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Abstract: The hybrid electric dump truck is equipped with multiple power sources, and each
powertrain component is controlled by an energy management strategy (EMS) to split the demanded
power. This study proposes an EMS based on deep reinforcement learning (DRL) algorithm to
extend the battery life and reduced total usage cost for the vehicle, namely the twin delayed deep
deterministic policy gradient (TD3) based EMS. Firstly, the vehicle model is constructed and the
optimization objective function, including battery aging cost and fuel consumption cost, is designed.
Secondly, the TD3-based EMS is used for continuous action control of ICE power based on vehicle
state, and the action mask is applied to filter out invalid actions. Thirdly, the simulations of the EMSs
are trained under the CHTC-D driving cycle and C-WTVC driving cycle. The results show that the
action mask improves the convergence efficiency of the strategies, and the proposed TD3-based EMS
outperforms the deep deterministic policy gradient (DDPG) based EMS. Meanwhile, the battery
life is extended by 36.17% under CHTC-D and 35.49% under C-WTVC, and the total usage cost is
reduced by 4.30% and 2.49% when the EMS considers battery aging. In summary, the proposed
TD3-based EMS can extend the battery life and reduce usage cost, and provides a method to solve
the optimization problem for the EMS of hybrid power systems.

Keywords: energy management strategy; hybrid electric dump truck; deep reinforcement learning;
battery aging; action mask

1. Introduction

Hybrid electric dump trucks significantly reduce carbon emissions and fuel consump-
tion compared with internal combustion engine (ICE) vehicles in the transportation industry.
The hybrid power system improves the operating efficiency of the ICE by an electric motor,
and it solves the contradiction between long-endurance mileage and low energy usage [1].
The energy management strategy (EMS) distributes the demand power among various
powertrain components, so the energy-saving capability of the hybrid electric dump truck
is further enhanced [2].

An excellent EMS plays an influential role in reducing the fuel consumption of hy-
brid electric vehicles (HEV). Researchers have proposed a large number of EMSs which
can be classified into three categories: rule-based EMSs, optimization-based EMSs, and
learning-based EMSs [3]. Rule-based EMSs have been applied to real-time control in the
automotive industry to make HEVs more fuel efficient than ICE vehicles. However, the
EMSs require engineering experience to calibrate them and are poorly adapted to dif-
ferent driving cycles [4]. Consequently, the optimization-based EMSs use optimization
algorithms to achieve optimal control of HEVs has been substantially encouraged, which
includes dynamic programming (DP) [5], equivalent consumption minimization strategy
(ECMS) [6], model predictive control (MPC) [7] and so on. DP-based EMS searches for the
global optimal fuel consumption of the vehicles by knowing the velocity of the driving
cycle in advance, so it can only be solved offline and cannot be applied to real-time control.

World Electr. Veh. J. 2023, 14, 74. https://doi.org/10.3390/wevj14030074 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj14030074
https://doi.org/10.3390/wevj14030074
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0002-6287-2854
https://doi.org/10.3390/wevj14030074
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj14030074?type=check_update&version=1


World Electr. Veh. J. 2023, 14, 74 2 of 21

Moreover, the DP-based EMS is commonly used as a benchmark for other EMSs [8]. ECMS
and MPC are real-time optimization-based EMSs. However, the computation of ECMS and
MPC grows exponentially with constraints, model accuracy, and additional issues [9]. The
thriving of artificial intelligence has caught the attention of researchers who have proposed
learning-based EMSs for hybrid electric vehicles [10–13]. Among them, deep reinforcement
learning (DRL) incorporates neural networks, so the DRL has the perceptual capability of
deep learning to receive continuous states and has the decision capability of reinforcement
learning (RL) [14–17]. Moreover, numerous DRL-based EMSs are proposed to achieve
continuous action control to eliminate discrete errors [18–21]. A large number of studies on
EMS have been conducted by numerous researchers and a brief review of previous studies
on EMS is given in Table 1.

Table 1. A brief review of previous studies on EMS.

