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Abstract: The dual-carbon strategy advocates a green, environmentally friendly, and low-carbon
lifestyle. In the field of transportation, electric vehicles (EVs) have been regarded as an effective
solution to reduce carbon emissions and to conserve energy. Developing a reasonable charging
guidance scheme for users is a feasible way to solve problems, such as the range anxiety of EV users,
and has a great application value for the promotion of EVs in the future. In practical situations, how
to develop charging induction schemes for users that better meet their needs according to the type of
user and their multi-dimensional preferences is the focus of this paper. To this end, this study utilized
charging behavioral data to investigate the multi-dimensional charging preference of users based
on the collaborative filtering algorithm. Then, a multi-objective optimization model was established
based on the preference degree of each charging station and the integrated travel cost. An NSGA-III
framework was used to design the algorithm to solve the proposed model. The algorithm was tested
using simulation experiments that were designed based on the road network and charging stations
in Beijing. The final result is an experimental analysis of the weight matrices for the three different
preferences of minimum energy consumption cost, minimum time cost, and minimum fee cost, which
yields a difference of about 4.4% between the optimal energy consumption cost and the maximum
energy cost, about 2.9% between the optimal time cost and the maximum time cost, and about 10%
between the optimal fee cost and the maximum fee cost under these three different preferences,
respectively. The proposed multi-objective optimization model is able to provide users with reliable
charging station selection by incorporating their personalized charging preference characteristics and
charge guidance schemes.

Keywords: electric vehicles; charging guidance; multi-dimensional preferences; NSGA-III algorithm

1. Introduction

Conventional oil-fueled vehicles have exacerbated the oil/energy crisis and air pol-
lution. Automotive energy and environmental issues are major problems faced by the
traditional automotive industry. In order to solve such problems, vigorously promoting
the development of electric vehicles (EVs) has become an inevitable choice. However, due
to the current limitations of battery range and charging technology, there are still some
challenges in the actual use of electric vehicles.

Range anxiety: Users’ range anxiety due to inexperience, cold weather, or unexpected
conditions on the road prevents them from accurately predicting the state of charge (SOC),
and the accessibility of their destination makes them less inclined to choose EVs for travel.

Long charging time: The charging of EVs is often time-consuming, and the charging
costs are also expensive, especially at peak charging times, such as during holidays, because
the load on the grid is large and uneven. In addition, charging during peak hours increases
the queuing time, resulting in greater charging time and costs.

World Electr. Veh. J. 2023, 14, 171. https://doi.org/10.3390/wevj14070171 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj14070171
https://doi.org/10.3390/wevj14070171
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0003-3838-0654
https://doi.org/10.3390/wevj14070171
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj14070171?type=check_update&version=1


World Electr. Veh. J. 2023, 14, 171 2 of 23

Insufficient charging infrastructure: At present, the construction of charging infrastruc-
ture is in the planning and development stage, which restricts the increase in EV ownership.
In particular, the charging demand is too high during holidays, and the uneven load on
the power grid or damage of the charging piles causes inconveniences to the use of electric
vehicles, thus causing more charging anxiety among users.

In order to deal with these issues, it is especially important to propose an effective
scheme to induce users to choose a suitable charging station to charge their vehicles. On the
one hand, it should be timely to induce users to charge and prevent them from running out
of power during their trip, and on the other hand, it should help users to select a charging
station according to the existing charging facilities while avoiding queues, considering
personal needs, reducing travel costs, and improving the travel experience. Based on
the full consideration of users’ multi-dimensional preferences, this study calculated the
preference degree of different charging stations according to the demand characteristics to
provide suitable charging guidance solutions for electric vehicle users. A multi-objective
optimization model with the lowest comprehensive cost for the user was established to
provide a charging strategy that reduces the user’s range anxiety and charging anxiety by
considering the user’s multi-dimensional preferences and guides the user to choose the
best charging station. The research on EV charging optimization in this paper not only
provides a theoretical basis for further popularization of EVs in the future, but also has
practical application value in encouraging users to choose EVs as a travel method more
often. With charging guidance service as the goal, this study established charging station
guidance algorithms, models, and schemes for multi-dimensional user preferences in real-
world situations, which have far-reaching practical significance for improving the efficiency
of electric vehicle travel and alleviating users’ range anxiety. By considering the user’s
multi-dimensional preferences, the model recommends suitable charging stations for the
user and potential patronage for underutilized charging stations. In addition, it provides
planners of charging station construction with a more meaningful reference direction for
the development of a charging station network.

The remaining portions of this paper are organized as follows. Section 2 presents
a literature review. In Section 3 we calculate the similarity of different charging stations
using a collaborative filtering algorithm, and the basis for constructing a multi-objective
optimization model is established in Section 4. Section 5 presents a simulation scenario to
verify the model algorithm’s ability to provide the optimal charging induction scheme for
users. At the end, Section 6 provides the conclusions and directions for future research.

2. Literature Review

In the whole travel charging process, the preference habits of EV users directly affect
their choice of charging stations. Therefore, it is necessary to consider users’ preferences in
charging guidance strategies. Several studies have investigated the charging preferences
of the different types of EV users. Among them, Sun et al. [1], Anderson et al. [2], and
Xu et al. [3] used surveys to analyze users’ charging preferences in depth. On the other hand,
Erdem et al. [4] introduced time window constraints to solve and validate users preferences
using heuristic algorithms by considering different charging states and charging strategies
of vehicles at multiple charging stations. Zhao et al. [5] and Wen et al. [6] identified
two influencing factors, tariffs and charging premiums, based on these studies of user
preferences. Hu et al. [7] analyzed users’ attitudes and preferences under risky situations.
Ashkrof et al. [8] and Li et al. [9] analyzed and studied the various preferences of users by
building a mixture model.

