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Abstract: Aiming at the problem that, under certain extreme conditions, relying on tire force or tire
angular velocity to represent the longitudinal velocity of the unmanned vehicle will fail, this paper
proposes a longitudinal velocity estimation method that fuses LiDAR and inertial measurement unit
(IMU). First, in order to improve the accuracy of LiDAR odometry, IMU information is introduced in
the process of eliminating point cloud motion distortion. Then, the statistical characteristic of the
system noise is tracked by an adaptive noise estimator, which reduces the model error and suppresses
the filtering divergence, thereby improving the robustness and filtering accuracy of the algorithm.
Next, in order to further improve the estimation accuracy of longitudinal velocity, time-series analysis
is used to predict longitudinal acceleration, which improves the accuracy of the prediction step in
the unscented Kalman filter (UKF). Finally, the feasibility of the estimation method is verified by
simulation experiments and real-vehicle experiments. In the simulation experiments, medium- and
high-velocity conditions are tested. In high-velocity conditions (0–30 m/s), the average error is
1.573 m/s; in the experiment, the average error is 0.113 m/s.

Keywords: driverless vehicle; velocity estimation; unscented Kalman filter; information fusion

1. Introduction

Longitudinal velocity is the velocity component along the forward direction of the
vehicle body during driving, and its estimation accuracy directly affects the safety control
of the vehicle by active and passive safety systems such as the anti-lock braking system and
acceleration slip regulation [1,2]. Low-precision longitudinal velocity estimation not only
increases unnecessary energy consumption, but may even affect the safety of passengers.
Therefore, in order to achieve high-precision control of driverless vehicles, reduce energy
consumption, and ensure the safety of passengers, it is of great significance to carry out in-
depth research on vehicle longitudinal velocity estimation methods in the field of driverless
vehicles [3].

Research on vehicle longitudinal velocity estimation methods can be divided into two
directions: dynamics-based methods and kinematics-based methods [4], as well as some
intelligent estimation methods [5–7]. The dynamics-based method mainly relies on the
dynamics model of the vehicle, and it estimates the longitudinal velocity of the vehicle by
analyzing the force of the vehicle model. In [8], a nonlinear dynamic model including the
longitudinal velocity, lateral velocity and yaw rate of the vehicle was established based
on the linear tire model, and the real-time estimation of the vehicle velocity was realized.
In [9], a nonlinear dynamic model including longitudinal velocity, lateral velocity, yaw
angular velocity and four-wheel angular velocities was established based on the tire model
of magic formula, and the vehicle velocity was estimated by using the unscented Kalman
filter (UKF). In [10], a hybrid Kalman filter was proposed. When the system noise statistical
characteristic error is small, the square root cubature Kalman filter is used to estimate the
vehicle velocity; when the system noise statistical characteristic error is large, the square
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root cubature Kalman finite impulse filter is used for real-time estimation of the vehicle
velocity. In [11], a state estimation method based on IMU is proposed, which uses two
estimators based on the vehicle dynamics model to estimate longitudinal speed, pitch angle,
lateral speed, and roll angle.

However, the dynamics-based method is less affected by external environmental
factors, and it is limited by the dynamics model; the accuracy of the estimation algorithm
cannot be guaranteed in some extreme conditions. Therefore, this paper mainly studies
the kinematics-based estimation method. In [12], improvements have been made to the
system noise of the UKF to prevent filtering divergence. In [13], the sideslip angle of the
vehicle’s center of mass was described by using the vehicle yaw rate, longitudinal velocity,
and lateral acceleration, and then the vehicle’s lateral velocity was deduced by using the
definition formula of the vehicle’s center of mass sideslip angle. In [14], the vehicle yaw rate
was taken as the scheduling parameter, a linear time-varying parameter vehicle kinematics
model was established, and the real-time estimation of the vehicle velocity was realized
by using the robust filter. In [15,16], a kinematics model was established including the
longitudinal and lateral velocities of the vehicle using the tire longitudinal and lateral forces
measured by the sensor, and real-time estimation of the longitudinal and lateral velocities
of the vehicle was realized by using the Kalman filter. In [17], the tire lateral force measured
by the sensor in a hybrid nominal model was established including the kinematics and
dynamics of the vehicle, and the real-time estimation of the vehicle velocity was realized by
using the extended Kalman filter. In [15–17], the tire force was considered measurable state
information, but in view of the assembly position of the tire force sensor and the constraints
of the use condition, it is difficult to meet the control requirements of driverless vehicles.

