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Abstract: Torque ripple is one of the most critical problems in PMSM system. In this paper, a
neural network (NN) torque compensator is combined with a conventional extended state observer
(ESO)-based active disturbance rejection controller (ADRC) system to suppress the torque ripple
at wide machine operation speed range by generating the optimal current reference. The ESO is
able to estimate and reject the low-frequency component in the torque ripple, while the remaining
disturbances can be learned and compensated by the neural network. Compared with commonly
used schemes, the proposed method does not need to analyze the influence of various sources of
the torque ripple, such as the cogging torque, non-sinusoidal back-EMF, parameter variations, and
unmodeled disturbances. In addition, the simple structure of the neural network helps reduce the
computation time and save computer memory. The effectiveness of the proposed neural network
compensator with both the rotor position and mechanical angular velocity as inputs is verified in the
experiment under different operation speeds.

Keywords: neural network; ADRC; torque ripple suppression

1. Introduction

Permanent magnet synchronous machines (PMSMs) are increasingly employed in
a variety of applications for their simple mechanical structure, high torque density, fast
dynamic response, and easy maintenance [1]. However, there are large amounts of distur-
bances and uncertainties existing in the practical PMSM drive system, such as parameter
variations, friction force, load disturbances, and unmodeled dynamics, which may deterio-
rate the performance of the PMSM speed regulation system. Among these disturbances,
the torque ripple is one of the most critical issues [2,3]. It can cause severe mechanical
vibrations under low-speed working conditions and jarring acoustic noise in high-speed
operations [4,5]. Furthermore, in the direct drive system, the torque ripple generated by
the motor is directly transmitted to the load, which may reduce the control accuracy of the
servo system and even damage the machine components, thereby preventing machines
from high-performance applications.

To be specific, the torque ripple comes from various sources of the PMSM speed
regulation system. For example, the cogging torque is generated because of the interac-
tion between the rotor permanent magnet and the stator teeth and slots [6]. In addition,
non-sinusoidal flux linkage and magnetic-flux density waveform distortion can also in-
duce severe torque ripples [7]. Moreover, the non-linear variations of the resistance and
inductance during machine operation may cause critical torque harmonics [8]. While, in
the PMSM electrical system, the inverter non-linearity and current sampling error both
deteriorate the current waveform and result in torque ripples [9].

Considering these factors that produce torque ripples, the schemes of suppressing
torque ripples can be categorized into two groups. The first group concentrates on the
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design and optimization of the machine’s components and structures, such as skewing [10]
and shaping the rotor pole [11], which can suppress the cogging torque and make the back-
EMF close-to-ideal sinusoidal. However, it is usually expensive to redesign the machine and
difficult to manufacture the complex structure. Hence, the second group based on machine
control methods without hardware modification is further investigated to suppress the
torque ripple.

In the control-based strategies, the most crucial part is to obtain and inject the optimal
magnitude and phase of the current harmonics so that generating extra torque ripple.
Therefore, the original torque ripple in PMSM system can be compensated and suppressed.
In recent years, significant research from control aspect have been received to determine
the optimal current. Based on the different reference current design principle, relevant
literature are divided into two categories, including feedback speed-based methods and
torque model-based methods.

In the speed-based methods, as the torque ripple can directly result in speed ripple,
the speed controller can be designed to regulate the speed and generate desired current
reference to minimize the torque ripple. Since the torque ripple can be roughly treated
as a periodic disturbance, the iterative learning control (ILC) is used in [12] to smooth
the speed by learning from previous executions. In addition, ref. [13] applies the sliding
mode controller (SMC) and sliding mode observer (SMO) simultaneously to non-linearly
regulate the speed, but the chattering problem of SMC is unavoidable. Moreover, the
active disturbance rejection controller (ADRC) proposed in [14] is a two-degree-of-freedom
(TDOF) control method, which has fast dynamic response and strong anti-fluctuation
performance. However, there is a trade-off between the disturbance rejection ability and
noise suppression ability of ADRC, so that the high-frequency component contained in
the torque ripple is difficult to minimize. In addition, the proportional resonant (PR)
control [15] and repetitive control [16] based on feedback speed have been implemented to
effectively suppress the torque ripple. However, most of these speed-based schemes employ
a torque or speed observer, the observation results of which are influenced by the varying
parameters during machine operation. Additionally, the transient states during current
control may deteriorate the performance of the speed controller in fast-changing load
conditions. Furthermore, some literature extract speed harmonics to construct feedback
loops and suppress the torque ripples. In [17], the speed harmonics controller is designed to
generate optimal current harmonics by deriving the relationships between the quadrature
magnitudes of speed harmonics and current harmonics. Similarly, ref. [18] uses the speed
harmonic and its derivative as the inputs to design the fuzzy logic controller to generate
reference current harmonic. Although these speed-based approaches can suppress the
torque ripple effectively, they cannot be applied without speed control loop. Moreover, in
high-speed applications, it is difficult to obtain the speed harmonics because they may be
filtered out by the inertial of PMSM.

