowable error and minimize data redundancy. The perpendicular distance
threshold algorithm is one of the most widely used curve compression algorithms, which
essentially extracts the characteristic points of the curve using point-to-line distance. This
method has the advantages of simplicity, high applicability, and comprehensive feature
information extraction.

2.1.1. Douglas—Peucker Algorithm

The Douglas—Peucker algorithm is a classical curve compression algorithm that follows
the steps below:

Step 1: Connect an imaginary line between the first and last points of the curve to be
compressed and calculate the distances from the remaining points to the line.

Step 2: Select the point with the largest distance and compare it with the threshold
value. If it is greater than the threshold value, then the point with the largest distance
from the line is kept. Otherwise, all the points between the two end points of the line
are discarded.

Step 3: Based on the retained points, the known curve is divided into two parts, and
the operations of steps 1 and 2 are repeated. The point with the largest distance is still
selected and compared with the threshold value. The points are selected and discarded
in turn until there are no more points to be discarded. Finally, the coordinates of the
curve points that meet the given accuracy limit are obtained. Specific details are shown in
the Figure 1.

10

—&— Original curve
—&— Feature curve

0 5 10 15 20 25

Figure 1. Douglas—Peucker algorithm.

0

2.1.2. Perpendicular Distance Threshold Algorithm

The perpendicular distance threshold algorithm shares the same principle as the
Douglas—-Peucker algorithm, but it does not consider the entire curve from a global perspec-
tive. Instead, it selects and removes redundant points starting from the first point. That
is, starting from the first point, the perpendicular distance between the second point and
the line connecting the first and second points is calculated. If this distance is greater than
the given threshold, the second point is retained and used as a new starting point, and the
distance between the third point and the line connecting the second and third points is
calculated. Otherwise, the second point is removed, and the distance between the third
point and the line between the 1st and 4th points is calculated. This process is repeated
until the last point of the curve is reached. Specific details are shown in the Figure 2.

2.2. CatBoost Algorithm Principle

The CatBoost algorithm is a unique boosting algorithm that utilizes improved gradient-
boosting decision trees. It distinguishes itself by employing a ranking boosting technique,
which helps overcome gradient and prediction bias problems and minimizes overfitting.
Furthermore, CatBoost uses a symmetric tree-based learner to enhance the generalization
ability and prediction speed of the model, achieving both high accuracy and efficient
training. With its remarkable robustness and high accuracy, CatBoost outperforms other
algorithms despite having fewer parameters.
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Figure 2. Perpendicular distance threshold algorithm.

Figure 3 illustrates the fundamental principle of the boosting algorithm. Initially,
a subset of data is selected, and initial weights are assigned to the data points in this
subset. Next, a weak learner is trained on this subset, and the prediction errors of the
weak learner are evaluated. The weights of the training samples with high error rates
are increased, allowing the weak learner to focus on these samples in the next round of
learning. This iterative process is repeated, gradually enhancing the performance of the
learner. Finally, larger weights are assigned to the weak learners that exhibit a higher level
of learning accuracy, and multiple weak learners are combined and weighted to produce a
strong learner.

Data set
xs/ ! \S
P Sample )
eV . Pley, .
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& "
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Figure 3. Principle of the Boosting Algorithm.

2.2.1. Gradient Boosting Algorithm (GBDT)

The GBDT algorithm is a widely used ensemble learning algorithm that employs
Classification and Regression Trees (CART) as the base learner. It has a basic structure
resembling that of a decision tree forest, and its learning method is gradient boosting [27].
The major principle of the GBDT algorithm involves constructing a weak learner that
mitigates the shortcomings within the current model by continuously iterating towards the
steepest slope direction to minimize the loss. This approach enables the model to achieve
superior classification and prediction results for nonlinear data.

Step 1. Initialize the weak learner. For the input training dataset:

T ={(x1,y1), (x2,92), -, (Xu, Yyn) } ¢))
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where x; € X C R", y; € Y C R". The initial model is a tree with only one root node:

N
fo(x) = argmin. ) L(y;, c) )
i=1

where x denotes the model input variable; y; denotes the output variable; ¢ denotes the
constant value that minimizes the loss function; L is the model loss function; and N is the
number of variables.

Step 2. Form =1,2,..., M, calculate each input samplei =1,2,..., N,

i = [aLa(j{’(;f )(xl))] ®)
! fx)=fm-1(x)
where r,,; denotes the generalized residual corresponding to the mth tree.

Step 3. The residuals obtained in the previous step are used as the new true values
of the samples, and the data (x;, x,,;) are used as the training data for the next tree to
obtain a new regression tree whose corresponding leaf node region of the mth tree is Ry;;j,
j=1,2,...,]. Where | denotes the number of leaf nodes in the regression tree. For the leaf
regionj =1,2,...,], the calculation is performed,

Cpj = argming Y L(yi, fru-1(xi) +¢) 4

Xl‘Eij

where, C,, i denotes the best prediction value that minimizes the loss function of the region R, j-
Step 4. Obtain the best-fit regression tree for this round of iteration f,(x),

j
fm(x) = Zcmjl(x € ij) 5)
j=1

where, I denotes the output regression tree.
Step 5. Updating the Strong Learner.