This problem can be solved by combining positioning technology and IMU to estimate
the velocity of the vehicle. Usually, the combination of GPS and IMU can be used to obtain
accurate estimation results [18]. In [19], the accuracy of estimated heading and position was
improved by using carrier-phase differential GPS. In [20], the lateral velocity is estimated
by using two low-cost GPS, and the problem of low frequency of traditional GPS signals
is compensated by combining with IMU. In [21], an extended square-root cubic Kalman
filter was proposed to combine GPS and IMU. In [22], motion and constraint models were
combined with IMU data to overcome interference from gyroscope drift and disturbances
in external acceleration. In [23], a novel Kalman filter is proposed to solve the problem of
sensor jitter noise, which further improves the estimation accuracy. However, GPS may
lose signal in some areas, resulting in serious estimation errors [24]. Meanwhile, with
the development of autonomous driving technology, high-precision and highly robust
autonomous vehicle positioning technology is one of the fundamental technologies in the
field of autonomous driving. However, the above research results have not fully utilized
the positioning information of driverless vehicles for velocity estimation.

Therefore, this paper proposes a method that integrates LiDAR and IMU information
to achieve accurate estimation of longitudinal velocity, which addresses the issues of
relying on tires to indicate the failure of vehicle longitudinal velocity under certain extreme
operating conditions and the possibility of GPS losing signal in certain areas. At the same
time, in order to reduce model error and suppress filtering divergence, a noise adaptive
module (AUKF) is added to the UKF, and time-series analysis is introduced into the
adaptive unscented Kalman filter (TSA-AUKF) to further improve estimation accuracy. The
structure of the proposed method is shown in Figure 1. Based on this, the novelties of this
paper are summarized as follows:

1. To address the issue of point cloud distortion during the motion of LiDAR, IMU is
used to predict the pose changes of LiDAR to reduce the impact of motion distortion
on odometry accuracy.

2. Time-series analysis is introduced into the motion equation to predict the trend of
longitudinal acceleration changes through multiple sets of IMU historical data, thereby
improving the estimation accuracy of the filtering algorithm.
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Figure 2. The principle of motion distortion generation: (a) LiDAR scanning starting point; (b) Li-
DAR motion process; (c) Point cloud distortion caused by motion. 
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Figure 1. The structure of the longitudinal velocity estimation method.

The rest of this paper is structured as follows. In the second section, the LiDAR-IMU
odometry is introduced. In the third section, the proposed longitudinal velocity estimation
method is introduced. In the fourth section, simulation experiments and real vehicle
experiments are conducted, and the results are analyzed. In the fifth section, the full text
is summarized.

2. LiDAR-IMU Odometry
2.1. Correction of Point Cloud Motion Distortion

This paper uses a mechanical rotating LiDAR to output a point cloud collected within
a cycle as one frame. When the system is in motion and the position of the LiDAR changes,
the point cloud within a frame corresponds to different coordinate origins, resulting in
motion distortion of the obtained point cloud data, as shown in Figure 2.
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Figure 2. The principle of motion distortion generation: (a) LiDAR scanning starting point; (b) LiDAR
motion process; (c) Point cloud distortion caused by motion.

In order to correct the motion distortion of LiDAR, it is necessary to obtain the pose
changes of LiDAR within one frame. However, due to the fact that LiDAR is often in
variable velocity motion and the low update frequency of LiDAR odometry, the actual
application effect is poor. The IMU sampling frequency can reach 100 Hz, which can
accurately reflect the movement and high-precision local pose estimation. By integrating
the data collected by IMU and using linear interpolation, the pose increment of the laser
point at any time t ∈ [tk−1, tk] relative to time tk−1 can be obtained. The calculation
formula is

Ti =
tk − ti

tk − tk−1
Ttk

tk−1
(1)
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The laser point coordinates at time ti are converted to the first laser point coordinate
system through pose increment. The calculation formula is

P′i = TiPi (2)

where Pi is the position of the laser point at time ti, and P′i is the position of Pi in the
coordinate system of the first laser point. The use of IMU to eliminate motion distortion
in LiDAR can effectively avoid problems such as map ghosting caused by distortion. The
effect of motion distortion removal is shown in Figure 3.
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Figure 3. The comparison of motion distortion removal: (a) The point cloud of the same laser beam
in the red box cannot be aligned before removing motion distortion; (b) Aligning point cloud of the
same laser beam after distortion removal.