On the other hand, some studies have investigated different kinds of EV users’ charg-
ing preferences in depth. Among them, Hu et al. [10] and Erdogan et al. [11] analyzed
the charging preferences of different types of EV users in terms of EV trajectory data and
charging infrastructure optimization, respectively. Zakariazadeh et al. [12], Das et al. [13],
Guang et al. [14], and Zhang et al. [15] studied the charging preferences of different classes
of users to optimize EV charging and discharging strategies to alleviate the pressure on



World Electr. Veh. J. 2023, 14, 171 3 of 23

the grid during peak hours. Both Shi et al. [16] and Deb et al. [17] improved the modelling
of user preference for charging stations by optimizing the deployment scheme of EV fast
charging stations. The studies by Chen et al. [18], Wang et al. [19], Sarker et al. [20], and
improved the modelling of user preferences for charging stations as a multi-objective opti-
mization problem considering different user preferences to determine the optimal charging
scheme. Globisch et al. [21] analyzed the factors affecting charging station preferences by
studying different types of potential EV users to optimize the construction planning of
future charging stations. Studies by Zhang et al. [22], Huang et al. [23], Xu et al. [24] all
integrated the information of charging station locations, road networks, and power grids
into the same diagram, and found that reasonable charging guidance for EVs could not
only adequately coordinate the distribution of charging loads, but also relieve some of the
traffic pressure. Zhang et al. [25] further formed a complete charging guidance method,
and the effectiveness and efficiency of the method were verified in a large city. However,
none of these studies really take the user’s own multidimensional preferences into account
for charging from the user’s perspective.

In summary, most of the existing literature on how to reduce the travel costs for
EV users (similar and different types of users) has focused on optimizing the total travel
distance and reducing the total travel costs, ignoring the multi-dimensional preferences
of users for EV charging stations. In reality, users’ preferences for EV charging stations
are often formed by considering multi-dimensional cost objectives such as range anxiety
caused by remaining battery power, capacity limitation of charging stations, and charging
time period, which can have a considerable impact on their final decision in choosing a
charging station. In this study, based on these multi-dimensional preferences of users, we
established a multi-objective charging optimization model and determined the optimal
solution to provide EVs users with an effective charging guidance scheme. Based on the
existing user travel path planning method, this study integrated the multi-dimensional
preferences of users, including preferences for charging stations and each target cost, and
built a model, helping users make charging decisions, improving user experience, and
providing a theoretical basis for further popularization of electric vehicles in the future.

3. User Preference Analysis

With the popularity of electric vehicles, and to further improve users’ travel satis-
faction, when providing users with charging guidance solutions, only considering the
users’ travel costs does not accurately reflect users’ diverse needs, which may lead to
users not being satisfied with the selected charging stations and a negative user experience.
Collaborative filtering algorithms are one of the more commonly used recommendation
algorithms. In this study, we relied on the user’s historical selection data for charging
stations to determine the relationship between the user and a specific charging station. This
allows us to recommend not only the user’s previously preferred charging stations, but also
potential preferred charging stations for similar types of users. In this section, a preference
model is established based on the user’s behavior when it comes to choosing charging
stations using a collaborative filtering algorithm to analyze the user’s preference degree
for charging stations and to lay the foundation for the establishment of the subsequent
multi-objective optimization model.

3.1. Collaborative Filtering Algorithm

Collaborative filtering algorithms can help users discover potential but undiscovered
charging stations. Depending on the object, this algorithm can usually be divided into user-
based and item-based collaborative filtering. In this study, we considered the relationship
between users and charging stations; therefore, the objects of study are the EV users
and charging stations. The charging station-based collaborative filtering is based on the
set of charging stations that the users are interested in and recommends other similar
charging stations in the set to users by analyzing the similarity between different charging
stations. The core principle of the algorithm is that similar charging stations have the
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same attractiveness to the same users. The schematic diagram of the collaborative filtering
mechanism based on charging stations is given in Figure 1.
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3.2. Modeling of User Preferences for Charging Stations

The charging station preference model established in this study was constructed based
on the user’s charging record, which mainly describes the correspondence between the
user and the charging station and indicates the charging station selected by the user in one
charging decision and maps the data into the number of times the user charges at each
charging station as a feature quantity to facilitate the subsequent algorithm development.
For experienced EV users, they often choose certain fixed charging stations, and the accu-
racy of recommendation results is higher due to clear behavioral habits. In terms of the
number of users and charging stations, the number of the latter is much smaller than the
number of the former, so the collaborative filtering algorithm based on charging stations
was chosen. For new users of electric vehicles, their charging habits are not yet fixed, and
they rarely choose a fixed charging station for charging, so the model needs to maintain
and update the similarity between charging stations frequently.

Based on the above analysis, the collaborative filtering algorithm was applied to the
charging station selection preference, and its recommendation process is shown in Figure 2.

Based on the above analysis of the charging station selection recommendation process,
the charging station preference model was designed.

1. Similarity calculation

Through the various similarity calculation methods and the analysis of the recom-
mended process, the Pearson correlation coefficient method was used to calculate the
similarity of charging stations and users, and the similarity of charging stations i and j is
calculated using Equation (1):

sim(i, j) =
∑u∈U (Ru,i − Ri)(Ru,j − Rj)√

∑u∈U (Ru,i − Ri)
2
√

∑u∈U (Ru,j − Rj)
2

(1)

Similarly, for user x and user y the similarity is calculated using Equation (2):

sim(x, y) =
∑i∈I (Rx,i − Rx)(Ry,i − Ry)√

∑i∈I (Rx,i − Rx)
2
√

∑i∈I (Ry,i − Ry)
2

(2)
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2. Feature extraction

In the preference model for charging station selection, the user’s rating value for the
charging station is determined by the number of times the user has utilized that station.
Based on the user’s charging records, the number of times the user has charged at each
charging station is counted and provided to the model as a feature vector for similarity
calculations. Based on this, the user’s charging data are processed and mapped to the
number of times the user has charged at each charging station, i.e., the user’s rating value
for the charging station. The results after processing are shown in Table 1.

Table 1. User charging time mapping table.

Users Charging Station 1 Charging Station 2 Charging Station 3

1 R1,1 R1,2 R1,3
2 R2,1 R2,2 R2,3
3 R3,1 R3,2 R3,3

3. Model Design

The users are classified according to the number of times they have charged, and
the new and old users are used for preference calculations using user-based and charging
station-based collaborative filtering, respectively. The modeling processing flow is given
in Figure 3.



