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Abstract: In geometrical localization techniques, the propagated signal’s first-order multipath (FOMP)
characteristics are used to calculate the location based on geometrical relationships. Utilizing the
characteristics of higher order multipath (HOMP) results in a significant localization error. There-
fore, distinguishing between FOMPs and HOMPs is an important task. The previous works used
traditional methods based on a deterministic threshold to accomplish this task. Unfortunately, these
methods are complicated and insufficiently accurate. This paper proposes an efficient method based
on supervised learning to distinguish more accurately between the propagated FOMP and HOMP of
millimeter-Wave Vehicle-to-Vehicle communication in an urban scenario. Ray tracing technique based
on Shoot and Bounce Ray (SBR) is used to generate the dataset’s features including received power,
propagation time, the azimuth angle of arrival (AAOA), and elevation angle of arrival (EAOA). A
statistical analysis based on the probability distribution function (PDF) is presented first to study
the selected features’ impact on the classification process. Then, six supervised classifiers, namely
Decision Tree, Naive Bayes, Support Vector Machine, K-Nearest Neighbors, Random Forest, and
artificial neural network, are trained and tested, and their performance is compared in terms of
HOMP misclassification. The effect of the considered features on the classifiers’ performance is
further investigated. Our results showed that all the proposed classifiers provided an acceptable
classification performance. The proposed ANN showed the best performance, whereas the NB was
the worst. In fact, the HOMP misclassification error varied between 2.3% and 16.7%. The EAOA
exhibited the most significant influence on classification performance, while the AAOA was the least.

Keywords: V2V; mm-wave; ray tracing; FOMPs; HOMPs; supervised classification

1. Introduction

The most effective localization methods in a challenging environment, such as urban
environments, are vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) [1]. In such
techniques, the localization process can be established using either a communication
technique based on sharing information or a transmission technique based on utilizing
the multipath components (MPCs) [2,3]. However, the communication technique still
faces latency and reliability challenges, especially in urban environments, although the 5G
and millimeter-Wave (mm-wave) communication technologies have been widely used to
meet the massive data transmission demand [4]. The transmission techniques (also called
geometric-based) are proposed to handle this challenge in several research. The localization
concept of the geometric-based techniques involves exploiting the characteristics of FOMP,
such as path length, angle of arrival, and angle of departure, to localize the vehicle based
on geometrical relationships [5–7]. For example, in [7], the propagation time and angular
characteristics of the FOMPs are utilized to allow a sensing vehicle (SV) to localize the
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hidden vehicle (HV). Unfortunately, in multipath environments (i.e., urban areas), the
propagation phenomenon of the signal between two blocked transceivers is a combination
of FOMPs and HOMPs [8–11]. Figure 1 shows the types of propagation paths that can be
established between HV and SV. However, mistakenly using HOMP’s characteristics rather
than FOMP’s characteristics is considered a major challenge in geometric-based techniques.
It has a negative impact on localization accuracy. Therefore, detecting the FOMPs among
the HOMPs is important for achieving precise localization.
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Figure 1. Signal propagation mechanism of the V2V scenario.

So far, various techniques have been proposed for distinguishing between the FOMPs
and HOMPs. These techniques, in brief, are mainly relied on a statistical condition of the
characteristics of the received signal. For instance, the authors in [12] assumed a determined
level of the received signal as a threshold to identify the FOMP. In the same manner, the
time of arrival (TOA) based on a proximity detection method is utilized in [11]. The
authors in [13,14] presented an analytical model to characterize the path loss as a threshold
to identify the FOMPs. Unfortunately, methods that rely on a deterministic threshold
exhibit complexity, owing to the necessity of the complex analyses, and the inaccuracy
particularly in high-frequency bands (mm-wave bands), due to the challenge of identifying
the exact threshold. The inherent sparsity of the mm-wave channel causes disordering of
the propagation path characteristics of the transmitted signal. This leads to the absence
of a precise threshold and in turn introduces misjudgment in the distinguishing process.
Therefore, to break through the drawbacks of this method, a classification technique based
on machine learning (ML) is proposed to distinguish the FOMPs.

In ML tools, such as supervised learning classification models, the classification
decision is created based on a previous training process. Such methods have a good
classification performance provided that the features of the training data are carefully
prepared. In general, the classification performance of ML models is affected by two
main factors: the features of the training dataset, and the hyperparameters of the model.
More details about the classifiers will be presented in Section 3.1. However, in wireless
communications aspects, the MPCs, such as received power, propagation time, and angle
of arrival and departure, have been utilized as features of the training data for various
purposes in the literature. Generally, these characteristics can be extracted either from
experiments, based on measurement, or from simulation tools [15,16]. The experimental
methods have difficulties and high costs especially when a large amount of data is required.
Therefore, the researchers resort to simulation tools instead of experimental methods.

Typically, the simulation tools that have been utilized for this purpose, are built on
either empirical (stochastic) or deterministic models. The empirical models rely on observa-
tion and measurement based on theoretical analysis to predict propagation characteristics.
Meanwhile, the deterministic models leverage geometric optics. Ray tracing is one of the
deterministic modeling methods. It provides high accuracy and more reliable predictions
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for the propagation path characteristics of high-frequency communication networks, i.e.,
mm-wave bands. Therefore, it has been considered to predict the propagation character-
istics of 5G networks and beyond in several research [17–19]. Since this work is basically
concerned about mm-wave bands; thus, the ray tracing technique will be considered a
predation model of the propagation characteristics. Readers can refer to the reference [16]
for more details about the channel modeling techniques.