2.2. LiDAR Point Cloud Clustering

During the information collection process of LiDAR, small objects may not repeatedly
appear in adjacent frames, causing errors in inter-frame matching. Therefore, this paper
calculates the angle between adjacent laser beam scanning points and point cloud clusters
based on the size of the angle. If the clustering results are less than 30 points, they are
removed as noise points to improve feature extraction accuracy and inter-frame matching
efficiency. As shown in Figure 4, traverse from the red point as the center to adjacent points
(green points) around, calculate the angle between the center point and adjacent points α,
until the clustering conditions are not met.
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The calculation process is
h = d2· sin α (3)

l2 = d2· cos α (4)

l1 = d1 − l2 = d1 − d2· cos α (5)



World Electr. Veh. J. 2023, 14, 175 5 of 16

Flatness Fangle is

Fangle = atan2(d2· sin α, d1 − d2· cos α) (6)

where d1 and d2 are the lengths of blue and orange laser beams, and alpha and alpha′

are the angular resolutions in the horizontal and vertical directions, respectively. When
adjacent laser beam scanning points are on the same horizontal line, α is equal to the
horizontal angular resolution alpha. When adjacent laser beam scanning points are on the
same vertical line, α is equal to the vertical angular resolution alpha′. During the iteration
process, points with flatness greater than the threshold are placed in set N . When the
number of points in set N is less than 30 at the end of the iteration, points in set N are
removed as noise points.

2.3. Feature Extraction of Point Cloud

After clustering the original point cloud of the LiDAR, the distance image is hori-
zontally divided into several sub-images, and each sub-image is traversed and processed
sequentially. Any point pi is selected in the point cloud, multiple continuous points in the
vertical direction of point pi are selected to construct a point set S, and the smoothness c of
each point in the point set is calculated as

c =
1

|S| · ||ri||
|| ∑

j∈S,j 6=i

(
rj − ri

)
|| (7)

By setting threshold cth to distinguish the features of points, those with smoothness
greater than the threshold are edge points, while those with smoothness greater than the
threshold are planar points. To evenly extract features from all directions, the LiDAR
scanning data are divided into two subsets horizontally. The smoothness of the points in
the subset is sorted, and the edge feature point P e

i with the highest roughness is selected

from each row of the subset. Then, the planar feature point P f
i with the lowest roughness

is selected in the same way.

2.4. Feature Matching of Point Cloud

By extracting the feature points of the LiDAR keyframe and matching the feature
points of adjacent keyframes, the pose transformation relationship of the LiDAR can be
solved. The point clouds scanned by the LiDAR at time tk and time tk+1 are set as Fk and
Fk+1, the edge feature point sets extracted from the feature extraction as F e

k and F e
k+1, and

the planar feature point sets as F p
k and F p

k+1. The purpose of inter-frame matching is to
obtain the transformation relationship between Fk and Fk+1, as well as the transformation
relationship between F e

k+1 and F e
k and the transformation relationship between F p

k and
F p

k+1. Due to the distortion generated during the LiDAR motion process, the edge feature
point set F e

k+1 and planar feature point set F p
k+1 extracted at time tk+1 are projected to

time tk, denoted as F e
k+1
′ and F p

k+1
′. Edge points are points in sharp positions in a 3D

environment, and edge feature points use a point-to-line matching method. Planar points
are points located in a smooth region in a 3D environment, and planar feature points use
point-to-face matching.

2.4.1. Edge Point Matching

A point Fe,a
k+1
′ in the set of edge feature points F e

k+1
′ is selected at time tk+1, and the

closest point Fe,b
k to Fe,a

k+1
′ and the closest point Fe,c

k in the scan line adjacent to point Fe,b
k
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at time tk are selected, with coordinates Xe,a
k+1
′, Xe,b

k , and Xe,c
k , as shown in Figure 5. The

distance dE from point Fe,a
k+1
′ to line

{
Fe,b

k , Fe,c
k

}
is

dE =

∣∣∣(Xe,a
k+1
′ − Xe,b

k

)
×
(

Xe,a
k+1
′ − Xe,c

k

)∣∣∣∣∣∣Xe,b
k − Xe,c

k

∣∣∣ (8)World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 6 of 16 
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Figure 5. Edge point feature matching: (a) Edge feature point set at time tk; (b) Edge feature point set
at time tk+1.