J
Fu(x) = fu—1(x) + ) CujI(x € Rypj) (6)

j=1
where, F, (x) denotes the updated regression tree model.
Step 6. Obtain the strong learner expression:

M ]
Fy(x) = 2 Zcmjl(x € ij) @)
m=1j=1

where Fy(x) is the regression lift tree.

2.2.2. CatBoost Algorithm

Similar to other typical gradient-boosting algorithms, CatBoost also fits the gradient
of the current model by building a new tree. However, CatBoost addresses the problem of
overfitting, which is a common issue in standard boosting algorithms, by implementing
some enhancements to the classical gradient boosting approach. The algorithmic steps
involve the following:

Let D be the training set:

D= (xiryi) (8)

where n is the number of sample groups (i =1,2,...,n), each group of samples is
! "), x™ is the eigenvector of the mth sample of the ith group, and y;

xX; = (xi,xl-z,...,xi
is the target value of the ith.
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The feature transformation values Xlk of the CatBoost model are:

" ok — ok
> p(xj =x;)yj +aP
Xk =" ©)

where ¢ is the indicator function, P is the prior value; « is the prior weight. They reduce
the noise problem for categories with a low frequency of occurrence.

In CatBoost, the traditional gradient estimation method is replaced by Ordered Boost-
ing, which involves training a separate model for each sample in the training set to obtain
an unbiased gradient estimation. To achieve this, during training, a corresponding model
is obtained by training the base learner using all other samples in the training set except for
the current sample. By repeatedly training the base learner and using gradient estimate
values of sample data, the final model is obtained, thereby improving the model’s general-
ization ability. This approach ensures an accurate prediction for individual samples and
enhances the overall performance of the model.

3. Lithium-Ion Battery SoH Prediction Process

To predict the SoH of lithium-ion batteries, this study proposes a model based on
curve compression and feature engineering using CatBoost. The prediction process of this
model is shown in Figure 4.

I |
| Classical Improved |
| = Battery data —» algorithm  —» threshold |
: “g. § compress curve selection method :
| & o ! |
=1 o
l = . optimal Select the optimal Feature Sequence !
| . — -« Length |
| feature input length L o . |
| normalization I
I I

Prediction

Figure 4. SoH prediction process based on curve compression with CatBoost.

The SoH prediction process in this research is divided into two parts: feature engi-
neering and model prediction, as shown in Figure 4. Firstly, the classical perpendicular
distance threshold algorithm is used to compress the collected battery signal, and an im-
proved threshold selection method is proposed by integrating curvature analysis to address
the issue of unsatisfactory compression results caused by traditional threshold selection.
Secondly, to ensure that the extracted feature sequences have the same length and are easy
to input into the prediction model, the feature length is achieved by filling or eliminating
feature points using the third spline interpolation and LOF anomaly detection normal-
ization. Then the dynamic time regularization algorithm is used to calculate the shortest
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distance between the feature sequence and the original curve, and the optimal length L
is determined based on the best similarity between the feature sequence and the original
curve. Finally, the training set and the test set are divided, and the CatBoost prediction
model is used with the feature input for battery SoH prediction and multidimensional
model evaluation.

4. Data Acquisition
4.1. Experimental Protocol
4.1.1. Experimental Setup

To conduct cyclic charge/discharge experiments on an NCM battery, commonly used
in electric cars, a battery tester is employed in this study. The battery tester measures voltage,
current, power, capacity, and other relevant parameters throughout the experimental
process. The experimental setup comprises a middleware (Neware, Shenzhen, China), an
alligator clip, a Supervisory Control and Data Acquisition computer (Windows10), and a
thermostatic chamber (Ling). The thermostatic chamber serves the purpose of maintaining
a stable experimental environment of 15 °C. Figure 5 illustrates the experimental setup
used in this study.

Supervisory
Thermostatic Control and
Data
chamber

Acquisition .
= “l

o=y

Middleware

.......

Figure 5. Experimental setup.

The experimental battery is an 18,650 lithium-ion battery, and its detailed parameters
are presented in Table 1.

Table 1. Specific parameters of the experimental battery.