However, the major contributions of this work are as follows:

• We presented a statistical analysis of the characteristics of the propagation paths and
investigated how these characteristics impact the FOMPs identification.

• We proposed an efficient solution based on supervised classifiers to distinguish be-
tween the FOMP and the HOMP in blocked V2V communication by applying six
supervised classifiers. The training dataset was generated by using a ray tracing
technique.

• We tested the proposed classifiers using different strategies. Then their performance
is compared in terms of several well-known metrics such as accuracy and precision.
Furthermore, since this work is interested in the FOMPs, we presented a particular
metric based on the estimation error of the HOMP as FOMP.

The rest of this paper is organized as follows, after this protracted introduction, a
review of the related works is presented in Section 2. Then, a brief explanation of ML
is provided in Section 3. The methodology of this research is described in Section 4. In
Section 5, an analysis of the obtained results is presented including validation of the ray
tracing predictions, statistically analyzing the propagation characteristics, and discussing
the performance of the proposed classifiers. Finally, the conclusion is drawn in Section 6.

2. Related Works

Typically, in the localization aspect, the classification methods have been used either
for identifying the FOMPs or for identifying the Line of Sight (LOS) and Non-Line of Sight
(NLOS). Therefore, the related works in this paper are presented in two parts. The first part
highlights the works that utilized the conventional techniques based on the deterministic
threshold for FOMPs identification, while the second part highlights ML for LOS and NLOS
identification. The proposals that used conventional techniques to identify LOS and NLOS
are ignored.

Earlier, the FOMPs and HOMPs identification methods have been presented in [11]
based on proximity detection technique. They used TOA to normalize the weighting factor
of the path; thus, the HOMPs are identified as outliers. In a similar vein, an iterative strategy
based on the generalized likelihood ratio test is proposed in [20] to detect the FOMPs and
HOMPs of the downlink. In these methods, a complex analysis is required. However, since
the power of the transmitted signal is strongly attenuated by the reflection; therefore, the
received power had been utilized to distinguish between the FOMPs and HOMPs in several
works, [8,21,22] are among them. However, the obtained results in [2] illustrated that, the
received power alone could not be used to accurately distinguish between the FOMPs and
HOMPs. However, in summary, the traditional methods are complex and insufficiently
accurate.

However, motivated by the efficient performance of ML classifiers, it has been widely
used to solve classification problems in the literature for several aspects. In the localization
field, the supervised classification models became popular for LOS and NLOS identification.
The researchers utilized different direct or indirect characteristics of the paths as an input
vector. For instance, the authors in [23] discriminated LOS paths and NLOS according to
the Rician k factor. In [24], the authors combined the angular information of the mm-wave
channel with the features, such as RMS delay spread, kurtosis, and Rician K factor, to
train the SVM in order to identify the LOS and NLOS. They showed that the features
in the angular domain significantly improved the accuracy of the SVM model. The non-
temporal configurations (frequency characteristics) of the channel impulse response of
Ultra-wideband signal are exploited as an input vector for training the Convolutional
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Neural Network (CNN) model to extract the features, the CNN output is then used to feed
the Long Short Term Memory Network (LSTM) model [25]. High accuracy of LOS/NLOS
classification has been achieved in that work, but there are also highlighted limitations
such as the authors didn’t investigate the influence of the obtained classification on the
position estimation; furthermore, the diffraction effects were limited in the training data.
The angular parameters of the mm-wave channel have been utilized in [26] to identify
LOS and NLOS environments. The author proposed a neural network model named angle
information learning neural network. The angular parameters have been used to learn the
proposed model. That work achieved identification accuracy of up to 99.41%.

Based on the above review, we have observed that, the deterministic threshold is
adopted for identifying the FOMPs. Meanwhile, ML is still not used for this purpose.
ML has been widely used for identifying the LOS and NLOS. We also observed that
the traditional methods are complicated and not accurate enough. This has motivated
us to propose an identification method by employing ML to distinguish between the
FOMPs and HOMPs. The features of the training dataset are considered based on some
of the characteristics that have been used to identify the LOS and NLOS. In particular,
five well-known classifiers namely Decision Tree (DT), Naive Bayes (NB), Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF), are considered.
Furthermore, an artificial neural network (ANN) model is proposed, as it has become very
popular nowadays.

3. Background on ML Classifiers

Basically, this work aims to apply supervised ML techniques for distinguishing the
FOMPs and HOMPs. Therefore, this section is dedicated to presenting a brief explanation of
the supervised classifiers, the features of the training dataset, and performance evaluation
criteria.

3.1. Supervised Classisfication Algorithms

Supervised classifiers are one of the most popular techniques in data mining aspect.
Its working principle is creating a decision based on analysis of the data that have been
entered previously. Typically, the classification process of the supervised classifiers consists
of two phases. The first phase is learning based on the training. In this phase the labeled
data is used to train the model to generate the prediction algorithm. The second phase is
classification, where the trained model is used to predict the label classes. However, there
are several supervised classification models have been proposed for different purposes
in the literature. In this part, a brief discussion about the five most popular classifiers, is
presented. Additionally, a brief discussion of the ANN learning model, which is widely
utilized in the same context of our study. However, more information about the supervised
classifiers can be found in the reference [27].