The desired current harmonics to reduce torque ripple can also be obtained by using
torque model-based approaches. For this type of method, various sources of the torque
ripple should be considered to derive the PMSM torque ripple model. In the literature [19],
the harmonics induced by voltages, currents, flux linkage, and cogging torque in the PMSM
drive system are analyzed to build a torque ripple model, while the influence of parameters
variation is omitted. Considering the magnetic saturation during machine operation, the
effect of varying inductance is supplemented to the analytical model of torque ripple to
improve accuracy [20]. Based on the derived torque ripple model, the optimal current
harmonics can be generated with minimum loss by applying a genetic algorithm (GA)-
based optimization method. In addition, ref. [21] uses a series of polynomials whose degree
parameters and coefficients are determined by theoretical and experimental torque model,
respectively, to generate the current harmonics with a Lagrange multiplier. Moreover, this
optimization technique is also applied in [22] and combined with the neural network to
obtain an optimal reference current. Similarly, in the literature [23], after analyzing the
torque ripple model, the optimal current is deduced by a geometrical optimization method
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with fewer calculation steps. As the neural network has strong learning capability, the
reference current can be obtained in real-time. However, these strategies are complex
in computation because of the optimization and training procedures. In order to save
computation time, a look-up table (LUT) storing the relationship between rotor position
and current harmonics is applied in [24] with the repetitive control to compensate the effect
of non-sinusoidal back-EMF. In addition, a LUT of torque map is used in [25] to optimize
the current trajectory. The LUT designed in advance makes the control system response fast,
but this technique consumes lots of computer memory. The torque model-based approaches
can suppress the torque ripple effectively without the speed control loop, however, their
performance is limited by the accuracy of the torque ripple analytical model. Because
there are some factors hard to predict or model in the PMSM system such as temperature
issues and load disturbances. In addition, the parameters should be measured offline, it is
challenging to obtain accurate values and their harmonics components.

As mentioned before, the speed-based approaches can minimize the torque ripple by
estimating the system disturbances or designing the speed harmonics controller without
offline testing of the cogging torque, inductance, back-EMF profiles, etc. However, they
require accurate measurement and extraction of the speed and its harmonics. While the
torque model-based methods can minimize the torque ripple very quickly even without the
speed control loop. However, its performance is limited by the modeling accuracy, and it is
sensitive to parameter variations during machine operation. Considering the advantages
and disadvantages of these two kinds of methods, it is assumed that the speed-based
approach and torque model-based approach can be combined to suppress the torque ripple.

In recent years, the neural network (NN) has been widely applied in various fields,
such as manufacturing [26,27], renewable energy [28], material processing [29], and com-
posite material [30], because of its strong general approximation and prediction abilities.
In this paper, a neural network-based compensator is embedded in the ADRC system to
suppress the torque ripple. Since the neural network has very strong learning ability, using
the actual torque ripple waveform as the target, the output of well-trained neural network
is able to compensate the reference current without the need to analyze the influence of
various disturbances contained in the torque ripple analytical model. On the other hand,
the ADRC system is able to deal with the system disturbances and unmodeled dynamics
during machine operation because the extended state observer (ESO) has strong robust-
ness in response to the parameters variations, a simple structure to construct, and easy
parameter tuning. It is expected that the ADRC can reject the low-frequency disturbances
contained in the torque ripple, while the remaining higher order of the harmonics can be
learned and minimized by the neural network. In this way, building the complex torque
ripple analytical model can be avoided, and the training time of the neural network is
reduced as it only models the high-frequency component of the torque ripple. Therefore,
the proposed neural network and ESO-based ADRC system (NN-ESO-ADRC) is able to
suppress various harmonics in the torque ripple and smooth the speed within a wide speed
range.