Ref. Author Year Categories
Continuous

Main Topic
State Action

[4] Padmarajan et al. 2016 Rule-based System structure and strategy

[5] Zhou et al. 2018 Optimization-based Improvement of DP-based
EMS for different HEVs

[7] East et al. 2022 Optimization-based Scenario MPC for
data-based EMS

[13] Liu et al. 2015 Learning-based Reinforcement learning of
adaptive EMS

[15] Wu et al. 2018 Learning-based x Continuous RL-based EMS

[16] Han et al. 2019 Learning-based x
DDQL-based EMS avoids

falling into policy
value overestimation

[17] Li et al. 2019 Learning-based x EMS with terrain information

[18] Tan et al. 2019 Learning-based x x Continuous state and
action spaces

[19] Wu et al. 2019 Learning-based x x Continuous control and
traffic information

[21] Li et al. 2022 Learning-based x x SAC-AET-based EMS to
improve the control effects

Table 1 presents a summary of previous research work. Most EMSs only optimize
fuel economy and focus on discovering the best strategy to minimize fuel consumption.
This study takes a proactive approach to extend battery life and reduce total usage cost
from an energy management optimization perspective, proposes a DRL-based EMS for
power-split hybrid electric dump trucks, namely the twin delayed deep deterministic policy
gradient algorithm (TD3), and uses the action mask technology to avoid unsafe exploration.
Moreover, the main contributions of this study can be summarized as follows.

(1) A TD3-based EMS is proposed to extend the battery life and reduce the total usage
cost. Because battery aging affects vehicle range, costly battery replacements are
required when battery life terminates.

(2) Most of EMSs ignore safety issues during the exploration stage such as the MG1
overloading, which cause serious problems in automotive control and is unacceptable
in industrial applications. Then action masks are used to eliminate invalid actions
that exceed the physical limits and improve the training efficiency of the policy.

(3) The TD3 algorithm can reduce the overestimation bias of DDPG, thus the TD3 algorithm
is applied as an EMS for hybrid electric dump trucks and trained by the self-learning
capability of DRL. Finally, a comparison with DDPG-based EMS is presented.
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(4) The reward function that includes battery aging cost and fuel consumption cost is
designed to extend the battery life and reduce fuel consumption.

The rest of the study is organized as follows: In Section 2, the vehicle model is
formulated and the optimization problem is presented. In Section 3, the TD3-based EMS is
introduced and designed. In Section 4, some results and analysis are described. Finally,
some conclusions are given in Section 5.

2. Vehicle Modeling and Optimization Problem
2.1. Vehicle Model

A 31-ton hybrid electric dump truck is used as the research object, combined with the
power-split hybrid system of planetary gear (PG), as shown in Figure 1. The system consists
of an ICE, battery, generator (MG1), and drive motor (MG2), and the vehicle structure
parameters and the main parameters of the power and transmission system are shown in
Table 2.

Figure 1. Power-split hybrid electric dump truck powertrain.

Table 2. The parameters of the vehicle structure and the main parameters of the power and transmis-
sion systems.

Parts Parameter Name Value

Vehicle

Gross weight (kg) 31,000
Dimension (mm) 9662 × 2495 × 3450

Dimension of cargo box (mm) 6800 × 2350 × 1500
Drive form 8 × 4

Drag coefficient 0.56
Frontal area (m2) 8.24

Rolling resistance coefficient 0.0041 + 0.0000256v

ICE
Max. power (kW) 243
Max. torque (Nm) 1400
Max. speed (rpm) 2200

MG1
Max. power (kW) 110
Max. torque (Nm) 340
Max. speed (rpm) 7500

MG2

Max. power (kW) 196
Max. torque (Nm) 375
Max. speed (rpm) 15,000

Gear ratio 6.7

Transmission
Transmission ratio of PG 4.4

AMT gears ratio 6.3/2.1/1/0.86
Final drive ratio 5.1

Battery Capacity (Ah) 70
Voltage (V) 576



World Electr. Veh. J. 2023, 14, 74 4 of 21

The resistance of the vehicle is determined by rolling resistance, air resistance, slope re-
sistance, and acceleration resistance [22]. The overall resistance for the vehicle is defined as

Freq = ( f mg cos i +
Cd Av2

21.15
+ mg sin i + δm

dv
dt

) (1)

where f is the rolling resistance coefficient, m is the gross weight, g is the gravity coefficient,
Cd is the aerodynamic drag coefficient, A is the frontal area, v is the vehicle velocity, i is the
angle of the road slope, and δ is the rotational mass conversion coefficient.

The required power for the hybrid vehicle is provided by the ICE and the battery with
the following equation

Preq = (PICE + Pbattηbatt)ηi (2)

where Preq is the vehicle requirement power, PICE is the ICE power, Pbatt is the battery
power, ηbatt is the battery efficiency, and ηi is the transmission efficiency.