Projects Specification Projects Specification
Housing material Nickel-plated steel Standard 0.5C_5A x75h
Nominal capacity 1300 mAh Fast 1C_5A x25h

Rated capacity 3.7V Charging strategy Charein 0°C~45°C
Charging Voltage (Max) 42V (CC/CV) sne 32 °F~113 °F
Discharge cut-off voltage 27V Operating Discharge —15°C~60°C
Charging Current (Max) 1G5 temperature 5 °F~140 °F
Discharge current (Max) 3Cs —20°C~60°C

Internal resistance (Max at 1000 Hz) <25 mQ)

Storage
—4 °F~113 °F
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Start

4.1.2. Experimental Steps

In order to analyze battery aging under different working conditions, this study
conducts two different charging/discharging strategy experiments, including constant
voltage and constant current charging with constant power discharging and constant
voltage with constant current charging and constant current discharging. The experimental
process is as follows:

Experiment 1. Constant voltage and constant current charging with constant power discharging:

Step 1: Charge at a constant current of 1 A until the battery reaches 4.2 V using a battery tester.

Step 2: Charge at a constant current of 4.2 V until the detection current is less than 200 mA,
then stop charging.

Step 3: Let the battery stand for 10 min.

Step 4: Discharge at a constant power of 6 W until the battery voltage drops to 2.7 V, then
stop discharging.

Step 5: Leave the battery on for 20 min.

Step 6: Repeat steps 1-5 for a total of 148 cycles.

Experiment 2. Constant voltage and constant current charging with constant current discharging:

Step 1: Charge at a constant current of 1.3 A until the battery reaches 4.2 V using a
battery tester.

Step 2: Charge at a constant voltage of 4.2 V until the detected charging current is less than
50 mA, then stop charging.

Step 3: Let the battery stand for 10 min.

Step 4: Discharge at a constant current of 3.9 A until the battery voltage drops to 2.7 V, then
stop discharging.

Step 5: Leave the battery on for 20 min.

Step 6: Repeat steps 1-5 for a total of 148 cycles.

Figure 6 shows the experimental flow for constant voltage and constant current
charging with constant current discharging.

1.3A constant

—» current charge —»

to 4.2V

No
4.2 V constant
Allow to 3.9A constant Allow to
voltage charge S~
—= stand for 10 >  current ™ stand for —*>147 Cycles 2—Yes» End
to less than 0.2 . . .
minutes discharge 20 minutes

A current

Figure 6. Flowchart of Experiment 2.

As shown in Figure 6, the constant-current followed by the constant-voltage charging
method was used in this experiment, which can shorten the charging time and ensure the
safety of the experimental battery. The battery was charged at a low rate of 0.5 C (1.3 A) of
constant current until it reached 4.2 V and then charged at a constant voltage of 4.2 V until
the current dropped to 0.2 A. Discharge was performed using either a constant current
discharge of 1.5 C (3.9 A) or a constant power discharge of 6 W to a cut-off voltage of 2.7 V.
Finally, a predetermined number of charge/discharge cycles was used as the experimental
termination condition to record the experimental data, draw the discharge capacity curve,
and analyze it to obtain the constant power discharge curve and constant current discharge
curve. These curves were named battery 1 and battery 2, respectively.

In this study, the battery’s SoH is described using its capacity, which is defined as:

Cinit — Cpatt

SoH=1—
0.2C;it

(10)
where C;,;; denotes the rated capacity, Cy,;; denotes the actual capacity, and 0.2 < Cpapr < Cipiy-

The Remaining Useful Life (RUL) of a lithium-ion battery refers to the number of
cycles between the point of capacity decay and the 80% capacity level. The EOL standard
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sets the battery failure thresholds for B0005, B0006, and B0007 at 1.38 Ah, 1.38 Ah, and
1.50 Ah, respectively. This means that BO005 requires 128 cycle count points to reach the
failure threshold for the first time, BO006 requires 112 cycle count points, and B0007 requires
125 cycle count points. Figure 7 depicts the original State of Health (SoH) curves obtained
using varying charging and discharging strategies.

1.01

Battery number 1
Battery number 2

0.99

0.98

SOH

0.97

0.96 -

0.95 -

0.94 ' s |
0 50 100 150

number of cycles
Figure 7. SoH curves under different charging and discharging strategies.

4.2. Introduction to the Dataset

To validate the effectiveness of the proposed algorithm for lithium-ion batteries, this
study carries out experiments using two distinct datasets, which are referred to as dataset
A and dataset B. Through these experiments, the algorithm’s performance is evaluated
and compared with other existing methods, and the results obtained help to determine the
algorithm’s suitability for practical battery applications.

Dataset A consists of test data for a lithium-ion battery rated at 2 Ah, collected by the
NASA Prediction Center (Prognostics Center of Excellence, PCoE). The data was obtained
from three different batteries, namely B0005, B0006, and B0007. The collected data includes
voltage readings taken during the battery’s charge and discharge cycles. Charging is
performed using a current of 1.5 A until the voltage reaches 4.2 V, after which a constant
voltage is applied until the charging current falls below 20 mA. Discharging is performed
using a constant current of 2.0 A until the voltage drops to 2.5 V. The battery undergoes
this charging and discharging cycle for a total of 168 cycles.