2. Materials and Methods
2.1. ESO-Based ADR Controller
2.1.1. Modelling of PMSM Mechanical Dynamics

Generating the optimal torque reference T∗e for the inner torque control loop is the
core to suppress the torque ripple of the PMSM speed regulation system. Hence, in order
to deduce the torque reference, the equation of the PMSM motion system considering
uncertainties of the moment of inertia can be modified as:

Ω̇ =
T∗e − (T∗e − Te)− BΩ− TL

J
= bT∗e + dn = bnT∗e + dto (1)

where Ω is the mechanical angular velocity, Te is the electromagnetic torque, J is the
moment of inertial, B is the viscous friction torque coefficient, TL is the load torque,



World Electr. Veh. J. 2023, 14, 92 4 of 16

b = 1/J is the control gain, and dn = −(T∗e − Te + BΩ + TL)/J is the nominal distur-
bance with a given inertial. Jn and bn = 1/Jn are nominal value of J and b, respectively, and
dto = (b− bn)T∗e + dn is the total disturbance.

2.1.2. Speed Controller Design

Define the reference mechanical angular velocity as Ω∗, then the speed tracking error
es = Ω∗ −Ω can be derived as

ės = Ω̇∗ − Ω̇ = Ω̇∗ − bnT∗e − dto (2)

Applying the linear feedback control law,

ės = −kpses (3)

where kps is the proportional gain.
Substituting (3) into (2), the control term can be rewritten as

T∗e =
Ω̇∗ + kps(Ω∗ −Ω)− dto

bn
(4)

Generally, the mechanical angular velocity Ω and the total disturbance dto in the
Equation (4) can not be measured or calculated directly. Therefore, it is common to use
their estimated values to substitute Ω and dto. Then the torque reference can be revised as

T∗e =
Ω̇∗ + kps

(
Ω∗ − Ω̂

)
− d̂to

bn
(5)

where Ω̂ and d̂to are the estimated mechanical angular velocity and total disturbance,
respectively.

As the output of actual system is not infinite, the reference torque is usually limited as

T∗e =

{
T∗e maxsign(T∗e ), |T∗e | > T∗e max

T∗e , |T∗e | 6 T∗e max
(6)

where T∗e max is the reference torque limit.
Ignoring the torque reference saturation, the system output mechanical angular veloc-

ity can be expressed by combining Equations (1) and (5)

Ω(s) = Ω∗(s) +
kps

s + kps
Ω̃(s) +

1
s + kps

d̃to(s) (7)

where Ω̃ = Ω− Ω̂ is the speed estimation error and d̃to = dto − d̂to is the total disturbance
estimation error.

It can be concluded from (7) that the performance of PMSM speed regulation system
is determined by the proportional gain kps, speed estimation deviation Ω̃ and disturbance
estimation deviation d̃to. If the mechanical angular speed and total disturbance can be ob-
served accurately, the system will have a good tracking performance and strong disturbance
rejection ability.

2.1.3. Speed and Disturbance Observation

Usually, the actual rotor position θm, which is further derived to obtain the mechanical
angular velocity Ω, is measured by using the position sensors such as resolver and encoder.
However, the commonly applied frequency method for speed calculation will result in
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measurement noise because of the quantization error in the position measurement. Hence,
the measured mechanical position θm

m and speed Ωm are expressed as{
θm

m = θm + δp
Ωm = θ̇m

m = Ω + δn
(8)

where δp(s) and δn = sδp(s) are the measurement noise of the position and speed, respectively.
In order to estimate the total disturbance contained in the Equation (5), a linear ESO is

constructed as 
Ω̃m = Ωm − Ω̂
˙̂Ω = bnT∗e + k1Ω̃m + d̂to
˙̂dto = k2Ω̃m

(9)

where Ω̃m is the error between measured speed and estimated speed, k1 and k2 are the
observer gains.