DT classification algorithm is the most well-known. The fundamental principle of its
classification algorithm is by utilizing a top-down technique through the tree to search for
a proper decision. The tree is built based on the training data. The decision is established
based on a series of sequence processes. The DT algorithm can be used with both linear and
nonlinear numerical data. It has fast learning and is easy to understand and interpret. On
the other hand, overfitting data is more likely to occur. The algorithm of the NB classifier
basically relies on Bayes’ formula. In NB, the features are grouped independently, and the
features are assumed not related to each other. Similar to DT, the NB classification has fast
learning. In addition, there is not a too large amount of data required for training.

SVM can be used for regression and classification problems. It is most popular for
binary classification. SVM’s algorithm consists of two stages. First, the data is mapped into
n-dimensions. Then, the hyperplane is used to classify the data into two classes. However,
the SVM’s performance is affected by the noisy data. The KNN algorithm is also considered
one of the simplest classifiers. The classification decision of the KNN algorithm is taken
based on the number of neighborhoods, i.e., the value of K. Therefore, different values of K
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may obtain a different classification. The value of K is usually set to an odd number. It is
also determined by the trial-and-error method. This is considered the main disadvantage
of the KNN algorithm. Nonetheless, on the other hand, the KNN algorithm is more robust
even with noisy data. RF algorithm is basically a combination of multiple DT. The trees are
randomly created. Therefore, it is called a random forest. It is presented to overcome the DT
overfitting problem, where the decision is made based on the subset of the training data in
parallel and the final output is generated by combining the output of the individual trees.

In terms of the training time, usually, the RF model requires a higher compared to the
DT model, but the prediction results of RF models outperform the DT models in most cases.
However, NN and deep learning algorithms have become popular in the last few years. It
has been widely used to solve linear and non-linear problems whether it is classification
or regression. Its learning concept is adjusting the weights of the neurons to reduce the
error of the prediction. Several models of NN have been presented in the literature, such as
ANN (single layer), DNN (multiple layers: input layer, hidden layers, output layer), CNN,
and LSTM. However, the prediction accuracy of these models is higher and more robust,
i.e., is not affected by the noisy data. On the other hand, compared to the previous models,
these models have deprived interpretation.

3.2. Features Selection

Consider the V2V scenario as shown in Figure 1. The established transmission system
between the vehicles is used for localization, where the sensing vehicle desires to localize
the hidden vehicle by utilizing the characteristics of the transmitted signal. According
to [28] the characteristics of the transmission channel of the multipath components (MPCs)
at the receiver (sensing vehicle) can be expressed as follows

H(t) =
N

∑
n=1

ρne−j∅kδ(γn)δ(∅n)δ(θn) (1)

where, N is the number of received MPCs. ρn and γn are respectively the complex amplitude
and the delay of the Nth received path. θn and ∅n are the angle of departure and arrival
of the received path, respectively. They also represent the horizontal and vertical angles
of each path. However, from Equation (1), we can directly obtain several characteristics
of the MPC, such as the received power, delay, and horizontal and vertical angles. In the
following, a brief explanation of the impact of these characteristics for distinguishing the
type of propagation path.

3.2.1. Received Power (RP)

Logically, the FOMPs include the amount of received power more than the HOMPs.
Often the FOMPs are the dominant paths that carry a significant amount of power. The
more reflections the more power losses. Therefore, the received power can be considered
as a feature to distinguish the type of paths. However, some of the propagated paths are
scattered by the edge of the buildings. These paths usually contain a lower amount of
received power even though they are FOMP. Thus, ambiguity will occur if the identification
relies on the received power stand-alone.

3.2.2. Propagation Time

It is defined as the measurement of the required time for the transmitted signal to
reach the receiver through a relative propagation path. Generally, the propagation time
of the HOMPs is larger than the FOMPs. The presence of more reflections in the path
propagation leads to a higher propagation delay at the time of arrival (TOA). This feature
can be integrated with the previous feature to improve the accuracy of classification.
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3.2.3. Angular Variation

The direction of the incoming signal is also called the angle of arrival (AOA). It can
be accurately estimated in mm-wave systems thanks to multiple input multiple output
antenna (MIMO). Therefore, it has been exploited for positioning purposes [29]. However,
AOA can be measured horizontally or vertically; they are called azimuth and elevation
respectively. Basically, the azimuth angle of arrival (AAOA) is related to the layout of
the surrounding environment, while the elevation angle of arrival (EAOA) is related to
the propagation path length, especially when the transmitter and receiver have different
heights.

In summary, the considered input vector of the training data can be expressed as
follows X = {Received power, delay, AAOA, EAOA} of the nth arrived path of each snapshot.

3.3. Assessment Criteria

In order to evaluate the performance of ML classifiers, the prediction results of the
model should be assessed. There are several well-known metrics have been presented in this
regard. The most popular metrics are accuracy, precision, receiver operating characteristic
(ROC), mean absolute error (MAE), and root mean squared error (RMSE).

Assume a confusion matrix of the binary classification model, as shown in Figure 2,
where the positive is considered to represent FOMP, while the negative is considered to
represent HOMP. The true positive (TP) denotes the FOMPs that are truly predicted as
FOMPs. The false positive (FP) denotes the HOMPs that are predicted as FOMPs. The false
negative (FN) denotes the FOMPs that are predicted as HOMPs. The true negative (TN)
denotes the HOMPs that are truly predicted as HOMPs.

