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Abstract: This study presents a new auto-tuning nonlinear PID controller for a nonlinear electric
vehicle (EV) model. The purpose of the proposed control was to achieve two aims. The first aim
was to enhance the dynamic performance of the EV regarding internal and external disturbances.
The second aim was to minimize the power consumption of the EV. To ensure that these aims were
achieved, two famous controllers were implemented. The first was the PID controller based on
the COVID-19 optimization. The second was the nonlinear PID (NPID) optimized controller, also
using the COVID-19 optimization. Several driving cycles were executed to compare their dynamic
performance and the power consumption. The results showed that the auto-tuning NPID had
a smooth dynamic response, with a minimum rise and settling time compared to other control
techniques (PID and NPID controllers). Moreover, it achieved low continuous power consumption
throughout the driving cycles.

Keywords: electric vehicle (EV); adaptive control; nonlinear PID (NPID); COVID-19 optimization;
model reference adaptive systems (MRAS)

1. Introduction

The use of electric vehicle (EV) technology is required to mitigate escalating environ-
mental issues and to decrease the demand for fossil fuel resources [1]. In recent years, EVs
have become increasingly popular due to their high efficiency, low maintenance require-
ments, and simple operations [2–4]. Urban cities now have improved sustainability and a
significant reduction in pollution because of the growing EV trend. The performance of an
EV as a whole is significantly influenced by its propulsion system. Industrial and academic
researchers have mainly concentrated on creating controls for the electric vehicle’s driv-
etrain [5,6]. The two most important aspects, efficient performance and desirable energy
management, call for thorough and targeted research. The controller should deliver the
fastest possible speed while consuming the least amount of energy [3]. Fluctuating road
conditions, motor characteristics, and outside disturbances make the EV system highly
nonlinear, time-dependent, and uncertain. As a result, it is difficult to build a controller
that completely removes external disturbances and manages uncertainties with few control
signals [7–9].

Due to their simplicity and ease of tuning, conventional PID controllers are frequently
used in a variety of industrial applications [10]. However, they do not guarantee desired
dynamic performance, and do not operate effectively under a variety of operating condi-
tions with their self-tuning capabilities [11]. Due to windup, a PID controller produces a
strong control signal, which causes it to overshoot and increase as the accumulated error
is unwound (compensated by errors in the other direction), and the differentiator causes
noise amplification [12,13]. Currently, there is no definite method to select the proper
parameters. Hence, several optimization techniques can be used to solve this problem,
such as genetic algorithm (GA), particle swarm optimization (PSO) [14], backtracking
search algorithm (BSA), bee colony optimization (BCA), harmony search (HS), ant colony,
differential evolution (DE), and COVID-19 optimization [14–17].
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Artificial intelligence (AI)-based controllers have gained importance due to their satis-
factory performance in various motor control applications, including speed assessment and
torque ripple minimization [18–20]. However, AI-based controllers suffer from drawbacks,
such as large data requirements, extended learning, and long training durations [21–23].

In this study, we concentrated on the nonlinear PID (NPID) controller, which has
drawn a lot of interest from scholars over the past 20 years. NPID control is used by two
main groups of applications. Only nonlinear systems that are controlled by NPID fall under
the first category. NPID control is used in the second category, which deals with basic
linear systems used to improve performance that are not feasible with linear PID control,
such as decreased overshoot, decreased rise time for the step or rapid command input.
NPID control improves following accuracy, and is utilized to account for nonlinearity and
disturbances in the system [24–27].

The proposed improved NPID controller contains two portions. The first portion is a
segment-bounded nonlinear gain Kn(e), while the second portion is a linear fixed-gain PID
controller (Kp, Ki and Kd). The nonlinear gain Kn(e) is a segment-constrained function of
the error e(t). Previous research considered the nonlinear gain Kn(e) as one scalar value.
The novelty in this research is that one scalar value of Kn(e) is switched with a row vector
that can be expressed as Kn(e) = [Kn1(e)Kn2(e)Kn3(e)], which will cause amelioration of
the performance of the NPID where the values of nonlinear gains will be tuned based on
the error and the type of constant parameters (Kp, Ki and Kd).