2.4.2. Planar Point Matching

A point Fp,a
k+1
′ in the set of planar feature points F p

k+1
′ at time tk+1 is selected, the

closest point Fp,b
k to Fp,a

k+1
′ at time tk is selected, and the closest point Fp,c

k to Fp,b
k in the

same vertical resolution point set is found, as well as the closest point Fe,d
k in the adjacent

scanning laser line with point Fp,b
k , with coordinates Xp,a

k+1
′, Xp,b

k , Xp,c
k , and Xe,d

k , as shown
in Figure 6.
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The distance dP from point Fp,a
k+1
′ to plane

{
Fp,b

k , Fp,c
k , Fe,d

k

}
is

dP =

∣∣∣(Xp,a
k+1
′ − Xp,b

k

)
·
((

Xp,b
k − Xp,c

k

)
×
(

Xp,b
k − Xe,d

k

))∣∣∣(
Xp,b

k − Xp,c
k

)
×
(

Xp,b
k − Xe,d

k

) (9)

2.5. Pose Estimation

After matching the features of edge points and planar points, the point-to-line distance
dE and point-to-planar distance dP are obtained. To obtain the optimal pose, the following
cost function can be established by combining (8) and (9):

f
(
T′k+1

)
= min(dE + dP) (10)

The error function is established by using the Lewinberg-Marquardt (L-M) method to
optimize the solution:

min
1
2
|| f
(

TL
k+1

)
+ J

(
TL

k+1

)T
∆TL

k+1||, s.t||D∆xk|| ≤ µ (11)

where µ is the trust radius, and D is the coefficient matrix. Constructing Lagrangian
function:

L
(

∆TL
k+1, λ

)
=

1
2
|| f
(

TL
k+1

)
+ J

(
TL

k+1

)T
∆TL

k+1||
2 +

λ

2

(
||D∆TL

k+1||
2 − µ

)
(12)

where λ Is the coefficient. Simplify and derive (12) to obtain(
J J T + λDT D

)
∆T = −J f (13)

Substituting (13) into equation (10) yields

∆T = −
(
J J T + λDT D

)−1
(J f ) (14)

where the coefficient matrix D can be approximated as J J T , so under the premise that the
initial Jacobian matrix J is known, the residual ∆T can be solved. Substitute the gradient
descent formula as

TL
k+1 ← TL

k+1 + ∆TL
k+1

TL
k+1 ← TL

k+1 −
(
J J T + λDT D

)−1
(J f )

(15)

Using two L-M optimization iterations to solve until convergence, obtain the pose
transformation matrix TL

k+1. Finally, take the differential value of TL
k+1 as a rough estimation

of longitudinal velocity Zk.

3. Fusion Method of LiDAR and IMU
3.1. AUKF

The nonlinear system of vehicle motion is{
Xk = FXk−1 + Qk
Zk = HXk + Rk

(16)

where Xk and Xk−1 represent the motion state variables at time k and k− 1, respectively, F
represents the motion model transfer matrix, Qk represents process noise, Zk represents
the observation at time k, H represents the observation model transfer matrix, and Rk
represents the observation noise.
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Set the initial estimation value X̂0 and error covariance P0 for the motion state:

X̂0 = E[X0] (17)

P0 = E
[(

X0 − X̂0
)(

X0 − X̂0
)T
]

(18)

At the same time, calculate the Sigma sampling points for the motion state:

Xσi
k−1

=


X̂0

k−1, i = 0

X̂i
k−1 +

(√
(n + λ)Lk−1

)
i
, i = 1, 2, · · · , n

X̂i
k−1 −

(√
(n + λ)Lk−1

)
i−n

, i = 1, 2, · · · , n
(19)

where n represents the dimension of X, and λ represents the scaling factor, taken as
λ = 1,

√
Lk−1

√
Lk−1 = Pk−1.