World Electr. Veh. J. 2023, 14, 171 6 of 23

World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 6 of 24 
 

Table 1. User charging time mapping table. 

Users Charging Station 1 Charging Station 2 Charging Station 3 

1 1,1R  
1,2R  

1,3R  

2 1R2,
 

2,2R  
2,3R  

3 1R3,
 

3,2R  
3,3R  

3. Model Design 

The users are classified according to the number of times they have charged, and the 

new and old users are used for preference calculations using user-based and charging 

station-based collaborative filtering, respectively. The modeling processing flow is given 

in Figure 3. 

 

Figure 3. Charging station selection preference modeling process. 

The model first calculates the similarity based on the number of charging times of the 

users, and then uses the similarity to calculate the preference of the users for the research 

object (in this case, charging stations) to ensure that the model can recommend to the users 

both the preferred charging stations and other charging stations that may be of interest 

according to the preference habits of the users. As shown in Figure 3, after the similarity 

calculation, the preference is calculated by finding the set of K objects with the highest 

similarity according to the K nearest neighbor principle. The detailed process is divided 

into two cases: for new users, given the number of neighbors of the target user, the set of 

users similar to the target user is determined by using the similarity calculation, and the 

user’s preference for charging stations is calculated using Equation (3): 

'

'

,

,

( , ) ( )

( , )

n i nn U
u i u

n U

sim u n R R
P R

sim u n





 −
= +




 (3) 

Similarly, for older users, given the number of neighbors of the target charging sta-

tion, the set of charging stations similar to the target charging station is determined by 

using the similarity calculation, and the preference based on collaborative filtering of 

charging stations is calculated using Equation (4): 

Figure 3. Charging station selection preference modeling process.

The model first calculates the similarity based on the number of charging times of the
users, and then uses the similarity to calculate the preference of the users for the research
object (in this case, charging stations) to ensure that the model can recommend to the users
both the preferred charging stations and other charging stations that may be of interest
according to the preference habits of the users. As shown in Figure 3, after the similarity
calculation, the preference is calculated by finding the set of K objects with the highest
similarity according to the K nearest neighbor principle. The detailed process is divided
into two cases: for new users, given the number of neighbors of the target user, the set of
users similar to the target user is determined by using the similarity calculation, and the
user’s preference for charging stations is calculated using Equation (3):

Pu,i = Ru +
∑n∈U′ sim(u, n)× (Rn,i − Rn)

∑n∈U′ sim(u, n)
(3)

Similarly, for older users, given the number of neighbors of the target charging station,
the set of charging stations similar to the target charging station is determined by using
the similarity calculation, and the preference based on collaborative filtering of charging
stations is calculated using Equation (4):

Pu,i = Ri +
∑j∈I′ sim(i, j)× (Ru,j − Rj)

∑j∈I′ sim(i, j)
(4)
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4. Optimization Model for EV Charging Guidance

The use of electric vehicles has been expanding in recent years, and it is necessary
to provide a reasonable charging guidance strategy to help users choose the optimal
charging station from the user’s perspective. An efficient charging guidance strategy can
effectively improve user satisfaction and thus promote the further development of electric
vehicles in the future transportation system. The current research on electric vehicle users’
travel charging does not comprehensively consider the user’s preferences. This section
details a model that combines the user’s preferences for charging stations and the user’s
multi-dimensional preferences for targets in the previous section and considers the user’s
personalized needs for multi-objective modeling to finally propose a reasonable charging
guidance scheme to help users select the best charging station.

4.1. Basic Assumptions

The charging guidance scheme considers several factors, and for better subsequent
model construction, the following assumptions were made to simplify and generalize
the problem.

Assumption 1. The locations and number of charging stations are given in advance, because
this study is concerned with charging guidance for EVs and does not discuss the distribution of
charging stations.

Assumption 2. The charging power of each charging station is divided into fast charging and slow
charging, and the choice of which mode depends on the user’s starting charging time. Charging time
is an important factor influencing the user’s choice of charging station.

Assumption 3. Assuming that users know their charging needs, the destination they are traveling
to, and the initial charge before departure, the charge rate is fixed regardless of when the user arrives
at the charging station to charge, and each user leaves the charging station fully charged. This
study only addresses the user’s preferences and does not address the time-of-day pricing of charging
stations and partial charging strategies.

Assumption 4. Only charging requests generated at the user’s initial moment of departure are
considered, and dynamic charging requests generated during the user’s trip are not considered; the
user has, at most, only one charging request during the trip from the starting point to the end point,
and since short trips within cities usually require only one charge, the need for multiple charges is
very rare.

Assumption 5. The impact of uncertainties, such as weather or other unexpected events, is not
considered during the trip, and the focus is only on energy consumption and travel time improvement
due to the randomness of the speed during the electric vehicle trip.

4.2. Notations

Let G = (V, E) be a directed graph consisting of a vertex set V and an edge set E. V
denotes the set of ordinary nodes at the starting and ending locations of electric vehicle
users and charging stations in the road network, and E denotes the set of directed, entitled,
and connected road sections between nodes. Let V′ and E′ denote the subsets of the sets V
and E, respectively. The main components of the charging service guidance scheme are
described as follows.

Departure time: The departure time of the EV user from the starting point, obtained
by solving the model.

Charging plan: Based on the full charging strategy, the optimal charging station is
assigned to the user, which is obtained from the model solution.

Driving route: According to the determined optimal charging station, the correspond-
ing route is given by the shortest path algorithm.

The overall idea of the guidance scheme considering users’ multi-dimensional prefer-
ences is shown in Figure 4.
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In order to facilitate the explanation of the proposed model, the variables used in the
model are defined, which include decision variables and general variables. Let xij denote
one set of decision variables in the model, which indicates that user i selects charging station
j for charging and takes a range of values from the set {0, 1}, as expressed in Equation (5).

xij =

{
1 User i selects charging station j

0 otherwise
(5)

The other decision variable in the model is denoted as To
i , which presents the time at

which user i leaves the starting point.
We use a table to list the intermediate variables and parameters, which is detailed in

Appendix A at the end of the paper.