Adaptive control is used for nonlinear systems where some system parameters are
unknown, or vary over time. For example, the method known as “Model Reference
Adaptive Systems” is one specific approach to solving this issue (MRAS). In order to do
this, a reference process model must be defined whose dynamics are in response to a
reference input that the plant process should mimic. To obtain the plant’s output signal to
match the reference model’s output signal for the plant process with unknown parameters,
a particular control law modifies the reference input signal. In this study, the updated law
directly modifies the settings on the NPID controller. It makes the NPID more effective,
and insensitive to external disturbances. In addition, it can adapt to violent changes in
parameters for the EV system.

Based on the examination of the dynamic characteristics, an improved adaptive control
mechanism for the mode transition of a hybrid electric vehicle was demonstrated in [5].
A novel study about a configuration-switchable hydraulically interconnected suspension
system under a nonlinear model predictive control was presented in [28]. Dynamic simula-
tion of road/tire longitudinal interaction for designing EV control systems was illustrated
in [29]. A lane-keeping control approach with direct yaw moment control input by tak-
ing into account the dynamics of an EV was displayed in [30]. A swarm optimization
technique-based predictive regenerative braking control approach for a hybrid electric
vehicle was executed in [19]. A different design identification and control based on GA
optimization for an autonomous wheelchair was developed in [25]. An optimal nonlinear
PID speed tracking control based on harmony search (HS) for an EV was used in [31]. A
new MRAS for a high-performance pantograph robot mechanism was simulated in [32].
In [33], researchers used diverse machine learning (ML) algorithms for thermal comfort
predictive models. Furthermore, in [34], an expert system was built to generate control
decision for a maritime transport model. Moreover, [35] illustrated direct torque control of
an induction machine using a fuzzy switching controller. The proposed technique achieved
satisfactory performance for the induction machine. A novel LabVIEW self-tuning PID
controller was implemented in real-time to control the response in [36]. A new algorithm
was presented in [37]; the RBFNN (radial basis function neural network) was used in the
technique to identify the vehicle’s Jacobian information, execute parameter tuning for PID
control, and accomplish vehicle longitudinal control with self-tuning capabilities.

This research presents new auto-tuning for the NPID controller based on a model
reference adaptive control. The main purpose of the controller was to track a preselected
speed profile of the EV with low power. A comparison was conducted between the famous
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PID, the conventional NPID, and auto-tuning NPID controllers which were optimized
by a new COVID-19 optimization. Several operating points were implemented to val-
idate the controller’s performance. Furthermore, the dynamic response of the EV was
recorded through the vehicle parameters’ uncertainties to ensure the robustness of the
proposed controller.

The rest of the study is organized as follows: the second section demonstrates the non-
linear model of an EV; the third section illustrates in detail the design steps for auto-tuning
the NPID controller; the fourth section presents the results of the proposed controllers; the
last section is the conclusion.

2. System Modeling

Propulsion, energy supply, and auxiliary subsystems make up the majority of an
EV’s three subsystems. According to Figure 1, the propulsion subsystem is made up of
the vehicle controller, power electronic converter, electric motor, mechanical transmission,
sensors, and driving wheels [38,39]. The energy source, the energy management unit, the
charger unit, and other elements are included in the energy supply subsystem [40,41]. The
power steering unit, air conditioning motor and its controller, and the auxiliary supply unit
make up the auxiliary subsystem. The electric vehicle drivetrain system (EVDS) is created
by integrating the subsystems [42,43].
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Figure 1. Simple structure of the battery and electric vehicle.

The energy source that powers every piece of technology in the car is the battery pack.
When the battery is being charged or discharged, the battery management system (BMS)
sends voltage, current, and state-of-charge (SOC) signals to the vehicle control unit. The
major component of the drivetrain system is the electrical machine (EM). To propel the
vehicle with the necessary speed and acceleration, force is produced by the EM in the
propulsion systems. The electric motor uses battery power to generate driving force, but it
also has the ability to act as a generator when the required deceleration causes the applied
reference torque to turn negative.