World Electr. Veh. J. 2023, 13, x FOR PEER REVIEW  6  of  19 
 

3.2.2. Propagation Time 

It  is defined as the measurement of the required time for the transmitted signal to 

reach the receiver through a relative propagation path. Generally, the propagation time of 

the HOMPs is larger than the FOMPs. The presence of more reflections in the path prop-

agation leads to a higher propagation delay at the time of arrival (TOA). This feature can 

be integrated with the previous feature to improve the accuracy of classification. 

3.2.3. Angular Variation 

The direction of the incoming signal is also called the angle of arrival (AOA). It can 

be accurately estimated in mm-wave systems  thanks to multiple  input multiple output 

antenna (MIMO). Therefore, it has been exploited for positioning purposes [29]. However, 

AOA can be measured horizontally or vertically; they are called azimuth and elevation 

respectively. Basically, the azimuth angle of arrival (AAOA) is related to the layout of the 

surrounding environment, while the elevation angle of arrival (EAOA) is related to the 

propagation  path  length,  especially when  the  transmitter  and  receiver  have  different 

heights.   

In summary,  the considered  input vector of  the  training data can be expressed as 

follows X = {Received power, delay, AAOA, EAOA} of the nth arrived path of each snap-

shot. 

3.3. Assessment Criteria   

In order to evaluate the performance of ML classifiers, the prediction results of the 

model should be assessed. There are several well-known metrics have been presented in 

this regard. The most popular metrics are accuracy, precision, receiver operating charac-

teristic (ROC), mean absolute error (MAE), and root mean squared error (RMSE).   

Assume a confusion matrix of the binary classification model, as shown in Figure 2, 

where the positive is considered to represent FOMP, while the negative is considered to 

represent HOMP. The true positive (TP) denotes the FOMPs that are truly predicted as 

FOMPs. The false positive (FP) denotes the HOMPs that are predicted as FOMPs. The false 

negative (FN) denotes the FOMPs that are predicted as HOMPs. The true negative (TN) 

denotes the HOMPs that are truly predicted as HOMPs. 

 

Figure 2. Binary confusion matrix. 

3.3.1. Accuracy 

It  is  the ratio of all samples  that are accurately predicted  to all samples.  It can be 

calculated as 

Accuracy ൌ  
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝐹𝑃 ൅ 𝐹𝑁 ൅ 𝑇𝑁
  (2) 

Figure 2. Binary confusion matrix.

3.3.1. Accuracy

It is the ratio of all samples that are accurately predicted to all samples. It can be
calculated as

Accuracy =
TP + TN

TP + FP + FN + TN
(2)

3.3.2. Precision

It is the ratio of the TP samples to all samples that are predicted as positive samples
(i.e., TP and FP). Its formula is

Precision =
TP

TP + FP
(3)

3.3.3. Recall

It is the ratio of TP samples to the total correct predicted samples (TP and FN). It can
be calculated by

ROC =
TP

TP + FN
(4)
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3.3.4. Mean Absolute Error (MAE)

It is the absolute error between the actual classes and the predicted classes. It is
expressed by

MAE =
∑n

i=1|Xi −Yi|
n

(5)

where Xi and Yi are the actual and predicted class respectively.

3.3.5. Root Mean Squared Error (RMSE)

It is also used to represent the difference between the actual classes and the predicted
classes. It is expressed by

RMSE =

√
∑n

i=1(Xi −Yi)
2

n
(6)

The above metrics are standard, they have been widely used for evaluating the perfor-
mance of the classifiers in various aspects. In this work, we are interested in the HOMP
misclassification (the actual HOMP that have been predicted by the classifier as a FOMP)
which will produce more localization errors. Therefore, the most important metrics in our
work regard are accuracy and precision because their formula consists of the FP. Meanwhile,
the recall metric is not important in our case, since the FOMPs that are predicted by the
classifier as HOMPs will be ignored, i.e., the localization accuracy won’t be affected. How-
ever, MAE and RMSE metrics represent the classification errors including the FOMP and
HOMP. However, we also define additional metric for performance evaluation as follows:

3.3.6. HOMP Prediction Error (HOMPPE)

It is the ratio of the misclassification HOMPs (FP) to the total actual HOMPs.

HOPPE =
FP

FP + TN
(7)

4. Methodology

The main purpose of this work is to present an efficient method to distinguish between
the FOMPs and HOMPs based on supervised classification. The ray tracing technique will
be used to generate the dataset. Therefore, the methodology of this work is divided into
three parts. The first part explains the simulation setup. The second part illustrates the
configuration of V2V communication scenario and how the dataset is collected. The third
part describes the method of applying the supervised classifiers to achieve the purpose of
this work.

4.1. Simulation Setup and SBR Validation

Wireless InSite (WI) software, developed by Remcom, is used to model the realistic
V2V scenario in the considered urban environment, which is Kuala Lumpur City Centre
(KLCC), Jalan Ampang. To create a geometric structure (buildings detailed) of the interested
area, a real 3D model of KLCC is downloaded first from the Cadmapper website [30]. Then,
this 3D model is prepared and converted into dxf format by using SketchUp application.
Finally, the dxf file is imported to WI simulation as shown in Figure 3a. The values of
electromagnetic (EM) parameters of buildings, leaves, and objects were set based on [31,32].
The EM parameters of the simulation setup are listed in Table 1.
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Table 1. Parameters of the simulation setup.