The planetary gear is the mechanism that realizes the power distribution. ICE is
attached to the planetary frame, MG1 is attached to the solar gear, and MG2 is attached to
the gear ring. The relation between rotation speed and the torque of each component in the
system can be expressed as

ωMG1 = (1 + k1)ωICE − k1ωR1
ωMG2 = k2ωR1

TMG1 = − TICE
1+k1

TR1 = k1TICE
1+k1

+ k2TMG2

(3)

where the ωICE, ωMG1, ωMG2, ωR1 are the rotation speeds of the ICE, MG1, MG2 and
planetary gear ring respectively, the TICE, TMG1, TMG2, TR1 are the torques of the ICE, MG1,
MG2 and planetary gear ring respectively, k1 is the transmission ratio of the PG, and k2 is
the gear ratio of the MG2.

ICE is a quasi-static model. The fuel consumption between the ICE rotation speed
and the ICE torque is obtained by using the ICE bench test method. The map of ICE fuel
consumption is shown in Figure 2.

Figure 2. Map of ICE fuel consumption.
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The instantaneous fuel consumption is obtained using methods such as data interpola-
tion, and the fuel consumption relation is given by

Fuel =
∫ T

0
m f uel(TICE, ωICE)dt (4)

where Fuel is total fuel consumption, mfuel is instantaneous fuel consumption function, T is
total time.

The motor is a quasi-static model and the efficiency is derived from the rotational
velocity and torque of the motor. The efficiency of the motor is shown in Figure 3. The
motor can be operated in two modes, drive mode and generation mode, and the power of
the motor can be described as

Pmotor_req =

{
Tmωm/ηm, (drive mode)
Tgωgηg, (generation mode)

(5)

where Pmotor_req is the motor requirement power, Tm,ωm, ηm is the torque, rotation speed
and efficiency of drive mode respectively, Tg, ωg, ηg is the torque, rotation speed and
efficiency of generation mode respectively.

Figure 3. Efficiency of the motor. (a) MG1. (b) MG2.

The battery is modeled on an equivalent circuit model, and the battery current is
related to the open circuit voltage and internal resistance of the battery by the following
relation equation.

Ibatt =
Uoc −

√
U2

oc − 4RbattPbatt
2Rbatt

(6)

where Ibatt is the battery current, Uoc is the open circuit voltage, Rbatt is the internal resistance
of the battery. The state of charge (SOC) is defined as

SOC(t + 1) = SOC(t)− Ibatt
Qbatt

∆t (7)

where SOC is the state of charge, Qbatt is the nominal battery capacity.

2.2. Battery Aging Model and Optimization Problem for EMS

This study is mainly focused on the control problem. A semi-empirical model of battery
aging was used. The model takes into account the physical chemistry of Li-ion batteries,
performs an aging test on Li-ion batteries, and finally fits the data to obtain a set of equations
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describing the capacity loss of Li-ion batteries. The American scholars Wang John et al. [23]
have established a representative semi-empirical model for Li-ion battery aging.

Qloss = B · exp(
−Ea

Rgas · Tk
)(Ah)z (8)

where Qloss is the percentage of Li-ion battery capacity loss, B is the pre-exponential factor,
Ea is the activation energy, Rgas is the gas constant, Rgas = 8.314 J/(mol·K), Tk is the battery
temperature, Ah is the battery Ah-throughput, z is the power law factor.

There are three main factors affecting battery aging: current rate, battery temperature,
and depth of discharge (DOD). Replace DOD with SOC, and the battery aging model is
built with the following equation [24].

Qloss = (α · SOC + β) exp(−31700+163.3Ic
Rgas·Tk

)(Ah)0.57

α =

{
1287.6, SOC ≤ 0.45
1385.5, SOC > 0.45

β =

{
6356.3, SOC ≤ 0.45
4193.2, SOC > 0.45

(9)

where α and β are the coefficients, Ic is the current rate.
Battery temperature has a significant impact on battery degradation, with battery

operating temperatures typically ranging from −20 to 60 ◦C. Too high or too low a temper-
ature can affect the performance of the battery and eventually lead to a decrease in capacity.
However, the EMS in this study is trained under the same driving cycles, therefore, the
battery temperature is not taken into account and is set to 25 ◦C. The above equation is
a semi-empirical model to calculate the battery capacity loss. While facing the optimization
problem, it is necessary to set the objective function that incorporates the battery aging
model. Typically, we consider battery life termination when the battery loses 20% of its
nominal capacity, and the Ah-throughput is given by