With the block diagram of ADRC system and the conventional ESO illustrated as Figure 1
and Equation (1), the speed observation error and total disturbance can be derived as{

Ω̃m(s) = s
s2+k1s+k2

[sδn(s) + dto(s)]

d̂to(s) = k2
s2+k1s+k2

[sδn(s) + dto(s)]
(10)

From (10), it can be found that the speed estimation error is proportional to the
derivative of the total disturbance. If accurate speed is required, the observed speed
should not be applied to serve as the feedback component. Moreover, the observed system
disturbance can be treated as the actual disturbance in the system filtered by a typical
second-order low pass filter (LPF). Therefore, the low-frequency components of the total
disturbance can be estimated accurately by the ESO. However, due to the influence of the
cogging torque, varying parameters, non-linearity of the inverter, etc., the waveform of
torque ripple contains certain high order harmonics, which are difficult to be estimated and
rejected by the ESO. Hence, the performance of the PMSM speed regulation system cannot
be guaranteed only with a conventional ADRC system.

  

 

  

 

   

 

 

ESO

Plant

 

Figure 1. Block diagram of the conventional ESO-ADRC system.

2.2. Torque Ripple Suppression Using Neural Network

Since only the low-frequency parts of the disturbance can be observed by ESO, the
neural network compensator is designed and embedded in an ADRC frame to further
minimize the high-frequency components contained in the torque ripple. In the literature
about the torque model-based approaches [19–25] mentioned above, the torque ripple
analytical model, including various sources of disturbance, has to be built, which is quite
complex and it is challenging to cover all the sources of the torque ripple. Different from
these schemes, the proposed neural network compensator is able to directly learn the
waveform of the actual torque ripple and generate the torque compensation without the
need of analyzing the harmonics in the system.



World Electr. Veh. J. 2023, 14, 92 6 of 16

Therefore, considering the compensation effect of the neural network, Equation (5)
including the high-frequency disturbance can be modified as

T∗e =
Ω̇∗ + kps

(
Ω∗ − Ω̂

)
−
(

d̂to + bnT̂h

)
bn

(11)

where T̂h is the output of the neural network.
Similarly, in order to avoid low-frequency disturbance estimation performance being

affected by the output of the neural network, the expression of ESO in Equation (9) should
be revised as 

Ω̃m = Ωm − Ω̂
˙̂Ω = bn

(
T∗e − T̂h

)
+ k1Ω̃m + d̂to

˙̂dto = k2Ω̃m

(12)

It is common to assume the torque ripple depend on the rotor position because the
cogging torque and non-sinusoidal back-EMF are directly related to the rotor mechanical
angle. Hence, the neural network using the rotor position as the single input and outputting
the torque compensation is embedded in the ADRC system, as Figure 2 illustrates.

  

 

  

 

   

 

 

ESO

Plant

 

ANN

Figure 2. Block diagram of the NN-ESO-ADRC system with single input.

However, there are some unmodeled and unpredictable disturbances existing in the
PMSM speed regulation system during machine operation, such as temperature issues,
magnetic saturation, friction torque, etc., which may also cause severe torque ripples.
Hence, another neural network adopting both the rotor position and the speed as inputs
to generate the torque compensation is proposed as Figure 3. In this way, there are more
features to facilitate the neural network to deal with various disturbances.

  

 

  

 

   

 

 

ESO

Plant

 

ANN

Figure 3. Block diagram of the NN-ESO-ADRC with double inputs.

2.2.1. Structure of the Neural Network

In the Figure 4, the structures of two-layer neural networks with single input and
double inputs are illustrated, respectively. Since the double inputs neural network requires
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more data to fit the target data compared with single input, it adopts 250 nodes in the
hidden layer to guarantee the accuracy, while the neural network with single input only
adopts 50 nodes. Moreover, they both use the tansig function as the activation function in
the hidden layer, which is expressed as

h = tansig(xw1 + b1) (13)

where h = [h1 · · · h50] or h = [h1 · · · h250] is the output vector of the hidden layer,
x = [θm

m ] or x =
[
θm

m Ω̂
]

is the neural network input, ω1 = [w1_1 · · · w1_50] or

ω1 =

[
w1

1_1 · · · w1
1_250

w2
1_1 · · · w2

1_250

]
is the weight vector between input layer and hidden layer,

and b1 = [b1_1 · · · b1_50] or b1 = [b1_1 · · · b1_250] is the bias vector of the hidden layer for
the neural network with single input and double inputs, respectively.