The EV mainly comprises a battery unit, controller, and electric motors connected to
the vehicle through the transmission unit. The EV system dynamics has two parts: vehicle
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and motor dynamics. Electric vehicle system modeling involves the balancing of all the
forces acting on a running vehicle. There are mainly four types of forces, namely rolling
friction (Frr), aerodynamic drag force (Fad), gravitational force (Fg), and force due to vehicle
acceleration (Fa), as shown in Figure 2. Hence, the total traction force (Ft) acting on a vehicle
is given by the following:

Ft = Frr + Fad + Fg + Fa = µrrmg + 0.5ρACdv2 + mgsinϕ + m dv/dt (1)

where m is the mass of the electric vehicle, g is the gravity acceleration, v is the driving
velocity of the vehicle, µrr is the rolling resistance coefficient, ρ is the air density, A is the
frontal area of the vehicle, Cd is the drag coefficient, and ϕ is the hill-climbing angle.
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The nonlinear state space model of an EV can be considered as follows:

.
X= f (X) + g(X)u (2)

X =

[
x1
x2

]
=

[
i
w

]
(3)

f (x) =


−(R a+R f )

La+L f
x1 −

La f
La+L f

x1.x2

1
J+m

(
r2
G2

)
[

La f x2
1 − Bx2 − r

G (µrrmg + 1
2 ρACd

(
r2

G2

)
x2

2

+mgsin(ϕ))

]
 (4)

g(x) =

[
1

La+L f

0

]
(5)

The system parameters are summarized in Table 1.
A nonlinear EV block diagram is presented in Figure 3. The EV system is classified

into two main subsystems. The first is the electric motor drive system, and the second is the
chassis of the body with suspension parts. The nonlinearity source comes from the mutual
inductance of the motor winding; the system parameters variations are shown in Table 2.
The purpose of the proposed controllers is to absorb external disturbances such as aero-
dynamic resistance, road variations, and several operating points of speed; moreover, the
controllers overcome internal disturbances such as the mentioned nonlinearity resources,
random noise, and uncertainty in the system parameters.
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Table 1. Parameters of a nonlinear EV system.

Symbol Value Symbol Value

La+L f 6.008 mH m 800 kg

Ra+R f 0.12 Ω A 1.8 m2

La f 0.001 mH ρ 1.25 (kg/m3)

i 78 A (250 max) ϕ 0◦

V 0:48 V Cd 0.3

B 0.0002 N.M.s µrr 0.015

J 0.05 Kg.m2 G 11

ω 25 Km/h r 0.25 mWorld Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 6 of 17 
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Table 2. Uncertainty parameters of an EV system.

Parameter Variation %

Ra + Rf +10

La + Lf −20

r +25

J −20

m +30

Cd −20

µrr +30
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3. Auto-Tuning Nonlinear PID Control

Model reference adaptive control (MRAC) is a high-ranking adaptive controller [22].
It may be regarded as an adaptive servo system in which the desired performance is
expressed in terms of a reference model. In this research, the NPID control parameters were
adjusted online using the model reference adaptive technique and the nonlinear function.

The proposed form of NLPID control can be described as follows:

u(t) =
(
kp + Kn1(e)

)
[ e(t)] + (k i + Kn2(e)).

∫ t

0
[ e(t)] dt+(kd+Kn3(e)).

[
de(t)

dt

]
(6)

where Kn1(e), Kn2(e), and Kn3(e) are nonlinear gains. The nonlinear gains represent any gen-
eral nonlinear function in which the error is bounded in the sector 0 < Kn(e) < Kn(e) max.

There is a wide range of choices available for the nonlinear gain Kn(e). One simple
form of the nonlinear gain function can be described as follows:

Kni(e)= ch(wie) =
exp(wie)+exp(−wi e)

2
(7)

where i = 1, 2, 3.

e =
{

e |e| ≤ emax
emaxsgn(e) |e| > emax

}
Figure 4 presents the main structure of auto-tuning NPID based on the model reference

technique.
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The nonlinear gain Kn(e) is lower-bounded by Kn(e) min = 1 when e = 0, and upper-
bounded by Kn(e) max = ch(wi emax). Therefore, emax stands for the range of deviation, and
wi describes the rate of variation of Kn(e).