Dataset B contains data obtained from the experimental procedure described in
Section 4.1, which includes measurements of voltage, current, and power during the charg-
ing, resting, and discharging periods of the battery. This dataset specifically involves
148 cycles of the battery after undergoing processing.

5. Instance Validation

This study focuses on dataset A, which is subjected to curve compression and used as
the subject of research. A prediction model is developed to forecast the State of Health (SoH)
and Remaining Useful Life (RUL) of each battery group. Dataset B is used as a validation
dataset to assess the generalizability of the proposed feature engineering approach. Feature
engineering is performed again on dataset B, and a prediction model is constructed to
evaluate the performance of the prediction.
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5.1. Traditional Threshold Selection Method: Compress Curve

In this study, dataset A is selected for experimentation, which comprises various
charging and discharging cycles of lithium-ion batteries. Each cycle is composed of ten
different attributes: Voltage measured, Current measured, Temperature measured, Current
load, and Voltage load for charging, and Voltage measured, Current measured, Temperature
measured, Current load, and Voltage load for discharging. To showcase the experimental
process of curve compression and threshold selection, the Voltage measured attribute of
battery number five is used as an example.

The discharge experiment conducted on battery number five in dataset A generated
the Voltage-measured attribute time-domain decay curves shown in Figure 8.

4.2 The Sth discharge cycle
The 30th discharge cycle
4 The 55th discharge cycle
The 80th discharge cycle
38 The 105th discharge cycle
: The 130th discharge cycle
The 155th discharge cycle
3.6
S
~34r
w
o
S350
= 9
>
3 L
2.8 -
2.6 -
2.4 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Number of sampling points
Figure 8. Voltage-measured curves at different cycles.

The charge curves of the Voltage-measured attribute in each cycle of the discharge
experiment conducted on dataset A are demonstrated in Figure 8. However, when testing
and monitoring lithium batteries, different experiments and application scenarios require
data collection at different sampling frequencies. Some tests may require a higher sampling
frequency to obtain more detailed and accurate data, while others may only require a lower
sampling frequency. The inconsistent sampling points in each curve make it challenging
to use this attribute directly for battery life prediction, warranting the need for feature
extraction. Additionally, the curve shapes under different cycles are similar, with common
features such as upper convexity and lower concavity. By capturing curve detail informa-
tion, the data length can be significantly reduced and the model complexity minimized.
The curve compression is performed using the perpendicular distance threshold algorithm
for feature point extraction. However, the traditional pendant limit method has limitations
in threshold value selection, including (1) uncertainty in threshold value selection, which
can lead to inadvertent deletion of feature points, and (2) the selected threshold values
are not directly related to the data compression rate, making the number of compression
points indeterminate.

To investigate the threshold selection issue of voltage curve compression using the per-
pendicular distance threshold algorithm, the Voltage measured curves of the 5th and 105th
discharge cycles in Figure 8 were selected and analyzed using the classical perpendicular
distance threshold algorithm under different threshold conditions. The curve compression
results under different thresholds are presented in Figures 9 and 10, respectively. The
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conventional thresholds consist of the median of the dip €1 and the minimum value of the
line from each point on the curve to the first and last end points &5.
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Figure 9. Curve compression results with different threshold selections using the median threshold.
(a) The compression result of the discharge voltage curve in the 5th cycle. (b) The compression result
of the discharge voltage curve in the 105th cycle.
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Figure 10. Curve compression results with different threshold selections using the minimum distance
threshold. (a) The compression result of the 5th discharge voltage curve. (b) The compression result
of the 105th discharge voltage curve.

The compression results of different curves in Figures 9 and 10 reveal that the feature
intervals obtained by the perpendicular distance threshold algorithm differ for different
threshold conditions, which significantly impact the compression effect of the final solution.
As observed in Figure 9, selecting the median vertical distance threshold ¢; retains more
points for both curves, resulting in a low data compression rate (i.e., ratio of the compressed
curve data points to the original curve points) and high spatial complexity, which does
not achieve the intended purpose of reducing feature dimension. On the other hand,
selecting the minimum distance e, as the threshold leads to a high compression rate
but a poor fit between the compressed and original real curves. Additionally, curve
feature point extraction under different thresholds performed well at curve segments with
significant changes in slope but poorly at curve segments with a flat trend, indicating that
the traditional threshold selection method does not satisfy the requirements of all points on
a given curve.
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In summary, the compression results show significant errors under both threshold
selections, indicating that excessively large or small thresholds can cause significant mea-
surement errors. It is feasible to adjust the threshold size to adapt to all the Voltage
measured curves. The fundamental issue lies in the fact that the threshold judgment criteria
of the classical perpendicular distance threshold algorithm cannot adequately capture the
deviation of certain curve segments from their corresponding straight lines. Therefore, it
is necessary to propose a new threshold judgment criterion that builds on the classical
perpendicular distance threshold algorithm to achieve more accurate curve compression.