Similar to the hidden layer, the output layer adopting the tansig function as the
activation function can be expressed as

T̂h = tansig
(

hwT
2 + b2

)
(14)

where w2 = [w2_1 · · · w2_50] or w2 = [w2_1 · · · w2_250] is the weight factor vector between
the hidden layer and output layer of the neural network with single input and double
inputs, respectively, and b2 is the bias of the output layer.

Tansig

(a)

Tansig

(b)

Figure 4. Neural network structure: (a) single input with 50 nodes in the hidden layer and (b) double
inputs with 250 nodes in the hidden layer.

It can be seen that there are lots of parameters of the neural network to be determined.
For the purpose of generating the extra current harmonics to accurately compensate the
torque ripple, suitable training method should be applied to regulate the parameters.

2.2.2. Training Algorithm of Neural Network

In order to train the neural network, the inputs and desired results, i.e., the rotor
position, speed, and their corresponding actual torque ripple, should be measured at
the same time. If the output of neural network is able to fit the torque ripple model
accurately, the harmonics can be compensated and suppressed. Therefore, the gradient
descent algorithm is adopted to train the neural network. Before applying it, the error
between the target results and neural network output is defined as

e(k) = Th(k)− T̂h(k) (15)

where e(k) is the fitting error at the kth iteration, Th(k) and T̂h(k) are the actual torque
ripple and neural network output at at the kth iteration, respectively.

Then the cost function J is defined as

J(k) =
1
2

e(k)2 =
1
2
(
Th(k)− T̂h(k)

)2 (16)
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In the gradient descent algorithm, the fitting error in the neural network is back-
propagated to minimize the cost function. Therefore, the gradient of J to w2 and b2 can be
calculated as

∂J
∂w2(k− 1)

= −(Th(k)− T̂h(k))h(k)
(

1− T̂h(k)
2
)
= −e(k)h(k)

(
1− T̂h(k)

2
)

(17)

∂J
∂b2(k− 1)

= −
(
Th(k)− T̂h(k)

)(
1− T̂h(k)

2
)
= −e(k)

(
1− T̂h(k)

2
)

(18)

Based on the calculation results of the gradient, the weights and bias between the
hidden layer and output layer are updated as

w2(k) = w2(k− 1) + ηe(k)h(k)
(

1− T̂h(k)
2
)

(19)

b2(k) = b2(k− 1) + ηe(k)
(

1− T̂h(k)
2
)

(20)

where η is the learning rate.
In order to calculate the gradient of the cost function to the parameters between input

and hidden layer, the chain rule is applied. Therefore, based on Equations (17) and (18), the
gradients of J to w1 and b1 are derived as

∂J
∂w1(k− 1)

= −e(k)
(

1− T̂h(k)
2
)

w2(k− 1)
(

1− h(k)2
)

x(k) (21)

∂J
∂b1(k− 1)

= −e(k)
(

1− T̂h(k)
2
)

b1(k− 1)
(

1− h(k)2
)

(22)

Hence, based on their gradients, w1 and b1 are updated as

w1(k) = w1(k− 1) + ηe(k)
(

1− T̂h(k)
2
)

w2(k− 1)
(

1− h(k)2
)

x(k) (23)

b1(k) = w1(k− 1) + ηe(k)
(

1− T̂h(k)
2
)

w2(k− 1)
(

1− h(k)2
)

(24)

These parameters of neural network will keep updating until the error between the
actual torque ripple and neural network output becomes small enough or the number of
iterations reaches the preset value. During the training process, the value of η should be
selected carefully. On the one hand, if it is set very small, the training process will cost
quite a significant amount of time due to slow iteration speed; on the other hand, if the
learning rate is very large, the neural network may miss the optimal value and cause the
system to become unstable.

3. Results and Discussion

In this section, experiments are conducted to verify the effectiveness of the proposed
NN-ESO-ADRC controller and the theoretical analysis. A comprehensive comparison is
made between the conventional ADRC system and the proposed NN-ESO-ADRC controller
with single input and double inputs.