EM of Material Properties

Electro Magnetic
Parameters

Material εr σ [S/m]

Buildings (Concrete) 5.31 0.8967

Vegetation-Leaf 26 0.39

Vegetation-Branch 20 0.39

Vehicle (Metal) 1.00 10 × 107

UMi specifications

Antenna

Type Omnidirectional

Polarization Vertical

Gain 27 dBi

Height Transmitter = 10 m
Receiver = 2 m

Transmitted Power 42.0 dBm

UMi size 200 m × 400 m

Frequency 28 GHz

Ray tracing Technique SBR

Model Full 3D

In order to verify the validity of the ray tracing results, an urban 5G micro cell (UMi)
scenario is formed with dimensions of 200 m × 400 m in the considered environment
as shown in Figure 3b. The parameters of the formed UMi are listed in Table 1. The
specifications of the formed UMi are inspired by [33,34]. The performance of the UMi
is analyzed and compared with the previous works in terms of received power (often
modeled by path loss) for LOS and NLOS conditions. It is worth mentioning that, the
prediction correctness of the ray tracing simulator is validated based on the received power
only, where it is more relevant to the buildings’ layout and materials (i.e., user-defined).
Regarding the predictions of the other propagation characteristics, such as propagation
time and angular properties, it is mainly defined by the designer of the ray tracer simulator.
Therefore, they are not going to be involved in the validation.
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4.2. V2V Configuration and Data Collection

In this part of the methodology, first, we explain the established V2V scenario. Then,
present the data processing including the method of obtaining the paths’ characteristics
from the ray tracing simulation and labeling the obtained data.

The established V2V scenario is inspired by Figure 1. The vehicles are blocked from
each other, there are no existing direct paths between the vehicles. Three boxes (objects)
have been created to present the HV, SV, and blockage (the vehicle in between). The
dimensions of the HV and SV objects are 4.5 m (length), 2 m (width) and 1.5 m (height).
Meanwhile, the blockage dimensions are set to 5 m (length), 4 m (width), and 4 m (height).
The transmitter and receiver antennas are located on the top of the HV and SV with a
height of 2 m. The model is considered to be single input single output (SISO) for simplicity
purposes. The types of both antennas are selected to be isotropic antennas with vertical
polarization. The transmission power is set to 14.6 dBm. The separated distance between
the vehicles is varied in range from 20 m to 50 m as the normal distance between two
blocked vehicles in the real world. In order to simplify the simulation, the vehicles are
assumed to be stationary (no mobility) while capturing the path characteristics. Note that,
the typical speed of the vehicle in urban environments is less than 50 Km/h. Therefore,
with the high sampling rate, the change of nominal characteristics will be very small,
i.e., the assumption is reasonable. We select mm-wave at 28 GHz frequency band with
a channel bandwidth of 450 MHz, which is a candidate in Release 15 of 5G for outdoor
wireless communications, as the operating frequency. Ray tracing technique based on
SBR is utilized to predict the propagation path characteristics. The maximum number of
propagation paths is set to 25, where a large number of propagation paths will not improve
the prediction accuracy of the propagation characteristics in the simulation results [35]. The
parameters of the V2V configuration are depicted in Table 2.

Table 2. V2V configuration parameters.

Antenna

Type Isotropic

Polarization Vertical

Gain 10 dBi

Height Transmitter = 2 m
Receiver = 2 m

Transmitted Power 14.6 dBm

Frequency 28 GHz

Bandwidth 450 MHz

Number of reflections 6

Number of Paths 25

Ray Spacing 0.15

Ray tracing Technique SBR

Model Full 3D

In terms of dataset collection, the SBR technique is utilized for predicting the charac-
teristics, i.e., received power, propagation time, and horizontal and vertical angle of arrival,
of each propagated path that arrived at the receiver (SV). A total of various 46 locations
are selected to record the data in order to include the effect of reflections on a variation of
parameters of the received signal. The data are recorded for 25 paths at each location. This
means that 1150 samples are collected while the simulation is running.

4.3. Data Preparation and Supervised Classification Models

This section elaborates on the process of preparing the dataset for training the clas-
sifier including labeling the data and dividing it into training, validating, and testing. In
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addition, this section also discusses the setup and configuration of the proposed classifiers.
However, WI enables us to visualize the propagation mechanism of the paths. Based on
this visualization, the stored data are manually labeled into binary classes (i.e., 0 and 1).
Where the FOMPs are labeled as 0’s class, and the HOMPs are labeled as 1’s class. After
labeling the data, a shuffling method is used for dividing the data for training, validation,
and testing the classifiers. 85% of the data are used for training and validating the proposed
classifier respectively, whereas 15% of the data is used for testing the proposed classifiers.
Since the training data is imbalanced, (the number of HOMPs (1’ class) is around three
times more than the number of FOMPs (0’s class)), in addition, the data size is not too large,
a random over-sampling method is applied to handle this issue. Furthermore, the k-fold
cross-validation technique is used to protect classifier performance against overfitting. In
the k-fold cross-validation technique, the dataset is randomly divided into 10 partitions
(folds) for training and validation, where each folder includes the same values of labels.
Then, the classifier is trained using the training data, and its performance is assessed by
using validation data. Finally, the average of validation errors over all files is calculated.
This means that the classifier will be trained and validated with all the data.