4.3. Objective Functions

Due to the multi-dimensional nature of user needs, the model optimization objectives
are divided into the following categories in terms of the factors that influence the user’s
selection of a charging station. In this paper, the energy consumption cost, time cost, fee
cost, and penalty cost of electric vehicle users are considered, and the model is subsequently
built with these four objective functions minimized below.

4.3.1. Energy Consumption Cost

Driving energy consumption, as a major component of users’ travel costs, is one of
the factors considered by users for travel. In order to reach the destination smoothly and
safely, users need to pay attention to the change in electric vehicle power at all times.
A larger energy consumption will not only bring higher energy cost to users, but also
induce range anxiety, which will affect the expansion of EV usage. Therefore, under the
condition of satisfying the demand constraint, users are more inclined to choose the travel
and charging strategy with less energy consumption. In this study, the lowest user energy
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consumption cost is taken as the optimization objective, and the objective function is shown
in Equation (6):

minZe = min∑i∈U ∑j∈S (e
os
ij + esd

ij )xij (6)

eos
ij and esd

ij are calculated using Equations (7) and (8):

eos
ij = minFo

ij = min
Ro

ij

(max
v ∑r∈Ro

ij
er) (7)

esd
ij = minFd

ij = min
Rd

ij

(max
v ∑r∈Rd

ij
er) (8)

The vehicle travel energy consumption is the sum of the travel energy consumption
from the starting point to the charging station; the travel energy consumption is the sum
from the charging station to the end point; and the objective function represents the minimal
total vehicle travel energy consumption of all users.

4.3.2. Time Cost

Usually, electric vehicle users want to complete the travel process in the shortest
possible time during actual travel. The travel time of electric vehicles is composed of the
travel time on the road and the time consumed at the charging station, where the time
consumed in the charging station mainly includes the charging time and the waiting time.
The objective function is shown in Equation (9):

minZt = min∑i∈U ∑j∈S (t
r
ij + tw

ij + tc
ij)xij (9)

The time cost tr
ij is calculated using Equation (10):

tr
ij = tos

ij + tsd
ij (10)

From the above analysis of the robust optimal path study, the travel time is calculated
using Equations (11) and (12):

tos
ij = ∑r∈R∗ij1

dr

v∗r
(11)

tsd
ij = ∑r∈R∗ij2

dr

v∗r
(12)

Drawing on previous research results and combining the assumptions of the research
problem in this study, the queue waiting time of users at charging stations is calculated
using Equation (13):

tw
ij =

{
Ee
Pj
(1− SOCc

ij) + INT(
Nij
Cj
− 1)∆e Nij ≥ Cj

0 Nij < Cj
(13)

The queue waiting time is divided into two parts: the charging time of the EVs being
served by the selected charging post, and the charging time of other EVs in the queue. The
queuing time here takes into account the target user’s charging of other vehicles at the
charging station during the process from the starting point to the charging station as well
as the state change of the charging station over time. The latter can be derived from the
basic information of the charging station according to the above equation, providing a basis
for the target user to select the charging station according to the time cost.
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According to the hypothetical conditions, the electric vehicle user is fully charged at
the charging station and the charging time is calculated using Equation (14):

tc
ij =

Ee − (Eo
i − eos

ij )

Pj
(14)

4.3.3. Fee Costs

In addition to considering the energy and time costs during the user’s travel, the cost
spent by the user at the charging station is also an important factor for the user to consider.
The cost components usually include service fee, charging fee, and parking fee, and the
objective function is expressed as Equation (15):

minZc = min∑i∈U ∑j∈S (c
s
ij + cc

ij + cp
ij)xij (15)

The service and charging fees are related to the charging power, and the parking
charge is related to the total time the electric vehicle stays at the charging station, and each
component cost is calculated using Equations (16)–(18), respectively:

cs
ij = ρs

j [Ee − (Eo
i − eos

ij )] (16)

cc
ij = ρc

j [Ee − (Eo
i − eos

ij )] (17)

cp
ij = ρ

p
j (t

w
ij + tc

ij) (18)

4.3.4. Penalty Costs

On the basis of the above costs, we considered the demand of EV users for charging
moments, which may be different for different users who wish to perform charging, and
the penalty cost is highlighted here in conjunction with the time window constraint that
was previously studied. The objective function expression is shown as Equation (19):

minZp = min∑i∈U ∑j∈S pijxij (19)

This calculation is related to the user’s departure moment, which is used as a decision
variable and is expressed in the penalty cost. The decision variable is used to determine the
user’s starting charging moment and to judge whether it is within the time frame in which
the user expects to perform charging. The model aims to minimize the penalty cost for all
users and helps the user to select the optimal charging station.

4.4. Constraints
4.4.1. Charging Station Capacity Constraint

Electric vehicle users need to consider the charging station capacity constraint when
selecting a charging station. Since the charging station has a limited number of vehicles
that can be accommodated at one time, after the number of vehicles reaches its capacity,
no new vehicles are allowed to enter the charging station to charge or wait in line until an
electric vehicle leaves the station; the constraint is given in Equation (20):

Nj ≤ Vj (20)

where Nj is the current number of vehicles in charging station j. Its components and
calculation methods are described in detail in the subsequent section, and Vj denotes the
capacity of charging station j. All units are in vehicles.
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4.4.2. Remaining Mileage Constraint

Due to the limitation of the battery capacity, if the driving range of electric vehicles
cannot meet the travel demand of users, the users could develop range anxiety. The
remaining mileage is used to indicate the driving mileage that can be supported by the
current electric vehicle’s power, and since the previous section used the path search method
with robust optimization for the problem of random driving energy consumption, the
constraint only requires that the remaining mileage of the electric vehicle at any node
position is greater than or equal to zero; the constraint is expressed as in Equation (21):

Dijk ≥ 0 ∀k ∈ R (21)

where:

R—User i selects the travel path to the charging station j;
k—Nodes on the path;
Dijk—Remaining mileage at the node on the path.