The MIT rule is the original approach to model reference adaptive control. The name
is derived from the fact that it was developed at the Instrumentation Laboratory (now the
Draper Laboratory) at MIT. To adjust parameters in such a way that the loss function is
minimized, the following is applied:

j(θ) =
1
2

e2
m (8)
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To make j small, it is reasonable to change the parameters in the direction of the
negative gradient of j, as follows:

dθ

dt
= −γ

∂j
∂θ

= −γem
∂em

∂θ
(9)

e = uc − y (10)

Assuming that the plant can be simplified to a first-order system, this is shown in the
following equation:

y(s)
u(s)

=
k

Ts + 1
(11)

where k and T are unknown parameters. Furthermore, assuming that the model reference
takes the form of a first-order system, the following relationship is used:

ym(s)
uc(s)

=
km

Tms + 1
(12)

where km and Tm are selected by the designer.
From Equations (10)–(12), the following can be concluded:

y =
k

Ts + 1
[
(
kp + Kn1

)
+ (ki+Kn2)

1
s
+ (kd + Kn3)s](uc − y) (13)

y =
k[
(
kp + Kn1

)
+ (ki+Kn2)

1
s + (kd + Kn3)s]

Ts + 1
uc

−
k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
Ts + 1

y

(14)

1 +
k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
Ts + 1

y

=
k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
Ts + 1

ucTs + 1 + k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
Ts + 1

y =
k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
Ts + 1

uc

y =
k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
Ts + 1 + k

[(
kp + Kn1

)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]uc (15)

em = y− ym (16)

em =

 k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
Ts + 1 + k

[(
kp + Kn1

)
+ (ki+Kn2)

1
s + (kd + Kn3)s

] − km

Tms + 1

uc (17)

∂em

∂kp
=

 (Ts + 1)k(
Ts + k

[(
kp + Kn1

)
+ (ki+Kn2)

1
s + (kd + Kn3)s

])2

uc (18)

Equation (18) can be rewritten as follows:

∂em

∂kp
=

 (Ts + 1)k(
Ts + k

[(
kp + Kn1

)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
+ 1
)(

k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

])
y (19)
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From Equations (17) and (19), the following is derived:

∂em

∂kp
=

 k2e(
Ts + k

[(
kp + Kn1

)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
+ 1
)
 (20)

To achieve the desired performance, the following condition must hold:

Ts + k[
(
kp + Kn1

)
+ (ki+Kn2)

1
s
+ (kd + Kn3)s] + 1 = Tms + 1 (21)

∂em

∂kp
=

k2e
Tms + 1

(22)

From the MIT rule, one can obtain the following relationship:

dkp

dt
= −γ.em.

k2e
Tms + 1

(23)

dkp

dt
= −γ1.

em.e
Tms + 1

(24)

γ1 = γ.k2 (25)

(kp)new =
∫ dkp

dt
dt + kp(0) (26)

where kp(0) is the initial value of proportional gain kp.

∂em

∂ki
=

1
s

 k

Ts + k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
+ 1
−

k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
(

Ts + k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
+ 1
)2

uc (27)

Equation (28) can be rewritten as follows:

∂em

∂ki
=

1
s

 k(Ts + 1)(
Ts + k

[(
kp + Kn1

)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
+ 1
)2

uc (28)

∂em

∂ki
=

1
s

 k(Ts + 1)(
Ts + k

[(
kp + Kn1

)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
+ 1
)(

k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

])
y (29)

From Equations (27) and (29), we obtain the following:

∂em

∂ki
=

1
s

 k2e(
Ts + k

[(
kp + Kn1

)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
+ 1
)
 (30)

To achieve the desired performance, the condition must hold in Equation (21).

∂em

∂ki
=

1
s

k2e
Tms + 1

(31)

From the MIT rule, we can obtain the following relationship:

dki
dt

= −γ.em.
1
s

k2e
Tms + 1

(32)
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dki
dt

= −γ2.
em.e

Tms + 1
(33)

γ2 = γk2.
1
s
= γ1

1
s

(34)

(ki)new =
∫ dki

dt
dt + ki(0) (35)

where ki(0) is the initial value of proportional gain ki.