In binary classifiers, the mathematical model is formulated using a decision function
that maps the input vector X = [RP, TOA, EAOA, AAOA] to a binary output label Y = (0 or
1). The decision function is presented based on the classification algorithm. The objective
of training the classifiers is to minimize the average value of the binary cross-entropy loss
function. The classifier predicts the class as an optimization problem based on the learning
method by adjusting the weights (w) and biases (b). The binary cross-entropy loss can be
defined as:

min
∥∥−[YlogŶ + (1−Y)log(1− Ŷ)]

∥∥ (8)

Ŷ = wtX + b (9)

where, w denotes the vector weights assigned to each feature, b represents the terms that
modify the decision boundary of the classifier. In terms of the configuration and setup of
the classifiers, the MATLAB classification learner app is used to design, train, validate, and
test the proposed classifiers. For the training process, the Bayesian optimization algorithm
is utilized. However, in order to prevent the overfitting of the classification learner, we
enabled the validation method as mentioned before. Furthermore, since the obtained data
is not highly dimensional, there are only four features used for classification; thus, the
principal component analysis (PCA) won’t be activated in the classification learner. The
training parameters, such as learning rate, earlier stop the training, etc., were set based
on the default. Regarding tuning the hyperparameters of the classifiers, each classifier
has specific hyperparameters. For example, the type of kernel for SVM, number of trees
for RF, value of k for KNN, number of hidden layers, layer size (number of neurons),
and activation function for the ANN. Trail and test method is used to select the optimal
hyperparameter of the proposed classifiers.

However, for comparative purposes, all the proposed classifiers are trained using the
same training dataset. Then, the classifiers are validated by using the same validation data.
Finally, the performance of each classifier is evaluated based on the same test data. The
workflow of the proposed supervised classification method is shown in Figure 4.

World Electr. Veh. J. 2023, 13, x FOR PEER REVIEW  11  of  19 
 

Assessment 
criteria

Supervised 
classifiers  

Data labeling.
Dividing 
(training, 

validation, test) 

[RP, TOA, 
EAOA, AAOA] 

V2V simulation,
Ray tracing 
based SBR 
technique. 

Data acquisition
Generating 

Dataset 
Data pre-

processing 
Training
 process 

Performance 
evaluation 

 

Figure 4. Stages of the supervised classification process. 

5. Result and Discussion   

This section is dedicated to providing analysis of the obtained result from the simu-

lation. However, since the training dataset is obtained based on the predictions of the SBR 

technique; therefore, the reliability of this technique will be verified in Section 5.1. After 

that, we will present a statistical analysis of the obtained data, i.e., the characteristics of 

the propagation paths in Section 5.2. Finally, the prediction results of the proposed classi-

fiers will be discussed in Section 5.3. 

5.1. Ray Tracing Validation 

In order to verify the validity of the ray tracing results, we compare the performance 

of each of the formed UMi and the real UMi in terms of path loss parameters. The formed 

UMi, in Figure 3b, consisted of a total of 12,015 receivers. 8251 receivers (69%) are located 

in LOS  (red area) with BS  (green  square), whereas 3764  receivers  (31%) are  located  in 

NLOS (blue area). The recorded values of the path  loss from the simulation at each re-

ceiver are shown in Figure 5. It is clear that, the recorded path loss values of NLOS receiv-

ers are higher than LOS path loss values; Moreover, the path loss is increased as the dis-

tance to the base station is increased. However, based on the linear regression technique, 

the equation of the Close-In model is used to fit and calculate the parameters of path loss, 

i.e., the path loss exponent and the standard deviation. The results show that the path loss 

exponent values  for LOS and NLOS were 2.148 and 3.095 respectively, meanwhile,  the 

standard deviations for LOS and NLOS were 6.404 dB and 9.39 dB respectively. However, 

the  literature  reported  that,  in UMi,  the  calculated values of path  loss exponent using 

Close-In based-linear regression at 28 GHz takes different values for LOS and NLOS sce-

narios. Normally it ranges from 2 dBm to 4 dBm for LOS (2 for free space and 4 for lossy 

environments) and 2.7 dBm to 6 dBm for NLOS high reflections [36–39]. It is obvious that, 

the values of path loss exponent for LOS and NLOS are involved in these ranges. There-

fore, the predictions correctness of the utilized SBR technique is verified. The comparison 

of the path loss parameters of the simulation and the previous works is depicted in Table 

3. 

Figure 4. Stages of the supervised classification process.



World Electr. Veh. J. 2023, 14, 109 11 of 19

5. Result and Discussion

This section is dedicated to providing analysis of the obtained result from the simula-
tion. However, since the training dataset is obtained based on the predictions of the SBR
technique; therefore, the reliability of this technique will be verified in Section 5.1. After
that, we will present a statistical analysis of the obtained data, i.e., the characteristics of the
propagation paths in Section 5.2. Finally, the prediction results of the proposed classifiers
will be discussed in Section 5.3.