Sigma sampling points are mapped through the motion model transfer matrix F:

Xσi
k|k−1

= FXσi
k−1

(20)

Then, perform weighted calculations to obtain the prediction and error covariance
matrix of the motion state variables at time k:

X̂−k =
2n

∑
i=0

(
wiXσi

k|k−1

)
(21)

P−k =
2n

∑
i=0

[
wi

(
Xσi

k|k−1
− X̂−k

)(
Xσi

k|k−1
− X̂−k

)T
]
+ Qk (22)

where wi represents the weight

wi =

{
λ

(λ+n) , i = 0
λ

2(λ+n) , i = 1, 2, · · · , 2n
(23)

Calculate the Sigma sampling points for the observed value as

Yσi
k−1

=


X̂0−

k−1, i = 0

X̂i−
k +

(√
(n + λ)Lk−1

)
i
, i = 1, 2, · · · , n

−
(√

(n + λ)Lk−1

)
i−n

, i = 1, 2, · · · , n
(24)

where
√

Lk−1
√

Lk−1 = P−t . Sigma sampling points are mapped through the motion model
transfer matrix H:

Yσi
k|k−1

= HYσi
k−1

(25)

Then, perform weighted calculations to obtain the prediction and error covariance
matrix of the observed value at time k, as well as the cross-covariance matrix of the
observation prediction error:

Ŷ =
2n

∑
i=0

(
wiYσi

k|k−1

)
(26)

PY =
2n

∑
i=0

[
wi

(
Yσi

k|k−1
− Ŷ

)(
Yσi

k|k−1
− Ŷ

)T
]
+ Rk (27)

PXY =
2n

∑
i=0

[
wi

(
Xσi

k|k−1
− X−k

)(
Xσi

k|k−1
− X̂−k

)T
]

(28)
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The Kalman gain can be calculated as

K = PXYP−1
Y (29)

Finally, the motion state at time k can be obtained as

X̂k = X̂−k + K
(
Zk − Ŷ

)
(30)

Pk = P−k − KPYKT (31)

Modeling error is an important component of process noise. By adaptively adjusting
the covariance matrix of process noise based on the difference between observed and pre-
dicted values, estimation error can be reduced and filtering divergence can be suppressed.
So, the difference between the observed and predicted values is defined as

d = Zk − Ŷ (32)

where d is affected by modeling errors and initial conditions, and the noise covariance
matrix can be estimated based on d. So, the theoretical covariance matrix of d is

Ck = E
[
vkvT

k

]
= HPk HT + Rk (33)

Due to the influence of modeling errors and observation noise, the actual value of the
covariance matrix of d often deviates from the theoretical value. So, the actual covariance
matrix calculation method for d is

Ĉk =
1
M

M

∑
i=1

vi−1vT
i−1 (34)

where M is the length of the sliding window.
Rk is adjusted by comparing the actual covariance matrix Ck of d with the theoretical

covariance matrix Ĉk. Rk is reduced when Ck > Ĉk; when Ck < Ĉk is used, theoretically
Rk should be added, but to avoid filter divergence, Rk can be kept constant. Define the Rk
adjustment factor as

αk = max

(
1,

trace
(
Ĉk
)

trace(Ck)

)
(35)

In order to improve the estimation accuracy of the Kalman filter, the observation noise
covariance matrix and the process noise covariance matrix are generally adjusted in the
opposite direction [25]. Therefore, the adaptive adjustment method for the covariance
matrix of state estimation error is

Rk = αkRk (36)

Qk =
Qk
αk

(37)

3.2. Longitudinal Acceleration Prediction

Due to the existence of (20), it is necessary to predict acceleration, but the acceleration
of the vehicle is related to driver habits and current road conditions, making it difficult to
describe it in mathematical language. Therefore, the ARIMA model in time-series analysis
was used to predict the longitudinal acceleration of vehicles.
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The essence of the ARIMA model is to achieve short-term prediction through historical
observation data with p sampling intervals and historical random interference with q
sampling intervals. Its mathematical expression is

xk = φ0 + φ1xk−1 + φ2xk−2 + · · ·+ φpxk−p + εk − θ1εk−1 − · · · − θqεk−q (38)

where p represents the order of the AR model; q represents the order of the MA model; xk
represents predicted data; xk−1, xk−2, and xk−p represent historical observation data; φ0, φ1,
φ2, and φp represent the AR model coefficients; εk, εk−1, and εk−q represent historical noise
interference; ε ∼ N

(
0, σ2

ε

)
; θ1, θ2, and θq represent the coefficients of the MA model.