5.2. Improved Threshold Selection Method Compress Curve

The threshold value in the classical perpendicular distance threshold algorithm cannot
effectively capture the linearity of the original curve, leading to different states in the
obtained intervals of the original curve. While the linearity of the fitting results can be
enhanced by adjusting the threshold, a uniform threshold value cannot be applied to all
curves, making it challenging to set the threshold accurately.

Assessing the deviation of the entire curve from the line connecting the first and last
points requires considering the curvature of the curve, which can be effectively analyzed
using curvature analysis. Conventional curvature analysis evaluates the degree of deviation
of discrete data points from the desired curve, where the curvature of a plane curve in
two-dimensional plane space is defined as the rotation rate of the tangent direction angle
to the arc length at a point on the curve, indicating the extent of curve deviation from the
straight line. In this study, curvature is characterized as the deviation of a curve segment
from the line connecting the first and last points of a gentle curve segment. Therefore, to
calculate the mean curvature at a point xy on the curve f, the reciprocal of the radius of a
circle that is tangent to the curve at xyp and two nearby points on the curve is computed

as follows:
3/2

1+ (f'(x0))”
r= ( + (f//(x())) ) (11)
" (x0)]
where f'(x() and f”(x() denote the first and second order derivatives of the curve f at x,
respectively, f”(xo) # 0, and r denotes the radius of the close circle.

=Nl 12)

In Equation (12), N represents the number of data points of the original curve, and ek
represents the mean curvature of the curve segment.

To identify the flat change area in the original curve segment, the derivatives at
each point of the curve are computed, and the area with relatively minor changes in the
derivatives is selected. Based on this area, the first and last end points of the gentle line
segment can be determined. Figure 11 illustrates the first and last end points of the 5th
discharge voltage curve’s gentle line segment.

After obtaining the gentle curve segment, the mean curvature of the line connecting
each point on the segment to the first and last end points is computed to determine the
curvature threshold. The traditional threshold is then replaced with the curvature threshold,
and the improved threshold selection method is used in combination with the drape limit
algorithm to perform curve compression on the original curve. The compression results for
the voltage curve under two different cycles in Figure 8 are illustrated in Figure 12.

The experimental results in Figure 12 demonstrate that the proposed threshold selec-
tion method, which replaces the classical dip-limit algorithm thresholds & and e, with the
mean curvature value e, outperforms the traditional methods shown in Figure 8. The
mean curvature value provides a more accurate reflection of the deviation of the original
curve from the straight line, resulting in a better fitting and more accurate representation of
the original curve’s elevation characteristics, despite the slight increase in the number of
feature points.
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Figure 11. Determination of the first and last end points of the gentle curve section.
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Figure 12. Curve compression effect after improving the threshold selection method of the B0O005
battery. (a) The compression result of the 5th discharge voltage curve. (b) The compression result of
the 105th discharge voltage curve.

5.3. Length Normalization Based on Cubic Spline Interpolation and Outlier Detection

To ensure that the curves have the same length for input into the prediction model, it
is necessary to perform length normalization since the lengths of the curves in different
cycles are not the same and the curvature thresholds ex on different curves are calculated
differently. The feature points extracted from each curve after processing using the method

described in the previous section have dimensionalities. The normalization process is
shown in Figure 13.

5.3.1. Cubic Spline Interpolation to Add Feature Points

To obtain a fixed-length feature sequence of L, this study employs cubic spline inter-
polation to split the original long sequence into several segments, constructing multiple
cubic functions. This method enables the segments to process gentle articulation at the
joints of the segments while retaining the maximum information of the original feature
curve. Sequences of less than L length are added to the feature sequence while ensuring
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the maximum information of the original feature curve is preserved. Figure 14 shows the
interpolation result of the compressed curve, where the original compressed curve has a
length of 53 and is now randomly filled into a feature sequence of length 55.

Input target length L and
existing length T
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Figure 13. Length normalization process.
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Figure 14. Triple spline interpolation results.

Figure 14 illustrates that the interpolation points A and B of the curve, which were
obtained using cubic spline interpolations, are distributed along the fitted curve, indicating
that the interpolation points do not have a significant impact on the elevation characteristic
distribution of the original feature curve.
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5.3.2. LOF Anomaly Detection to Remove Feature Points

To reduce data points in feature sequences exceeding length L, excess feature points
need to be removed, and the local density feature is calculated to reflect the abnormality
degree of certain samples. The LOF method is a prominent density-based outlier detection
technique that calculates LOF numerically to reflect the abnormality degree of a sample.
using the following equations:

For two points in the sample, the reachable distance from x() to x(/) can be expressed
as follows:

R (2, 1)) = max([[x) — x| ||) — <0 (13)

where k denotes the distance neighborhood length. '
Assuming there are M sample points in the k distance neighborhood of x(0), denoted
by x4, the locally reachable density of x(!) can be expressed as follows:

‘ 1M ‘
LRD(x)) = (ME RDg(x\), x)) (14)
t=1

()

where x,,; denotes the t sample point in x)s. The smaller the local reachable density of x(,

the further away the point x() is from its neighborhood, and the higher the probability of it
being an anomaly. The local anomaly factor is defined as the ratio of the average density of
the sample points around a sample point to the density of the location of the sample point.
LOF can be expressed as follows:

(¥ LRDy(x\)))/M
LOF,(x)) = =1

LRDy(x(0)) 15

The numerator in Equation (15) represents the mean of the locally reachable density
of x()) in the distance between k and all sample points in the neighborhood, while the
denominator is the locally reachable density of x(). When the density of x(/) is lower
than that of the surrounding samples, the Locally Reachable Density LRD(x(?)) is smaller,
leading to a higher LOF,(x()) value than one. This indicates that the density of the location
of x() is lower than that of the surrounding samples, making it more likely to be an
abnormal sample point. The feature sequences that exceed the length of L are detected as
outliers, and redundant feature points are removed. The results of outlier detection on the
original feature sequence are illustrated in Figure 15. The original feature sequence has a
length of 53, and by removing the top three feature points with the largest local anomaly
factor, a feature sequence of length 50 is obtained.

The results in Figure 15 demonstrate that the curve maintains its original shape
after LOF anomaly detection and removal. This process reduces the length of the feature
sequence and achieves length normalization while still retaining the maximum feature
information. Therefore, the proposed method effectively detects and removes outliers from
the original feature sequence without significantly affecting the overall shape of the curve.

5.3.3. Determination of the Optimal Length L

To determine the final feature length L, the Dynamic Time Warping (DTW) algorithm
is used to evaluate the temporal similarity between the compressed curve and the original
curve. The DTW algorithm employs a dynamic planning strategy that performs a dynamic
time-domain regularization process on two, time series to find the minimum possible
distance (i.e., maximum possible similarity) between them. The degree of deformation in
the time domain between two, time series that are otherwise similar is not only time-varying
but also nonlinearly varying. Figure 16a illustrates this by showing that the compressed
curve and the true curve exhibit different degrees of deformation in the time domain while
still having high time similarity. To accurately determine the similarity between the two
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curves, it is necessary to first perform relative deformation and correction of the local time-
domain waveforms between them, which involves implementing dynamic regularization,
and then calculating the Euclidean distance, as shown in Figure 16b.
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Figure 15. Anomaly detection results.
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Figure 16. Original signal and dynamically regularized signal. (a) Unregulated signal. (b) Post-
regulation signal.

After the dynamic time-domain regularization and estimation of the shortest distance
between the two sequences, the time-domain waveforms in the local ranges of the com-
pressed discharge voltage curves are relatively stretched before they correspond. The trend
of the shortest distance between the discharge voltage curves in the 5th, 55th, and 105th
cycles with different feature sequence lengths and the original curve after processing by
the method described earlier is illustrated in Figure 17. The optimal feature length L is
determined by analyzing the variation of the minimum value.
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Figure 17. Trend of the shortest distance for different length sequences.

The amount of feature information in a dataset is directly proportional to its dimension-
ality. Higher dimensionality leads to more feature information, while lower dimensionality
results in reduced feature information. Figure 17 shows that the minimum distance value
between the compressed curve and the original curve gradually decreases as the feature
point length L decreases. The minimum distance between the curves reaches a plateau
when the feature point length L is approximately 40, and it remains constant thereafter.
Therefore, for the discharge voltage curves across multiple cycles, the feature sequence
length L is fixed at 40. Similarly, the optimal feature sequence length is determined using
the improved altitude method for the voltage, current, and power curves in the charging
experiment as well as the current and power curves in the discharge experiment.

The proposed method effectively extracts the most essential feature information from
the dataset, determines the optimal length of the characteristic sequence, and ensures
that the feature sequences have the same length for easy input into the prediction model.
This approach mitigates the impact of dimensionality and leads to accurate SoH and RUL
prediction results.

In summary, the proposed method provides an effective means of extracting critical
information from the dataset and facilitating accurate predictions of SoH and RUL.

5.4. SoH Prediction Based on the CatBoost Model

Following the curve compression and feature length normalization, the resulting
features were used as input to the CatBoost model for predicting the State of Health (SoH)
of the batteries. For the 168 cycles of batteries BO005, B0006, and B0007 obtained after
feature processing, the first 84 cycles were used for training, while the remaining 85th to
168th cycles were used for testing. The prediction model established in the previous section
was employed to predict the SoH and Remaining Useful Life (RUL) of the three sets of
batteries. The test set prediction results for both SoH and RUL are illustrated in Figure 18,
indicating the effectiveness of the model for accurately predicting the SoH and RUL of each
battery set.