5.1. Ray Tracing Validation

In order to verify the validity of the ray tracing results, we compare the performance of
each of the formed UMi and the real UMi in terms of path loss parameters. The formed UMi,
in Figure 3b, consisted of a total of 12,015 receivers. 8251 receivers (69%) are located in LOS
(red area) with BS (green square), whereas 3764 receivers (31%) are located in NLOS (blue
area). The recorded values of the path loss from the simulation at each receiver are shown
in Figure 5. It is clear that, the recorded path loss values of NLOS receivers are higher than
LOS path loss values; Moreover, the path loss is increased as the distance to the base station
is increased. However, based on the linear regression technique, the equation of the Close-
In model is used to fit and calculate the parameters of path loss, i.e., the path loss exponent
and the standard deviation. The results show that the path loss exponent values for LOS
and NLOS were 2.148 and 3.095 respectively, meanwhile, the standard deviations for LOS
and NLOS were 6.404 dB and 9.39 dB respectively. However, the literature reported that, in
UMi, the calculated values of path loss exponent using Close-In based-linear regression
at 28 GHz takes different values for LOS and NLOS scenarios. Normally it ranges from
2 dBm to 4 dBm for LOS (2 for free space and 4 for lossy environments) and 2.7 dBm to
6 dBm for NLOS high reflections [36–39]. It is obvious that, the values of path loss exponent
for LOS and NLOS are involved in these ranges. Therefore, the predictions correctness of
the utilized SBR technique is verified. The comparison of the path loss parameters of the
simulation and the previous works is depicted in Table 3.
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5.2. Statistical Analysis of the Propagation Characteristics

This section presents an analysis of the obtained characteristics. The purpose of this
analysis is to study the contributions of the characteristics in distinguishing between the
FOMPs and HOMPs. However, the obtained results of the considered characteristics, i.e.,
received power, TOA, AAOA, and EAOA, of 1150 MPs recorded at 46 different locations are
shown in Figure 6. However, 200 of them were FOMPs (red dots), while 950 were HOMPs
(blue dots). It is clear that from the obtained results, the number of the FOMPs is lower
than the HOMPs, which is consistent with the literature, where the HOMPs are dominant
propagation in a multipath-reach environment. As shown in Figure 6, the distributions of
the captured samples of all paths, whether FOMPs or HOMP, fluctuated and dispersed.
The AAOA showed the highest degree of dispersal for FOMPs and HOMPs, whereas the
EAOA showed the lowest. The TOA and received power of the captured samples showed
a critical degree of scattering. For example, the recoded received power for FOMPs and
HOMPs ranged from −42 dBm to −92 dBm and −46 dBm to −100 dBm respectively. In
general, all the captured samples of the characteristics showed that there is no existence of a
threshold that separates the samples of the FOMPs from HOMPs perfectly. This means that
the inaccuracy of distinguishing between FOMPs and HOMPs based on a deterministic
threshold is therefore investigated.
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In order to better understand the contributions of these characteristics in distinguish-
ing the FOMPs and HOMPs, a statistical analysis is presented based on the probability
distribution functions (PDF) as shown in Figure 7. The PDF graphs demonstrate that
all extracted characteristics showed different degrees of the overlapped area between the
FOMPs and HOMPs. Also, we can observe that, the PDF graphs of the FOMPs are generally
centralized to a certain value; meanwhile, in HOMPs, they have a relatively flatted. How-
ever, the ratio of the overlapped area to the total area of the PDF of FOMPs and HOMPs
is shown in Figure 8. It is clear that the overlap ratio of the EAOA is the lowest; on the
other hand, the AAOA was the highest. The overlap ratio of the received power (RP) and
TOA are 47.92 and 35.38 respectively. From this analysis, we concluded that the EAOA
might provide the highest contribution to the distinction between FOMPs and HOMPs.
The TOA comes in the second order. Meanwhile, the AAOA might provide the lowest
contribution. We also concluded that, it is quite hard to identify whether they are FOMPs
or HOMPs based on a single characteristic. Therefore, the characteristics of the propagated
path should be jointly utilized in order to improve the performance of the classifiers.
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5.3. Discussion of Classification Results

As mentioned before, the classification learner application in MATLAB has been used
to implement the six proposed classifiers. However, this section presents a discussion and
comparison of the prediction performance of the proposed classifiers, as well as addresses
the impact of features on the prediction performance.

5.3.1. Evaluation of the Classifiers Prediction

In order to evaluate the performance of the proposed classifiers, their prediction
results are evaluated and compared in terms of the presented metrics in Section 3.3 (i.e.,
accuracy, precision, recall, MAE, RMSE, and HOMPPE). However, it is impossible to
present a comparison between the proposed classifier directly, since each classifier has
specific hyperparameters. Therefore, the optimal hyperparameters of each classifier are
selected first. Then the comparison is conducted. Table 4 shows the optimal selection of
the most important hyperparameters of the proposed classifiers. These parameters are
selected based on an empirical method. The tradeoff between the HOMPs misclassification
ratio, accuracy, time of training, and testing has been considered during the selection of the
optimal hyperparameters.

Table 4. Hyperparameters configuration of the proposed classifiers.

Classifier Optimized Hyperparameters

DT Max. No. of split: 50

NB -

SVM Kernel function: Gaussian.

KNN K: 7, Distance metric: Euclidean.

RF Max. No. of split: 30, Number of destination
trees: 15.