3.1. Test Bench Setup

Table 1 indicates the specification of the PMSM under evaluation, and Figure 5a
illustrates the configuration of the test bench. These two PMSMs are driven by two separate
inverters with a common DC bus, which include an intelligent power module (IPM) and
hall sensors to measure the current and voltage. The dSPACE MicroLabBox is employed
to implement the control algorithm. As presented in Figure 5b, the i∗d = 0 control strategy
is adopted with the space vector pulse width modulation (SVPWM) technique. id and iq
are regulated by the decoupled current controller in the current control loop. In addition,
the rotor mechanical angle is measured by the incremental encoder with 2500 pulses per
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revolution. A programmable DC power source is set as 150 V to provide the DC bus voltage.
In addition, the control frequency and sampling rate are set the same as 10 kHz.

3.2. Experimental Verification

Since the torque ripple can directly result in speed ripple, the feedback speed signal
are measured to help evaluate the torque ripple suppression performance of the proposed
NN-ESO-ADRC system. Employing the same test approach mentioned in [31], the gener-
alized integrator extended state observer (GIESO) is applied to estimate and model the
torque ripple. When the speed harmonics are fully suppressed by GIESO, the estimated
disturbance torque can be treated as torque ripple. In addition, the speed is regulated with
kps = 200 rad/s and the natural frequency of the ESO is chosen as 500 rad/s.

Table 1. Parameters of the tested SPMSM.

Symbol Quantity Symbol Quantity

Rated power PN 0.75 (kW) PolePair numbers pn 4
Rated voltage UN 220 (V) D axis inductance Ld 5.7 (mH)
Rated speed nN 3000 (rpm) Q axis inductance Lq 5.7 (mH)
Rated torque TN 2.4 (Nm) Torque constant Kt 0.553 (Nm/A)
Current limit Ismax 9 (A) Motor inertia J 1.62 ×10−4 (kgm2)
Stator resistance Rs 1.1 (Ohm) Motor system inertia TC 4.44 ×10−4 (kgm2)

(a) (b)

Figure 5. Test bench: (a) configuration and (b) block diagram.

3.2.1. Performance of the NN-ESO-ADRC with Single Input

It is commonly assumed that the torque ripple depend on the rotor position; therefore,
the performance of NN-ESO-ADRC with the rotor mechanical angle as the input is first
analyzed. In Figure 6, the actual torque ripple of the prototype at the speed of 60 rpm is
shown as the blue waveform, while the training result of the neural network is illustrated
as the red waveform. It can be seen that the neural network output can fit the actual torque
ripple very well. Moreover, the training process is quite fast in the experiment. The first
reason is that the neural network only has one hidden layer with 50 nodes, which can
reduce the training time. In addition, the ESO can estimate the low-frequency disturbance,
which helps reduce the harmonics contained in the torque ripple, so that the complexity of
the training data is simplified.

Figure 6. The actual torque ripple waveform and output of the trained NN at the speed of 60 rpm.
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Under different speed references from 100 rpm to 1000 rpm, with an interval of
100 rpm, the torque ripple suppression performance of the conventional ESO-ADRC and
NN-ESO-ADRC are illustrated in Figure 7. In these 3D analysis graphics of the speed, the
magnitude of various orders of speed harmonics at different speed references are illustrated.
Compared with the conventional ESO-ADRC, it can be seen that most of the harmonics
contained in the torque ripple are minimized by the NN-ESO-ADRC. Within the relatively
low speed range, i.e., 100 rpm to 400 rpm, the harmonics are effectively suppressed by
the neural network compensator, especially the higher order of the harmonics, which
is consistent with previous analysis. As the speed increases to high speed range, the
magnitude of the low order harmonics become much larger in the ESO-ADRC system,
which can be explained as the fundamental frequency increases with the speed, so that
the frequency of the lower order of harmonics become larger than the low speed. Under
this condition, the neural network is expected to suppress these harmonics. However, the
magnitude of the harmonics become even more significant than the conventional ESO-
ADRC. Although the high-frequency components are almost removed, the severe low order
of harmonics will deteriorate the torque ripple suppression performance when the speed is
increased.

(a) (b)

Figure 7. Spectrum analysis of the speed ripple: (a) in the conventional ESO-ADRC system and (b) in
the NN-ESO-ADRC system with single input.