We used ten longitudinal acceleration datasets as a set of historical data and predicted
the acceleration value at the next moment using ARIMA. The predicted and true values
of longitudinal acceleration are shown in Figure 7, indicating that ARIMA has a certain
predictive ability for longitudinal acceleration.
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From (38), the predicted longitudinal acceleration at time k can be obtained. However,
observing (20), it is found that a mapping relationship from time k− 1 to time k is required.
Therefore, we used a simple processing method

Fa = ak − ak−1 (39)

where Fa represents the transfer matrix. So, (20) can be changed to

Xσi
k|k−1

=
[
F Fa

][Xσi
k−1

1

]
(40)

4. Simulation and Experimental Results

To verify the effectiveness of the proposed longitudinal velocity estimation method,
we conducted medium- to high-velocity tests (0–30 m/s) in Carla simulation software and
low-velocity tests (0–5 m/s) on campus.

4.1. Carla Simulation Experiment

The experimental equipment used is shown in Table 1. Under the conditions of this
device, Carla simulation software data may occasionally drift, as we will explain in the
experimental results.
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Table 1. Information about experimental equipment.

Equipment Model

CPU I7–7700HQ
GPU GTX 1050Ti

The driving trajectory in simulation experiment 1 is shown in Figure 8, and the vehicle
velocity varies between 0–15 m/s. The longitudinal velocities obtained through LiDAR-
IMU odometry, AUKF, and TSA-AUKF are shown in Figure 9, and the errors with respect to
the longitudinal velocity reference value in Carla are shown in Figure 10. It can be seen that
TSA-AUKF has higher estimation accuracy. During 19–22 s, due to the drift phenomenon in
IMU data, only the LiDAR-IMU odometry could obtain a reasonable longitudinal velocity
estimation, resulting in complete failure of AUKF. TSA-AUKF, based on the prediction of
IMU historical data, could undergo significant correction.
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The driving trajectory in simulation experiment 2 is shown in Figure 11, and the
vehicle velocity varies between 0–30 m/s. Figure 12 shows the longitudinal velocity of
the vehicle obtained by different methods, and the error with respect to the longitudinal
velocity reference value in Carla is shown in Figure 13. It can be clearly seen that TSA-AUKF
still has better accuracy. A tunnel was passed between 28–37 s, resulting in a decrease in the
performance of the LiDAR-IMU odometry. Predictions based on time-series analysis can
be used to correct longitudinal velocity estimates. However, due to the lag of time-series
analysis, there was a certain deviation in TSA-AUKF between 31–37 s.
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The root mean square errors (RMSEs) of LiDAR-IMU odometry, AUKF, and TSA-
AUKF estimation results are shown in Table 2. In simulation experiment 1, compared with
laser odometer and AUKF, TSA-AUKF can achieve approximately 37% and 55% perfor-
mance improvements; in simulation experiment 2, compared with LiDAR-IMU odometry
and AUKF, TSA-AUKF can achieve approximately 62% and 51% performance improvements.

Table 2. RMSE of estimation error.

Scenario (Velocity) LiDAR-IMU Odometry AUKF TSA-AUKF

0–15 m/s 1.828 2.597 1.149
0–30 m/s 4.708 3.201 1.573

4.2. Real-Vehicle Experiment

Figure 14 shows the experimental platform. The platform’s sensors provide longitudi-
nal reference velocity information of 10 Hz, LiDAR provides point cloud information of
10 Hz, IMU provides acceleration and angular velocity information of 100 Hz, and GPS
provides positioning information of 5 Hz. Lidar, IMU, and GPS are installed in the red box
position in Figure 14. Velodyne VLP-16 is used as a LiDAR sensor. The specifications of
IMU are shown in Table 3.

World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 13 of 16 
 

and AUKF, TSA-AUKF can achieve approximately 62% and 51% performance improve-

ments. 

Table 2. RMSE of estimation error. 