The remaining mileage depends on the current remaining power of the vehicle and
is a function of the remaining power, calculated using Equation (22), which translates
this constraint into a constraint on the remaining power of the vehicle, which is shown in
Equation (23).

Dijk = f (eijk) (22)

eijk ≥ 0 ∀k ∈ R (23)

where eijk is the remaining power of the vehicle at node k on the path.
This constraint helps to determine the optimal charging station selection, ensuring

that the vehicle can reach its destination before it runs out of power and guaranteeing safe
travel for users.

Under the system optimum objective, individual users cannot all be assigned to the
most ideal charging station; however, the system optimum is beneficial to users from the
overall perspective in the actual complex traffic scenario. If the system optimum is not
considered and the results are optimized for individual users, some users may not be
assigned to charging stations. Based on this, the model design is considered reasonable.

Other constraints include:
Eo

i ≤ Ee (24)

∑j∈S xij = 1 (25)

Pj =

{
60 0 < t ≤ 19
7 19 < t ≤ 24

(26)

The constraint in Equation (24) indicates that the user’s initial power is not greater
than the battery capacity of the electric vehicle; the constraint in Equation (25) indicates
that the user’s travel process can only choose one charging station for charging based on
the assumptions considered in the problem; and the constraint in Equation (26) indicates
the fast charging and slow charging power set according to the time that the user starts
charging, where t indicates the charging moment in hours.

5. Numerical Simulation
5.1. Example Scenario Description

We conduct a numerical simulation in this section to verify the proposed model.
The model was applied to solve each of the four objectives of optimization of energy
consumption, time, cost, and penalty cost under the corresponding constraints, and the
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optimal charging scheme was selected by combining the user preferences, from which the
feasibility and practicality of the scheme were analyzed.

In this simulation, we extracted the Beijing road network data, including road network
node data and road section data, using OpenStreetMap (OSM). After data processing and
selection of paths, we obtained a comprehensive information table of the road network;
some of the data are shown in Table 2.

Table 2. Comprehensive information of road network.

Start Node End Node Section Length Start Node Latitude and
Longitude

End Node Latitude and
Longitude Travel Time

3634 19983 165.3992 116.3379, 39.91324 116.3359, 39.91314 29.77185
26 13103 35.15128 116.3281,39.9133 116.3282, 39.91359 5.061784

13103 23963 364.2321 116.3282,39.91359 116.3283, 39.91685 52.44942
17374 350 216.9624 116.2817, 39.93521 116.2816, 39.93715 11.00091

350 22529 224.9431 116.2816, 39.93715 116.2813, 39.93917 11.40557
730 3731 35.16322 116.3506, 39.99189 116.351, 39.99192 1.947502

3731 17628 378.7178 116.351, 39.99192 116.3554, 39.99212 20.97514
17628 16729 161.4882 116.3554, 39.99212 116.3573, 39.99221 8.943964
16729 16730 54.82072 116.3573, 39.99221 116.358, 39.99225 3.036225
2200 359 268.0961 116.3596, 39.97348 116.3564, 39.97342 16.08577
359 22176 115.0853 116.3564, 39.97342 116.3551, 39.97339 6.905119

17460 21939 119.731 116.3164, 39.95222 116.3164, 39.95115 7.18386
36 9542 371.0652 116.3621, 39.94738 116.3629, 39.95062 21.89893

The length of the road section is in meters (m), the maximum energy consumption is in kWh, and the travel time
of the road section is in seconds (s). According to the comprehensive table for road network construction, the road
network consists of 4400 nodes and 4397 road sections; the data table was processed into ArcGIS, and the road
network schematic diagram is shown in Figure 5.

A model is built based on part of the road network in Beijing, and the locations of
50 charging stations are given in the actual situation of the road network. Given five EVs
to assign, the electric vehicles generate a charging demand at the starting node in the
road network. The travel O-D nodes of the five users here are 6528→7521, 29857→48484,
29603→48603, 21385→20842, and 17358→48408. The node data of the 50 charging stations
are shown in Table 3.

Table 3. The charging station corresponds to the road network node.

Charging Station Number Node Number

1 48654
2 19984
3 19
4 24093
5 29
6 24098
7 33830
8 33831
9 3640
10 12349
11 12367
12 48742
13 20600
14 38011
15 12418
16 48262
17 20615
18 20616
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According to the collaborative filtering algorithm, the result of the Pearson similarity
calculation for the 50 charging stations is a 50 × 50 matrix; some of the results are shown
in Table 4.

Table 4. Similarity between some charging stations in simulation.

Charging Station
Charging Station

50 41 47 1 2 33 3 11

50 1 −0.356 0.979 −0.400 −0.133 0.509 −0.356 −0.400
41 −0.356 1 −0.250 0.612 −0.250 0.612 −0.250 −0.408
47 0.979 −0.250 1 −0.408 −0.250 0.612 −0.250 −0.408
1 −0.400 0.612 −0.408 1 −0.408 0.166 −0.408 0.166
2 −0.133 −0.250 −0.250 −0.408 1 −0.408 −0.250 −0.408
33 0.509 0.612 0.612 0.166 −0.408 1 −0.408 −0.666
3 −0.356 −0.250 −0.250 −0.408 −0.250 −0.408 1 0.612
11 −0.400 −0.408 −0.408 0.166 −0.408 −0.666 0.612 1

The EVs generate a charging demand at the starting nodes. The basic information of
the EVs is shown in Table 5, including the initial power level and the time period when the
user expects to perform charging, assuming the battery capacity of the EVs is 25 kWh.

Table 5. Basic information on the electric vehicles and travel plans.