Ah(SOC, Ic) = [20/(α · SOC + β) · exp(
−31700 + 163.3Ic

8.314× 298.15
)]

1
0.57

(10)

The total number of battery operating cycles before the end of life can be calculated as

N(SOC, Ic) =
3600Ah(SOC, Ic)

Qbatt
(11)

The total Ah-throughput includes charged and discharged, so the state of health (SOH)
of the battery can be described as

dSOH(t)
dt

= − |I(t)|
2N(SOC, Ic) ·Qbatt

(12)

To account for fuel consumption cost and battery aging cost, the following total cost
objective function is established.

J =
∫ T

0
w1 · f uel(t) + w2 · dSOH(t)dt (13)

where the first term is the instantaneous fuel consumption cost and the second term is the
battery aging cost, w1 is the diesel oil price, which is set to 7.2 CNY/L, w2 is the Li-ion
battery price, which is set to 1700 CNY/kWh, CNY is Chinese Yuan.

In this study, the optimization of energy management strategies for hybrid electric
dump trucks by minimizing the objective function.
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3. Method and Design of TD3-Based EMS
3.1. Reinforcement Learning

The schematic diagram of the reinforcement learning principle is shown in Figure 4.
The agent chooses an action based on the state of the environment, the action acts on the
environment, and the environment feeds back the reward. The agent is guided to select
a more appropriate action next time by iterating the policy function in this way.

Figure 4. Schematic diagram of reinforcement learning principle.

The reinforcement learning must follow the Markov decision process (MDP). The
MDP has four elements: the state of the environment, the action of the agent, the transition
probability of the state space, and the reward function. In MDP, the reinforcement learning
algorithm continuously updates the policy function by interacting with the environment
cyclically and based on the reward values fed by the environment. A policy function is
a mapping from states to actions, and its performance can be evaluated by the state-value
function V(s) or the Q-value function Q(s,a), so reinforcement learning algorithms usually
find the optimal policy function π* by iterating over the optimal value function to maximize
the expected reward [25]. Its expected total reward is as follows

Rt =
∞

∑
t=k

γt−kr(st, at) (14)

where γ is the discount factor, s is the state, a is the action, t is the time, and r(st,at) is the
reward at each moment.

To find the optimal policy function π*, many reinforcement learning algorithms use
the Q-value function Qπ(st,at) to evaluate the policy function. The Bellman equation is
given by

Qπ(st, at) = r(st, at) + γEπ [Qπ(st+1, at+1)] (15)

where Eπ is the expectation.
The policy function π* can be reversed by a = argmax Q*π(st,a′) when the optimal

Q-value function Q*π(st,at) is known. The Q*π(st,at) of the Q-learning algorithm can be
solved by temporal difference. However, the Q-learning algorithm faces the “dimensional
disaster” when the dimensionality of state and action is large, and deep reinforcement
learning using neural networks can solve this problem.

3.2. TD3 Algorithm

The TD3 algorithm is an algorithm in deep reinforcement learning, and the TD3
algorithm uses the actor-critic (AC) framework to approximate the policy function and
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the Q-value function through neural networks called actor and critic, respectively. The
actor network is the action output of the TD3 algorithm and is used to interact with the
environment, while the critic network scores the policy through feedback rewards from the
environment. With this clever learning approach, the TD3 algorithm can handle problems
with continuous action spaces.

The TD3 algorithm draws on the experience of the DDQN algorithm and improves
the DDPG algorithm by integrating the dual critic network technology on the AC frame-
work [26]. One critic network and one target critic network are added to the four neural
networks of the DDPG algorithm: actor network, critic network, target actor network, and
target critic network. By using two sets of critic networks, the smaller target Q-value is
taken into account in calculation, thus suppressing the network overestimation problem.
The critic network is updated by minimizing the loss function.

L(θ) = E[
2

∑
i=1

(yt −Qθi (st, at))
2] (16)

where yt is the Q-target value, calculated by temporal difference, and Qθ ′ (st+1,at+1) uses the
smaller of the two sets of target critic networks.

yt = r(st, at) + γminQθ′i
(st+1, at+1) (17)

at+1 ∼ πφ′(st+1) (18)

where Qθ ′ is the Q-target value and πΦ ′ is the target actor policy.
The updating method of the actor network is a deterministic strategy gradient algorithm.