The findings illustrated in Figure 18 indicate that the prediction curves obtained from
the model closely match the test set results for dataset A. The significant overlap between
the predicted curves and the true capacity curves is evidence of the model’s ability to
accurately forecast both the State of Health (SoH) estimation and Remaining Useful Life
(RUL) prediction for dataset A. This suggests that the model is highly effective in accurately
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Figure 18. Prediction results for the test set of dataset A. (a) BO0O5 test set prediction results. (b) B0006
test set prediction results. (c) BO007 test set prediction results.

To assess the accuracy of the prediction models for each battery, several evaluation
metrics are used, including Mean Square Error (MSE), Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and goodness-of-fit (R?). Table 2 provides detailed information
regarding the prediction evaluation metrics, such as error distribution, while Figure 19
illustrates the SoH prediction error distribution. The evaluation metrics are calculated
based on the following equations:

N

MSE = Y (F(x) — i) (16)
i=1
1N
MAE = 5} [f(xi) = il (17)
i=1
1Y )
RMSE = | ) (f(x:) = vi) (18)

i=1
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(19)

N 2
El (f(xi) = Ymean)

where f(x;) denotes the true value, y; denotes the predicted value, i = 1,2,...,N, N
denotes the sample size, R? denotes a measure of the overall fit of the regression equation,
which has values between [0 and 1], and yyeqn denotes the mean value of the actual

observed values.

Table 2. Specific information on predictive evaluation indicators.

Battery Number MSE RMSE MAE AE R?
5 3.7248 x 107> 0.0061 0.0052 0 0.9967
6 2.1665 x 10~° 0.0047 0.0040 1 0.9915
7 9.2121 x 107> 0.0030 0.0026 0 0.9883
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Figure 19. SoH prediction error distribution. (a) BO0O5 test set prediction results. (b) BO006 test set

prediction results. (c) BOOO7 test set prediction results.

The abbreviation AE in Table 3 represents the absolute error, which is the absolute
difference between the actual RUL and the predicted RUL of each battery.
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Table 3. Comparison of multi-model prediction effects.

Predictive Models Battery Number MSE RMSE MAE AE R?

5 0.0030 0.0546 0.0442 4 0.9602

Random Forest 6 8.9984 x 1074 0.0300 0.0238 3 0.9769
7 0.0072 0.0850 0.0755 2 0.9713

5 1.3301 x 1074 0.0115 0.0084 2 0.9808

XGBoost 6 6.2771 x 1074 0.0251 0.0195 1 0.9813

7 1.3129 x 1074 0.0115 0.0086 2 0.9689

5 3.7248 x 107° 0.0061 0.0052 0 0.9967

CatBoost 6 2.1665 x 107° 0.0047 0.0040 1 0.9915

7 9.2121 x 107° 0.0030 0.0026 0 0.9883

Figure 19 depicts the error distribution of the predicted Remaining Useful Life (RUL)
for batteries five, six, and seven. The horizontal axis displays the difference between
the predicted and actual RUL values, while the vertical axis indicates the frequency of
occurrence for each error interval. Analysis of both Figure 18 and Table 2 reveals that the
error intervals for all three batteries exhibit a primary concentration between 0 and 0.05.
Additionally, battery number five demonstrates a low error rate, with the majority of the
errors falling below 1 x 10~3. These results indicate that the proposed feature engineering
and CatBoost model utilized in this study have significant advantages in the realm of State
of Health (SoH) estimation.

5.5. Comparison of the Effects of Different Models

In order to confirm the efficacy of the CatBoost model employed in this study, we
conducted a comparative analysis between our chosen model and two other models,
namely the Random Forest and XGBoost models. For this analysis, we inputted the
capacity features obtained in the previous section and compared the performance of each
model in predicting the SoH and RUL of the batteries. The results of this analysis are
presented in Table 3. This comparison enabled us to validate the superiority of the CatBoost
model in accurately predicting the SoH and RUL of the batteries as compared to the other
two models.

Table 3 shows that CatBoost, XGBoost, and Random Forest algorithms all exhibit good
regression prediction ability, with their goodness-of-fit and RMSE being relatively close,
indicating the good adaptability of the feature engineering approach used in this study.
However, the average MSE value of CatBoost for the three batteries (5.0345 x 1075) is
significantly lower than that of Random Forest and XGBoot. Additionally, the prediction
goodness-of-fit of the CatBoost model is better; the average value of R? is 0.9922, improved
by 0.0228 and 0.0152, respectively. Therefore, the CatBoost method can effectively enhance
the accuracy of SoH estimation and operational efficiency and exhibit good performance in
SoH estimation.

5.6. Model Generalizability Validation

To verify the generalization ability of the feature engineering and prediction model
proposed in this study, feature extraction is conducted again for dataset B, and SoH pre-
diction is performed using the CatBoost model. Dataset B comprises two batteries, each
with 148 cycles. The first 60 cycles are used as the training set, and the remaining 88 cycles
are used as the test set. The model established in the previous section is used for training
and prediction. Figure 20 presents the discharge voltage curve of battery number two in
dataset B.