Users Departure
Nodes

Destination
Nodes

Initial Charge
(kWh)

Earliest Time to Start
Charging

Latest Time to Start
Charging

U1 6528 7512 10 8:00 9:00
U2 29857 48484 15 8:00 9:00
U3 29603 48603 10 10:00 12:00
U4 21385 20842 12 12:00 14:00
U5 17358 48408 9 17:00 19:00

The charging station data include the number N0 of vehicles currently present in the
charging station, the number of charging posts Cj, the vehicle arrival rate aj (vehicles/min),
the charging station capacity Vj, the parking fee per unit of time ρ

p
j (CNY/h), the service

fee per unit of electricity ρs
j (CNY/kWh), and the charging fee per unit of electricity ρc

j
(CNY/kWh). The correspondence of nodes on the charging station road network is shown
in Table 6. The parameters ρ

p
j , ρs

j , and ρc
j are given in combination with the studied range,

i.e., the actual charging station pricing standard in Haidian District, Beijing; aj and Vj are
generated randomly within the specified range by combining experience; and N0 and Cj
satisfy the condition that they are not larger than the charging station capacity Vj.

Converting the expected arrival time in Table 5 to time periods in minutes, user
1 expects the charging time period to be [480, 540], user 2 expects the charging time period
to be [480, 540], user 3 expects the charging time period to be [600, 720], user 4 expects the
charging time period to be [720, 840], and user 5 expects the charging time period to be
[1020, 1140]; the algorithm solution parameters were set as shown in Table 7.
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Table 6. Basic information on the charging stations.

id ρs
j ρc

j ρ
p
j aj Cj Vj N0

1 0.8 1.6 10 0.12 7 19 3
2 0.6 1.7 8 0.07 6 16 3
3 1 2.5 5 0.05 3 16 6
4 1.2 1.6 2 0.12 3 20 2
5 0.8 1.7 10 0.04 10 18 3
6 0.8 2.5 5 0.14 10 17 4
7 1 1.6 2 0.05 8 15 5
8 1 1.7 2 0.07 4 15 1
9 1 2.5 2 0.14 9 20 6
10 1 2.3 5 0.06 7 16 8
11 1 2.2 5 0.07 10 17 7
12 0.6 2.3 10 0.14 4 18 2
13 0.6 2.5 10 0.12 6 15 1
14 0.6 1.6 10 0.09 3 17 2
15 0.6 1.6 10 0.03 8 15 2
16 0.6 1.6 10 0.06 5 19 7
17 0.6 1.6 8 0.12 8 19 6
18 0.6 1.6 8 0.09 9 19 2
19 0.6 1.6 8 0.03 8 17 3
20 0.8 1.6 8 0.06 5 15 3

Table 7. Algorithm parameter settings for model.

Algorithm Parameters Description Value

generation Number of iterations 100
popSize Population size 50

pc Crossover probability 0.9
pm Mutation probability 1World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 13 of 24 
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5.2. Optimal Results and Analysis

In the given scenario, the model was solved using the NSGA-III algorithm, and the
solution results are shown in Table 8.

Table 8. Algorithm solution result for model.

User 1 User 2 User 3 User 4 User 5
Charging

Station
Departure

Time
Charging

Station
Departure

Time
Charging

Station
Departure

Time
Charging

Station
Departure

Time
Charging

Station
Departure

Time

20 502 14 490 17 660 17 773 18 1025
18 454 19 487 17 660 17 772 18 1004
20 454 14 462 17 662 17 717 20 1062
18 472 19 460 17 668 17 778 18 1057
20 454 19 492 17 668 13 773 20 1038
18 454 19 459 17 668 17 779 18 1077
18 472 19 458 17 668 17 779 18 1000
20 454 19 462 17 668 17 773 20 1027
20 454 19 460 17 668 17 773 20 1056
18 454 19 458 17 668 17 780 18 1027
20 454 19 462 17 668 13 773 20 999
20 454 19 459 17 667 13 780 20 999
20 454 19 458 17 669 17 780 18 1012
20 458 19 459 17 632 17 733 18 1029
18 471 19 458 17 668 17 779 18 1000
20 454 19 459 17 658 17 771 17 1000
18 473 19 463 17 659 17 771 17 1017
20 468 19 460 17 613 17 772 18 1004
20 454 19 462 17 663 17 774 18 1025
20 454 14 462 17 662 17 717 20 1062
18 471 19 489 17 662 17 773 17 1001
20 454 19 492 17 668 17 773 20 1038
18 454 19 461 17 660 17 779 18 1026
18 453 19 462 17 658 17 780 17 999
20 457 19 462 17 663 17 779 17 1017
18 454 19 489 17 658 17 780 17 999
20 468 19 488 17 613 17 772 18 1004
20 454 19 487 17 667 13 752 20 999
20 454 19 458 17 669 17 780 18 1012
20 454 19 462 17 668 17 718 20 1027
18 472 19 458 17 695 17 774 18 1000
18 471 19 458 17 668 17 779 18 1000
20 455 19 490 17 659 17 773 17 1001
18 453 19 460 17 668 17 778 18 1057
20 454 19 458 17 669 17 780 18 1038

The corresponding values of each objective function, i.e., the total cost of the system,
are shown in Table 9.

Taking user 1 as an example, whose expected charging time is from 8:00 a.m. to
9:00 a.m., for the second solution in the solution set, the departure time for user 1 is given
as 7:34 a.m. Combined with the corresponding penalty cost in Table 10, the user charges
within their expected time period for charging, and the solution is consistent with the user’s
expectation and can be considered reasonable. Taking the first solution in the solution set
as an example and transforming the time, the corresponding charging guidance scheme
is that user 1 chooses to charge at charging station number 20 at 8:22 a.m., user 2 chooses
to charge at charging station number 14 at 8:10 a.m., user 3 chooses to charge at charging
station number 17 at 11:00 a.m., and user 4 chooses to charge at charging station number 17
at 12:53 p.m. At 12:53 p.m., user 4 selects the charging station number 17 for charging, and
user 5 selects the charging station number 18 for charging at 17:05 p.m.
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Table 9. The result of solving each objective function for the model.