∂em

∂kd
=

 ks

Ts + k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
+ 1
−

ks
(

k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

])
(

Ts + k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
+ 1
)2

uc (36)

∂em

∂kd
=

 ksµ
(

Ts + k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
+ 1− k

[(
kp + Kn1

)
+ (ki+Kn2)

1
s + (kd + Kn3)s

])
(

Ts + k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
+ 1
)2

uc (37)

∂em

∂kd
=

 ks(Ts + 1)(
Ts + k

[(
kp + Kn1

)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
+ 1
)2

uc (38)

∂em

∂kd
=

 ks(Ts + 1)(
Ts + k

[(
kp + Kn1

)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
+ 1
)(

k
[(

kp + Kn1
)
+ (ki+Kn2)

1
s + (kd + Kn3)s

])
y (39)

Furthermore, from Equations (43) and (45), we obtain the following:

∂em

∂kd
=

 k2.s.e(
Ts + k

[(
kp + Kn1

)
+ (ki+Kn2)

1
s + (kd + Kn3)s

]
+ 1
)
 (40)

∂em

∂kd
=

k2.s.e
Tms + 1

(41)

dkd
dt

= −γ.em.
k2.s.e

Tms + 1
(42)

dkd
dt

= −γ3.
em.e

Tms + 1
(43)

γ3 = γ.k2.s = γ1.s (44)

(kd)new =
∫ dkd

dt
dt + kd(0) (45)

where kd(0) is the initial value of the derivative gain kd.
There are many methods to define the parameters of the control techniques, such

as trial and error and Ziegler–Nichols methods for PID control; however, most of these
methods are rough roads [44,45]. This study used a new effective optimization technique,
which is the COVID-19 optimization algorithm, to find the optimal parameters of the
proposed controllers (PID and NPID) based on the output response behavior and the
desired performance, as in [17].

The initial population contains the upper and lower values for each control tech-
nique. The performance of each row was investigated according to the objective function
in Equation (6). Poor performance specifies the infected population, which has the possi-
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bility to die; meanwhile, good performance indicates the recovered population from the
corona virus:

δt = (δ1 + δ2 + δ3 + δ4)/4 (46)

δ1 =
|tr − trd|

trd
(47)

δ2 =
|ts − tsd|

tsd
(48)

δ3 =
|ess − essd|

essd
(49)

δ4 =
|OS−OSd|

OSd
(50)

where (trd) is the desired rise time and (tr) is the measured rise time; (Osd) is the desired
maximum overshoot and (OS) is the actual overshoot; (tsd) is the desired settling time and
(ts is the determining settling time; and (essd) is the desired steady-state error and (ess) is the
estimated steady-state error.

It should be observed that the objective function uses four sub-objective functions
to try to appease the designer. Improving the rising time of all drive systems is the first
sub-objective function. Reduced settling time is the second sub-objective function. The
steady-state error is measured by the third sub-objective function. The needed overshoot is
investigated in the fourth sub-objective function. Each sub-objective function has a value
between zero and one. Therefore, the total objective function takes into account the average
of the sum of the four sub-goal functions.

The obtained controller parameters are shown in Table 3.

Table 3. Uncertainty parameters of the EV system.