To be specific, the waveforms of the speed response at different speed with and without
the neural network are illustrated in Figure 8. At the speed of 100 rpm and 400 rpm, the
speed ripple is reduced by the neural network compensator, and it is obvious that the
high-frequency component in the speed signal is suppressed. However, when the speed
is raised to 700 rpm, the speed ripple is instead increased in the NN-ESO-ADRC system.
This phenomenon is more severe at the speed of 1000 rpm. From these results, it can
be concluded that the torque ripple model varies under different speed. In other words,
the torque ripple do not only depend on the rotor position, it is also influenced by the
unconsidered or unmodeled disturbances in the PMSM system. As the target results of
the training process of the neural network is measured at the speed of 60rpm, the actual
torque ripple waveform may vary little for the operation speed close to 60rpm. Therefore,
the neural network compensator can effectively suppress the torque ripple in a low-speed
range. When the speed increases, the actual torque ripple model become quite different
from the training target, which deteriorates the performance of ADRC system. Hence, the
torque ripple suppression ability of the neural network with only rotor position as input
is limited.
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(a) (b)

(c) (d)

Figure 8. Speed ripple in conventional ESO-ADRC system and NN-ESO-ADRC system at the speed
of: (a) 100 rpm, (b) 400 rpm, (c) 700 rpm, and (d) 1000 rpm.

3.2.2. Performance of the NN-ESO-ADRC with Double Inputs

Since the torque ripple model varies with the speed, the estimated mechanical angular
velocity of the ESO is used as another input of the neural network to improve the compen-
sation accuracy. With this double inputs neural network, the actual torque ripple should be
measured at various speeds. Before applying the training method, the measured torque
ripples are presented as the blue waveform in the Figure 9. Additionally, with the gradient
descent algorithm, the training results are illustrated as a red waveform in these figures. It
can be found that the actual torque ripple waveform relative to the rotor position are quite
different at various speeds, which verifies the deduction that the torque ripples do not only
depend on the rotor position. In addition, the fitting performance of the neural network
is overall satisfied, but, at the high-speed range, it is not as good as the low-speed range,
which might weaken the compensation effectiveness during PMSM high-speed operation.

In order to evaluate the performance of the NN-ESO-ADRC with double inputs, the
spectrum analysis of the conventional ESO-ADRC system and the modified NN-ESO-
ADRC are compared in Figure 10, with the maximum test speed expanded from 1000 rpm
to 2000 rpm. It can be observed obviously that the amplitude of almost all the harmonics at
each speed are reduced a lot by the modified neural network compensator. In the low-speed
range (smaller than 700 rpm), both the low order and high order of the harmonics are
suppressed significantly by the NN-ESO-ADRC. In addition, the low order of the harmonics
within medium speed range (700 rpm–1500 rpm) in the conventional ADRC system have
quite large amplitude, which are also reduced by the neural network. However, for the
speed at high-speed range (1500 rpm–2000 rpm), the suppression effect of the neural
network compensator is not very significant.

The comparison of the speed ripple with and without neural network at various speed
are presented in Figure 11. Among the figures of relatively low speed, it can be observed
that the speed ripple with the neural network is much smaller than it in the conventional
ESO-ADRC system. This is because the neural network output fit the actual torque ripples
accurately, especially at a speed smaller than 400 rpm. Therefore, the generated optimal
current harmonics can suppress the torque ripple effectively. For the medium-speed range,
such as 1200 rpm and 1500 rpm, the fitting performance is not as good as the low speed
conditions. From Figure 9, it can be seen that the neural network can only fit the relatively
low order harmonics of the torque ripple, while there are certain high-frequency harmonics
left in the total disturbance. Therefore, the effect of speed ripple minimization at medium-
speed range is not very strong. For the high-speed range, there is no significant speed
ripple difference between the ESO-ADRC and the modified NN-ESO-ADRC. There are two
reasons to explain this phenomenon. On the one hand, the training result of the neural
network cannot fit the actual torque ripple very well; on the other hand, as the PMSM
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system can be treated as a low pass filter, high order of the harmonics of the speed ripple
are filtered out, especially at high speed, even without the neural network, there are not
many harmonics in the speed signal.