Energy Consumption Cost
(kWh) Time Cost (h) Fee Cost (CNY) Penalty Cost (CNY)

12.953 2.960 155.658 4.701
13.094 3.011 152.349 0
12.734 2.919 158.346 0
13.094 3.011 152.349 0
12.524 2.923 169.293 0
13.094 3.011 152.349 0
13.094 3.011 152.349 0
12.660 2.929 157.500 0
12.660 2.929 157.500 0
13.094 3.011 152.349 0
12.524 2.923 169.293 0
12.524 2.923 169.293 0
12.879 2.970 154.813 0
12.879 2.970 154.813 0
13.094 3.011 152.349 0
13.045 2.997 154.441 0
13.260 3.037 151.977 0
12.879 2.970 154.813 0
12.879 2.970 154.813 0
12.734 2.919 158.346 0
13.260 3.037 151.977 0
12.660 2.929 157.500 0
13.094 3.011 152.349 0
13.260 3.037 151.977 0
13.045 2.997 154.441 0
13.260 3.037 151.977 0
12.879 2.970 154.813 0
12.524 2.923 169.293 0
12.879 2.970 154.813 0
12.660 2.929 157.500 0
13.094 3.011 152.349 0
13.094 3.011 152.349 0
13.045 2.997 154.441 0
13.094 3.011 152.349 0
12.879 2.970 154.813 0

Table 10. User preference weight for each charging station in the model.

Users Charging Station Preference Weights

1 (18, 1.0), (20, 0.3)
2 (14, 0.7), (19, 0.8)
3 (17, 1.0)
4 (13, 1.0), (17, 0.5)
5 (17, 1.0), (18, 0.3), (20, 0.7)

The preference coefficients of each user for each charging station are shown in Table 10.
Different types of users have different degrees of preference for choosing charging

stations. The charging guidance scheme is designed with three different user preferences:
lowest energy cost (w1), lowest time cost (w2), and lowest cost (w3). The optimal charging
decisions for the three different cases are shown in Tables 11–13.
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Table 11. Optimal charging decisions for users corresponding to w1.

User O-D Nodes Departure Time Charging Station Road Network Nodes Where Charging Stations
Are Located

1 6528→7512 7:34 20 20618
2 29857→48484 8:12 19 48263
3 29603→48603 11:08 17 20615
4 21385→20842 12:53 13 20600
5 17358→48408 17:18 20 20618

Table 12. Optimal charging decisions for users corresponding to w2.

User O-D Nodes Departure Time Charging Station Road Network Nodes Where Charging Stations
Are Located

1 6528→7512 7:34 18 20616
2 29857→48484 8:07 19 48263
3 29603→48603 11:00 17 20615
4 21385→20842 12:52 17 20615
5 17358→48408 16:44 18 20616

Table 13. Optimal charging decisions for users corresponding to w3.

User O-D Nodes Departure Time Charging Station Road Network Nodes Where Charging Stations
Are Located

1 6528→7512 8:22 20 20618
2 29857→48484 8:10 14 38011
3 29603→48603 11:00 17 20615
4 21385→20842 12:53 17 20615
5 17358→48408 17:05 18 20618

The objective function was solved for each of the three different types of user prefer-
ences; the results are shown in Table 14.

Table 14. The value of each objective function corresponding to the three different types of user
preferences.

Weight
Value of the Objective Function Ze Zt Zc

w1 12.524 2.923 169.292
w2 13.094 3.011 152.348
w3 12.524 2.923 169.292

The value of w1 indicates that all users prefer the decision option with the lower total
travel time cost; the value of w2 indicates that all users prefer the decision option with the
lower total travel cost; and the value of w3 indicates that all users prefer the decision option
with the lower total travel energy cost. It is easy to observe from Table 14 that in the above
three cases, the solution system with w1 had the lowest time cost, the solution system with
w2 had the lowest travel cost, and the solution system with w3 had the lowest energy cost.

In order to further study the influence of different preference weights on each objective,
the Pareto curve was used to analyze the optimal objective values in the above three cases.
The Pareto curves using the three different types of preference weights are shown in
Figures 6–8. The Pareto curve using w1 obtained the minimum value of the time cost, w2

obtained the minimum value of the travel cost, and w3 obtained the minimum value of the
energy cost.
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According to the above analysis, the cost of each target affecting the system did not
change much under the different weight cases, and the optimal decision scheme given
according to the model solution results corresponded to the lowest values of each targeted
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cost (energy consumption, time, and money), meaning the optimization results derived
from the model can be considered reasonable.

5.3. Analysis of Algorithm Parameters and Convergence

In order to verify the charging guidance model and related algorithms proposed in
this paper, this section described the detailed analysis of simulation cases. Firstly, the
road network was modeled through data processing to search for robust optimal paths
between the nodes of the road network; then the preference of users for charging stations
was analyzed according to the collaborative filtering algorithm in Section 3. On this
basis, the model built in Section 3 was solved separately, and the results of the algorithm
were compared and analyzed to verify the feasibility and effectiveness of the model and
algorithm, and finally the optimal charging guidance scheme for EV users was determined.

In this section, the corresponding algorithm parameter settings and convergence are
verified. The algorithm sets different population sizes, i.e., 10, 30, and 50, to be solved,
and the corresponding numbers of non-dominated solutions are 10, 30, and 35. The mean
value of each objective function is taken from the Pareto optimal solution set obtained by
solving the model under different population sizes, and the change in its relative value
under different iterations was observed. Compared with the changes in the other three
objective functions, it was found that the penalty cost converged the slowest according to
the convergence results (Figure 9).
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From Figure 9, it can be easily observed that the algorithm converged the fastest
when the population size was 30 and converged the slowest when the size was 10. In
the three scale cases, the objective function value remained stable when the number of
iterations was greater than 50, and the parameter settings were given such that there were
as many non-dominated solutions as possible, subject to the number of iterations it takes to
reach convergence.

In this section, the previously studied contents were verified using examples. The road
network data were first collected for road network modeling and an optimal path search
was performed using robust optimization. The similarity between charging stations was
analyzed based on the given user charging data using a collaborative filtering algorithm.
Simulation experiments of the charging guidance schemes considering multi-dimensional
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user preferences were designed; the given different preference matrices were solved sep-
arately to compare the differences between the results in the case of different preference
matrices to analyze the underlying reasons for them.