Controller Type Parameter Value

PID control

kp 5.254

ki 0.05

kd 0.02

NPID Control

kp 10.23

ki 2.23

kd 1.58

w1 0.25

w2 0.34

w3 0.01

Auto-Tuning NPID Control

kp(0) 6.35

ki(0) 0.125

kd(0) 2.31

w1(0) 0.45

w2(0) 0.69

w3(0) 0.78

4. Results and Discussion

This section illustrates the proposed controller’s performance for the EV under external
and internal disturbances. Several tests were executed to validate the robustness and
flexibility of the proposed controllers. The first test used a single operating speed to
measure the dynamic response of each control technique.
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Figure 5 demonstrates the closed-loop dynamic behavior of the EV through a single
operating speed. It can be noted that the auto-tuning NPID controller had a smooth
response, low rise time and settling time, and no overshoot, which made the EV comfortable.
In contrast, the other techniques (PID and NPID controllers) required a long time to stabilize
the desired operating point. Moreover, they had a high overshoot, which made the EV’s
motion unstable.
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The reasons for the poor performance of these controllers (PID and NPID controllers)
were the inability to overcome system uncertainty, and the internal and external distur-
bances. Moreover, these controllers without adaptive mechanisms integrated into the case
of the auto-tuning NPID controller made the parameters have to continuously adapt with
the system’s sudden changes.

Figure 6 demonstrates the rotor winding current in amperes (A) of each control
technique. It can be noted that the starting current was identical for the proposed controllers,
while the current stabilized quickly in the case of the auto-tuning NPID controller. Both the
PID and NPID had high fluctuations in current.

Figure 7 demonstrates the performance of the PID, NPID, and auto-tuning NPID to
track the New European Drive Cycle (NEDC) speed (Km/h) test. It is obvious that the
auto-tuning NPID controller tracked the speed profile accurately. Furthermore, the PID
and the NPID controllers could not track the continuous changes in the speed profile. A
zoomed area was taken from 980 s to 1020 s to ensure that the auto-tuning NPID had a
small settling time and smooth behavior compared to other control techniques that did not
have an adaptive mechanism.

Figure 8 demonstrates the corresponding rotor current in amperes (A) for the NEDC
test. It was demonstrated that the PID and NPID controllers had a high starting current
at each change in speed profile, which made them consume a lot of power. In contrast,
the auto-tuning NPID controller had a low starting current compared to the other control
techniques (PID and NPID), which saved power consumption and permitted the EV to
move longer than for the other techniques.

Figure 9 shows vehicle velocity, in km/h, based on the proposed control techniques
within the Urban Dynamometer Driving Schedule (UDDS) driving cycle for the same
time interval.
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It was noticed that the auto-tuning NPID controller accurately tracked its reference
velocity, although there were violent changes in the reference speed and nonlinearity
resources of the EV. In the case of the PID and NPID controllers, they could not track the
profile where the gap between the reference and the actual velocity was high. A zoomed
area demonstrated the difference between the reference and the actual velocity. It can be
noted that the error was 6.307 minus 6.271, equaling 0.036.

Figure 10 illustrates the corresponding instantons current in amperes (A) for the
UDDS test. It was noted that the PID and NPID controllers had a high value of starting
current at each change in operating point, while the auto-tuning NPID controller had a low
peak current compared to the other control techniques. This meant that the auto-tuning
NPID controller consumed low power throughout the driving cycle. Moreover, Table 4
demonstrates that the auto-tuning NPID controller had the least peak and average current
throughout this cycle.
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Figure 10. The corresponding instantons current in amperes (A) for the UDDS test.

Table 4. The current consumption for each control technique.

Controller Type Peak Current (A) Average Current (A)

PID controller 1.35 0.912

NPID controller 1.36 0.851

Auto-tuning NPID controller 1.33 0.712

Table 4 demonstrates a comparison to show the consumed current for each control
technique. It can be noted that the proposed auto-tuning NPID controller used the least
current by assuming that the output voltage of the EV battery was constant.

5. Conclusions

In this study, a new auto-tuning nonlinear PID controller was introduced for an electric
vehicle (EV) model. Two objectives were intended to be achieved by the recommended
control. The main objective was to enhance the EV’s dynamic response to both internal
and external shocks. Reducing power consumption for EVs was the second objective.
Two well-known controllers were installed to ensure that these objectives would be met
by evaluating the dynamic performance and power consumption. The first was a PID
controller that used COVID-19 optimization. The second employed a nonlinear PID (NPID)
controller, which was COVID-19-tuned. The results demonstrate that, in comparison to
other control systems, the auto-tuning NPID had a comfortable dynamic response and a
short rise and settling time (PID and NPID controllers). Additionally, via the driving cycles,
it achieved a low continuous power (peak current 1.33 A and average current 0.712 A).
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