Similar to dataset A, the discharge voltage curves in dataset B have non-uniform
sampling lengths under different cycles and cannot be directly used as feature input.
Therefore, following the method described in the previous section, suitable gentle curve
segments are selected, and the mean curvature value is calculated to serve as a judgment
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threshold. This threshold is then used to compress the discharge voltage curves for each
cycle using the drape limit algorithm. Figure 21 displays the compression results of the

discharge voltage curves in the 1st cycle and the 61st cycle for battery number two among
the cycle data.
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Figure 20. Battery number 2 discharge voltage curve in dataset B.
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Figure 21. Data set B curve compression results. (a) the compression results of the discharge voltage

curve in the 1st cycle of battery number 2. (b) the compression results of the discharge voltage curve
in the 61st cycle of battery number 2.
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After length normalization and similarity comparison, a feature sequence with a length
of 50 is obtained. The model established in the previous section is then used for training
and predicting. The prediction results are shown in Figure 22.

Based on Figure 22, it is evident that the CatBoost model outperforms the other models
in the feature engineering approach proposed in this study for the two batteries in dataset
B. In battery number one, the model has an MSE value of 0.2011 and an MAE value of
0.3761, with a goodness-of-fit of 0.9986. For battery number two, the model has an MSE
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value of 0.1031 and an MAE value of 0.2655, with a goodness-of-fit of 0.9997. These results
demonstrate that the model can accurately predict SoH for the same battery.
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Figure 22. Prediction results of dataset B. (a) Battery number 1 in dataset B. (b) Battery number 2 in
dataset B.

In summary, the curve compression-based approach and the CatBoost prediction model
proposed in this study both demonstrate good prediction accuracy in different datasets,
indicating that the model established in this study exhibits strong generalization ability.

5.7. Model Robustness Verification

In order to evaluate the performance of the prediction model in real-world sampling
environments, robustness experiments were conducted to test its resilience. Gaussian
White Noise (GWN) was added to the test set as an interference signal to observe the
behavior of the model in the presence of noise with different Signal-to-Noise Ratios (SNRs).
A GWN with varying noise ratios, ranging from 1% to 10%, was selected and converted to
SNRs before being added to the test set to assess the model’s ability to resist interference.
The prediction of Battery B0005 in dataset A and Battery number two in dataset B were
taken as examples, and Figure 23 presents the prediction results obtained under different
SNRs. This enabled us to evaluate the robustness and effectiveness of the prediction model
under varying conditions, thereby confirming its ability to perform accurately even in the
presence of noise and interference.

The performance of the curve compression-based approach and CatBoost model pro-
posed in this study under noisy conditions is demonstrated in Figure 23. After the addition
of interference signals, the predicted curves exhibit some fluctuations and deviations from
the true path. However, for cell BO005 in dataset A, as shown in the local enlarged figures,
RUL prediction errors are within two cycles, and the goodness-of-fit (R?) values are all
above 0.95. When SNR is relatively high, especially at SNR = 40 dB, the model’s prediction
is hardly affected, with an R? value of 0.9817. For cell two in dataset B, it still works
well in the noisy environment with a good prediction curve fit. These results indicate
that the prediction model proposed in this study has strong adaptability, anti-interference
capabilities, and robustness.
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Figure 23. Predicted results of batteries after adding noise. (a) Prediction of battery B0005 in dataset
A. (b) Prediction of Battery number 2 in dataset B.

6. Conclusions

To address the issue of low accuracy in SoH and RUL prediction arising from the
difficulty in establishing feature engineering for lithium-ion batteries, this study proposes
a SoH and RUL prediction model based on curve compression and CatBoost. Relevant
experiments were conducted, leading to the following conclusions:

(1) The improved perpendicular distance threshold algorithm proposed in this study
can capture battery aging information to the maximum extent. The improved threshold
selection method does not require manual threshold setting, as the algorithm automatically
determines the gentle curve segment based on the derivative and calculates the mean
curvature value based on the deviation of this curve segment from the straight line, thereby
exhibiting universality across different curves. Additionally, the length normalization
method based on cubic spline interpolation and outlier detection can effectively standardize
data length while retaining feature information.

(2) In the field of battery SoH estimation, the feature engineering and prediction model
proposed in this study have demonstrated accurate prediction capabilities. In dataset A, the
battery model exhibited an R? value higher than 0.98. In dataset B, the feature engineering
and model established in this study also produced better prediction results, demonstrating
the good generalization of the proposed method.

(3) The CatBoost model utilized in this study revealed significantly better prediction
performance than other models. The R? is improved by 0.0228 and 0.0152 compared to the
Random Forest algorithm and XGBoost, respectively.

(4) The curve compression-based approach and the CatBoost model proposed in
this study were shown to be almost unaffected by the presence of noise in terms of pre-
diction accuracy, indicating that the model exhibits strong anti-interference capability
and robustness.
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