6. Conclusions

Previous studies on EV charging guidance strategies have only considered the total
travel cost of users, the congestion level of the traffic network, and the load balance of the
grid. However, in practice, it is necessary to recommend charging solutions for different
types of users from the user’s point of view to meet the multi-dimensional preferences of
various users. In this paper, we studied users’ preferences for charging stations, modeled
these preferences based on collaborative filtering, and ranked the existing but unconscious
preferences for charging stations from analyzing the similarity between charging stations,
so as to provide users with charging stations that suit their preferences and charging habits,
thereby improving user satisfaction. The charging induction problem considering users’
multi-dimensional preferences was described, the assumptions of the problem were given,
and the general modeling solution was determined. According to the multi-dimensional
charging demand of users, the multi-objective optimization model was established with
the optimal system based on energy consumption, travel time, travel cost, and penalty cost
as the objective functions in combination with the actual conditions. Combined with the
above-mentioned study of user preferences for charging stations, the solution was designed
according to the model characteristics, including algorithm design using the NSGA-III
framework. Using part of the road network in the Haidian District of Beijing as an experi-
mental scenario, we obtained the actual road network data and processed and modeled the
road network. Simulation experiments were designed for the charging induction model
considering users’ multi-dimensional preferences and given different preference weight
cases of users; the solution was analyzed by combining the users’ preferences for each
charging station. The influence of different users’ preference degrees for each target on
the optimal decision scheme selection was analyzed in conjunction with the actual condi-
tions. The feasibility and reasonableness of the scheme were verified. Additionally, the
optimal solution was selected from the Pareto solution set, and the optimal travel charging
induction scheme was finally determined. A charging guidance strategy that considers
users’ multi-dimensional charging preferences is a more appropriate approach to solve
users’ range anxiety. By studying the multi-dimensional preferences of different types of
users, it is not only possible to recommend potentially more-suitable charging solutions
for the same types of users to meet their needs, but this method will also allow some
underutilized charging station resources to be used more efficiently, balancing the load on
the power grid as well as on the road network, and will also provide a development plan
for the future construction of charging stations that is more relevant to users’ needs. More
reasonable charging station planning will also enable the promotion of electric vehicles to
be further enhanced.

Providing users with more efficient, accurate, and real-time charging guidance schemes
will be further investigated in future research. This paper used collaborative filtering
algorithms to incorporate users’ preferences for charging stations based on their behavioral
data in choosing charging stations; in the future, larger scale data can be used to design and
recommend charging schemes for a larger user population, and perhaps certain laws based
on big data can be explored from this to provide a more practical and efficient charging
scheme. In the future, we can study the state of charging stations, analyze the factors that
cause changes, and model and predict the state of charging stations over time, so as to
provide a basis for users to choose charging stations.
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Appendix A

Table A1. Notations of intermediate variables and parameters.

Notations Explanation

Ru,i User u’s rating value for charging station i
Ru,j User u’s rating value for charging station j
U Collection of users
Ri Average rating of charging station i
Rj Average rating of charging station j

Rx,i User x’s rating value for charging station i
Ry,i User y’s rating value for charging station j

I Collection of charging stations
Rx Average rating of charging stations by user x
Ry Average rating of charging stations by user y

sim(u, n) Similarity of user u to user n
sim(i, j) Similarity of charging station u to charging station n

eos
ij

The maximum energy consumption in kWh from the starting point to the
charging station when user i selects charging station j

esd
ij

The maximum energy consumption in kWh from the charging station j to
the end point when user i selects charging station j

Fo
ij

Energy consumption for user i to travel from the starting point to charging
station j in kWh

Ro
ij Set of optional paths for user i from the starting point to charging station j

Rd
ij Set of optional paths for user i from charging station j to destination

U Collection of users
S Collection of charging stations

er
The driving energy consumption of road section r, which is related to the

driving speed and the length of the road section in kWh
tr
ij The total travel time consumed by user i throughout the trip in hours (h)

tw
ij Queuing time for user i at the charging station in hours (h)

tc
ij Charging time of the user at the charging station in hours (h)

R∗ij1 Robust optimal path of user i from the starting point to charging station j
R∗ij2 Robust optimal path of user i from charging station j to the end point
dr The length of the road segment r in meters (m)
Ps

j Charging station j slow charging power in watts (W)

P f
j

Charging station j fast charging power in watts (W)

SOCc
ij

The current SOC value of the vehicle of user i when the vehicle is charged
at charging station j (SOC is the power-to-battery capacity ratio)

4e Average user charge at charging stations in CNY/kWh

Nij
Total number of vehicles in the charging station when user i arrives at

charging station j
Cj Number of charging posts in charging station j
Vj Number of vehicles allowed in charging station j
aj Vehicle arrival rate for charging station j in vehicles/min
cs

ij Service charge for user i at charging station j in CNY
cc

ij Charging fee for user i at charging station j in CNY
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Table A1. Cont.

Notations Explanation

cp
ij Parking fee for user i at charging station j in CNY

ρs
j The unit service charge for charging station j in CNY/kWh

ρc
j The unit charging fee for charging station j in CNY/kWh

ρ
p
j The unit parking fee for charging station j in CNY/h

pij The penalty cost for user i to select charging station j in CNY
Te

i User i expects to start charging at the earliest possible moment
Td

i User i expects to start charging at the latest possible moment
λe User i’s penalty factor for early charging in CNY/min
λd Penalty factor for delayed charging by user i in CNY/min
Eo

i The initial power of user i at the starting point in kWh
Ee Electric vehicle battery capacity in kWh

w User preference vector with dimensionality depending on the objective
function dimension

eos
ij

The maximum energy consumption in kWh from the starting point to the
charging station when user i selects charging station j

esd
ij

The maximum energy consumption in kWh from the charging station j to
the end point when user i selects the charging station j

Fo
ij

Energy consumption for user i to travel from the starting point to charging
station j in kWh

Ro
ij Set of optional paths for user i from the starting point to charging station j
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