Scenario (Velocity) LiDAR-IMU Odometry AUKF TSA-AUKF 

0–15 m/s 1.828 2.597 1.149 

0–30 m/s 4.708 3.201 1.573 

4.2. Real-Vehicle Experiment 

Figure 14 shows the experimental platform. The platform’s sensors provide longitu-

dinal reference velocity information of 10 Hz, LiDAR provides point cloud information of 

10 Hz, IMU provides acceleration and angular velocity information of 100 Hz, and GPS 

provides positioning information of 5 Hz. Lidar, IMU, and GPS are installed in the red 

box position in Figure 14. Velodyne VLP-16 is used as a LiDAR sensor. The specifications 

of IMU are shown in Table 3. 

 

Figure 14. Experimental platform. 

Table 3. Datasheet of LPMS-IG1. 

Sensor Quantity Performance 

Gyroscopes 
Bias stability 4 deg/hr 

Angular random walk 0.12 deg/√hr 

Accelerometers 
Bias stability 25 ug 

Velocity random walk 0.045 m/s/√hr 

hr = hour, s = second; g = 9.8 m/s2, deg = degree, u = 1.0 × 10−6, m = meter. 

The driving trajectory is shown in Figure 15, and the vehicle’s velocity varies between 

0–5 m/s. In this experiment, we compared TSA-AUKA with the traditional GPS-IMU 

method. Figure 16 shows the longitudinal velocity of vehicles obtained using different 

methods, and the error with respect to the reference longitudinal velocity is shown in Fig-

ure 17. It can be clearly seen that TSA-AUKA can provide stable longitudinal velocity es-

timates. 

Figure 14. Experimental platform.



World Electr. Veh. J. 2023, 14, 175 14 of 16

Table 3. Datasheet of LPMS-IG1.

Sensor Quantity Performance

Gyroscopes Bias stability 4 deg/hr
Angular random walk 0.12 deg/√hr

Accelerometers
Bias stability 25 ug

Velocity random walk 0.045 m/s/√hr

hr = hour, s = second; g = 9.8 m/s2, deg = degree, u = 1.0× 10−6, m = meter.

The driving trajectory is shown in Figure 15, and the vehicle’s velocity varies between
0–5 m/s. In this experiment, we compared TSA-AUKA with the traditional GPS-IMU
method. Figure 16 shows the longitudinal velocity of vehicles obtained using different meth-
ods, and the error with respect to the reference longitudinal velocity is shown in Figure 17.
It can be clearly seen that TSA-AUKA can provide stable longitudinal velocity estimates.
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Figure 17. Error curve in real-vehicle experiment.

The RMSEs of LiDAR-IMU odometry, GPS-IMU, and TSA-AUKF estimation results
are shown in Table 4. Compared with LiDAR-IMU and GPS-IMU, TSA-AUKF can achieve
approximately 59% and 28% performance improvements.

Table 4. RMSE of estimation error.

LiDAR-IMU Odometry GPS-IMU TSA-AUKF

0.279 0.158 0.113

5. Conclusions and Future Work

This paper proposes a longitudinal velocity estimation method for driverless vehicles.
By integrating LiDAR and IMU information, the goal of not relying on tires to represent
longitudinal velocity is achieved, and the problem of GPS losing signal in certain areas can
also be avoided. By using an adaptive noise estimator to track the statistical characteristics
of system noise, model errors are reduced and filtering divergence is suppressed, thereby
improving the robustness and filtering accuracy of the algorithm; introducing time-series
analysis into the motion equation improves the estimation accuracy. The feasibility of the
estimation method under medium- to high-velocity conditions was verified in simulation
experiments. Under a velocity variation of 0–15 m/s, the RMSE of TSA-AUKF is 1.149 m/s;
at a velocity variation of 0–30 m/s, the RMSE of TSA-AUKF is 1.573 m/s. In addition, the
data drift generated by the simulation software can also verify the high robustness of the
proposed algorithm. In real-vehicle experiments, TSA-AUKF achieved a 28% performance
improvement compared to existing GPS-IMU longitudinal velocity estimation methods.
The results show that the method proposed in this paper can provide stable longitudinal
velocity estimates for driverless vehicles. In future work, more realistic vehicles will be
used for experiments on standard roads to improve the performance of the algorithm.
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