ANN No. of layers: 3, Layers size: 40, Activation
function: ReLU, Max. No. of epochs: 500.
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However, the comparison of the prediction results of the optimized classifiers is
shown in Table 5. As mentioned earlier, the most important metrics in the evaluation of the
classifier’s performance are accuracy, precision, and HOMPPE. Thus, in order to evaluate
and compare the performance of the classifiers, these metrics must be taken into account
jointly. Obviously, from the results in the table, all the proposed classifiers have provided
a good classification performance except the NB. The ANN classifier achieved the best
performance. Where the HOMPPE, the accuracy, and the precision of the ANN classifier
were 2.3%, 96.5%, and 92.9% respectively. However, since the HOMPPE is considered the
most important metric in the evaluation; thus, the SVM classifier comes in the second order
(although its accuracy and precision are lower than the DT, KNN, and RF), it achieved 2.7%,
95.9%, and 0.83% for HOMPPE, accuracy and precision respectively.

Table 5. Comparison of the prediction results of the proposed classifiers.

Classifier Accuracy % Precision % HOMPPE % MAE RMSE

DT 94.5 92.9 5.8 0.061 0.247

NB 87.8 91.8 16.7 0.135 0.368

SVM 92.4 85.7 2.7 0.041 0.203

KNN 94.1 96.4 4.2 0.047 0.217

RF 95.9 92.9 3.3 0.041 0.203

ANN 96.5 92.9 2.3 0.034 0.184

However, the NB classifier was the worst among the six classifiers. Basically, the NB
algorithm assumes that the features are unrelated and independent, but the features of our
training data are related to each other. For example, the FOMPs are usually assigned by
higher received power, lower propagation time, and higher EAOA as shown in the analysis
in the previous subsection. Therefore, the NB algorithm achieved the worst classification
performance with this type of data compared to the other classifiers. Although the DT and
the RF algorithms have the same principle of classification, the RF outperformed the DT.
The interpretation of that, the RF utilizes the power of multiple DT. It does not depend on
the feature importance given by an individual DT.

Based on the obtained results, it is obvious that the presented methods have provided
an efficient and accurate classification with lower complexity compared to the traditional
methods. There was no more analysis required. The disadvantage of the presented method
lay in the cost of generating the dataset in the real world.

5.3.2. Impact of the Features Selection

The presented statistical analysis of the selected characteristics (training features), in
Section 5.2, revealed a different overlapped area for each of them. Based on this analysis,
we discuss the impact of these features on the classifiers’ performance. In particular, we
shall use various features to train the classifiers and then evaluate their performance. The
proposed NB classifier is excepted from the comparison. The evaluation and comparison
are conducted in terms of the accuracy and the HOMPs misclassification.

Figure 9 depicts the scores of the importance of the ranking of the features obtained
from the MATALB classification learner. It is obvious that the scores of importance are in
the same consistency with the presented PDF analysis in Section 5.2. The EAOA showed
the highest scores of importance; meanwhile, the lowest score of importance is shown
in the AAOA. In other words, statistical analysis can be utilized to select more affectable
features to achieve a higher level of classification performance rather than the empirical
method.
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The comparison of the impact of feature selection on the accuracy and HOMPPE are
shown in Figures 10 and 11 respectively. It’s clear that, for all the proposed classifiers,
the accuracy is slightly increased and the HOMPs error is slightly decreased when the
AAOA feature is unselected. It means that the AAOA confused the classifiers since there
was too much overlap between the AAOA of the FOMPs and HOMPs. However, due
to the high impact of the TOA on the classifiers, the performance of the classifiers is
degraded (the accuracy dropped and the HOMPPE increased) when the TOA feature
is removed from the training dataset and only the EAOA and received power (RP) are
selected. However, as mentioned before, the TOA and the received power have a quite
similar scores of importance. Therefore, the performance of the classifiers (i.e., the accuracy
and the HOMPPE) is slightly different when the TOA or received power are alternatively
selected jointly with the EAOA as features of the training data.
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6. Conclusions

V2V localization technique based-geometric has been presented in various research
breaking through the drawbacks of the GPS technology in urban environments. This
technique relies mainly on utilizing the characteristics of the FOMPs. Mistakenly utilizing
the HOMPs instead of the FOMPs is considered the most challenging issue in this technique.
However, this work proposed a supervised ML classifiers to accurately distinguish between
the FOMPs and HOMPs. The characteristics of the path propagation, that have been
obtained from the predictions of the ray tracing based on the SBR technique, have been
considered as input features of the training dataset. In this work, a statistical analysis of
the obtained characteristics is presented first. Then, six supervised classifiers, namely DT,
NB, SVM, KNN, RF, and ANN have been proposed and tested and their performance has
been compared in terms of accuracy, precision, and HOMPPE. The comparison results
showed that the accuracy of the proposed classifiers ranged from 87.8% to 96.5%. This
means that the characteristics of the path propagation are efficient features for training the
classifiers. The ANN classifier achieved the best performance, while the SVM classifier
came in the second order. Whereas the NB achieved the worst performance. In terms of
HOMPPE (HOMPs misclassification), it was 2.3% in the best classifier (i.e., ANN) and
16.7% in the worst classifier performance (i.e., NB). The impact of the training features
selection on the performance of the proposed classifiers has been further investigated in
this work. We concluded that the results of the statistical analysis are strongly consistent
with the contribution of the training feature. In conclusion, distinguishing between FOMP
and HOMP based on the proposed method using the characteristics of the propagation
signal is more efficient and has a lower complexity compared to the traditional methods.

However, in this work, the considered features of the training dataset were directly ex-
tracted from the simulation. To improve the performance of the classifiers, we recommend
involving more features for future work, such as the power delay profile of the received
signal and the layout details of the surrounding area.
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