(a) 100 rpm (b) 400 rpm

(c) 700 rpm (d) 1000 rpm

(e) 1200 rpm (f) 1500 rpm

(g) 1700 rpm (h) 2000 rpm

Figure 9. The actual torque ripple waveform and output of the trained NN at the speed of: (a) 100 rpm,
(b) 400 rpm, (c) 700 rpm, (d) 1000 rpm, (e) 1200 rpm, (f) 1500 rpm, (g) 1700 rpm, and (h) 2000 rpm.

(a) (b)

Figure 10. Spectrum analysis of the speed ripple: (a) in the conventional ESO-ADRC system and
(b) in the modified NN-ESO-ADRC system with double inputs.

For the speed higher than 1000 rpm, the torque ripple suppression effectiveness of
the neural network becomes weaker because the fitting performance is not as good as the
low-speed conditions. One of the possible reasons is the sampling rate limitation. At low
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speed, the variation of both the rotor position value and torque ripple value is slow, so
there are plenty of data for the neural network to learn the complex torque ripple model
thoroughly. However, as the speed increases, the rotor position varies significantly between
two sampling instant, which means some of the necessary input data and target data are
ignored. Hence, the performance of torque ripple suppression is not significant at very
high speed.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11. Speed ripple in conventional ESO-ADRC system and modified NN-ESO-ADRC system
at the speed of: (a) 100 rpm, (b) 400 rpm, (c) 700 rpm, (d) 1000 rpm, (e) 1200 rpm, (f) 1500 rpm,
(g) 1700 rpm, and (h) 2000 rpm.

Since the above experiments under various speeds are conducted under no load
condition, it is also necessary to evaluate the torque ripple suppression performance of
the proposed method against the load torque variation. Therefore, different load torque
including 0.1Nm, 1.1Nm, and 2.2Nm are applied at the speed of 60rpm, and the results
are illustrated in Figure 12. It can be observed that the NN-ESO-ADRC system can reduce
various orders of the speed harmonics effectively with extremely small load torque from
Figure 12b. However, with the load torque of 1.1Nm, large disturbances are induced in
both conventional ESO-ADRC system and NN-ESO-ADRC system. This phenomenon is
deteriorated when the load torque is raised to 2.2Nm. Although the neural network can still
reduce several orders of the harmonics, such as 4th, 8th, and 18th, its compensation effect is
not as significant as no load condition. Moreover, the NN compensator may even introduce
extra disturbances to the conventional ADRC system. Hence, it can be concluded that the
current distort the original torque ripple waveform with the increased load torque. To be
specific, ref. [32] reveals that the magnitude of cogging torque are larger under loading
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condition because the load torque induces extra flux leakage through tooth tips and higher
saturation level. For the similar reason, the waveform of back-EMF contains more and
larger harmonics and, in turn, causes severe torque ripple.

(a) (b)

(c) (d)

(e) (f)

Figure 12. Speed ripple in conventional ESO-ADRC system and modified NN-ESO-ADRC system
at the speed of 60 rpm. (a) 0.1 Nm load torque, (b) spectrum analysis with 0.1 Nm load torque,
(c) 1.1 Nm load torque, (d) spectrum analysis with 1.1 Nm load torque, (e) 2.2 Nm load torque, and
(f) spectrum analysis with 2.2 Nm load torque.

4. Conclusions

In this paper, an NN-ESO-ADRC system is proposed to regulate the speed and sup-
press the torque ripple. Different from the commonly used speed-based methods or torque
ripple model-based methods, a two-layer neural network compensator is embedded in
the conventional ADRC system to generate extra current harmonics. It is found that the
torque ripple do not only depend on the rotor position, therefore, both the rotor position
and the mechanical angular velocity are used as inputs of the neural network. By fitting the
actual torque ripple, there is no need to build the analytical model of the cogging torque,
flux linkage, inverter non-linearity, and other unmodeled disturbances in the system. As
the structure of the neural network is simple, both the computation time and computer
memory can be saved. Experiment results verify the effectiveness of the proposed method.
The neural network compensator with double inputs can suppress the harmonics contained
in the torque ripple at various machine operation speeds.

In future work, since it has been proved that the load torque induces an extra torque
ripple, the current will be used as the third input of the neural network to further improve
the torque ripple suppression performance. In addition, the update law of the neural
network weights can be improved to enhance the adaptability to various disturbances and
simplify the neural network training process.
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