∇φ J(φ) = Es∼pπ [∇aQθ(s, a)|a=π(s)∇φπφ(s)] (19)

Soft update method is used for the TD3 algorithm to ensure more stable training [27].{
θ′ = τθ + (1− τ)θ′

φ′ = τφ + (1−τ)φ′
(20)

where τ is the soft update coefficient and has a value range of 0 ≤ τ ≤ 1, θ is the critic
network, φ is the actor network, θ′ is the target critic network, φ′ is the target actor network.

The TD3 algorithm gives two improvements to address the problem of high variance:
(1) delayed policy updates, where the actor network is updated asynchronously with the
critic network. (2) target policy smoothing regularization, where noise is added to the
action output from the target actor network.

a′ ← πφ′(s
′) + ε, ε ∼ clip(N (0, σ),−c, c) (21)

where a′ is the next action, s′ is the next state, ε is the noise, N is the normal distribution, σ
is the standard deviation, c is the range of noise.

The actor and critic networks are trained using empirical replay. This means that the
TD3 algorithm deposits samples <s, a, r, s′, d> consisting of state s, action a, reward value r,
next state s′, and whether the round is over d into an experience buffer, which is obtained by
interacting with the environment, and then mini-batches of samples are randomly sampled
from the experience buffer to train the neural networks. This approach can improve sample
utilization and attenuate correlations between training samples.

In summary, the TD3 algorithm has the advantage of avoiding Q-value overestimation.
It can improve training efficiency and stability. The pseudo-code of the TD3 algorithm is
shown in Algorithm 1.
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Algorithm 1: TD3

initialization:
critic networks Qθ1, Qθ2 with random parameters θ1, θ2,
actor network πϕ with random parameters ϕ,
target critic networks θ′1 ← θ1, θ′2 ← θ2,
actor network φ′ ← φ

replay buffer B
for t = 1 to T do

observe state s choose action with exploration noise a ~ πϕ(s) + ε,
ε ∼ N (0, σ) and observe reward r and new state s′,
store transition tuple (s, a, r, s’, d) in B
randomly sample a mini-batch of N transitions {(s, a, r, s′, d)} from B
a′ ← πφ′ (s′) + ε, ε ∼ clip(N (0, σ),−c, c)
yt = r(st, at) + γmini=1,2Qθ′i

(st+1, at + 1)

update critic networks θi ← argminθi N
−1∑ (y−Qθi (s, a))2

if t mod d then
update ϕ by deterministic policy gradient:
∇φ J(φ) = N−1∑ ∇aQθ1 (s, a)

∣∣
a=πφ(s)

∇φπφ(s)
Update target networks by soft update:
θ′ ← τθ + (1− τ)θ′

φ′ ← τφ + (1− τ)φ′

end if
end for

3.3. Action Mask

Action mask is a common method used to avoid invalid actions [28]. DRL is an algo-
rithm that performs complex tasks by trial-and-error methods. The agent needs to explore
the action space. In practice, unlimited exploration can cause serious safety problems in the
case of vehicle control, which can damage the vehicle. There are often many constraints,
and some actions are not selectable in some states. There are invalid actions in the action
space. Soft constraints are commonly used to set a large negative reward is set for the
invalid action to guide the agent to avoid such actions. However, this approach does not
avoid unsafe actions and makes the model take a long time to train and is prone to scatter.
Therefore, a hard-constrained approach was chosen in this study by setting the action mask.
A schematic diagram of the action mask is shown in Figure 5. It adds a masking process
after the output layer of the neural network to filter out invalid actions and output the
available actions, so that the agent cannot select invalid actions.

Figure 5. Schematic diagram of the action mask.

It is necessary to design an action mask to filter out invalid actions during the DRL
training. It can avoid unsafe issues, reduce unnecessary exploration, and accelerate the
training efficiency of the algorithm. In a power-split hybrid system, the generator may
overshoot the revs or overshoot the torque when the engine is at high power, damaging the
powertrain. The action mask is designed as follows
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Firstly, the ICE power is discrete.

PICE = {0, 1, 2, . . . , 243 kW} (22)

Secondly, at different times t, all actions are traversed in advance to prevent the
generator from operating outside the constraints and to obtain the allowed range of engine
operating power.

PICE(t) =
[

Pmin
ICE (t), Pmax

ICE (t)
]

(23)

Thirdly, the actor network outputs the action that is clipped by using the clip function
so that the action is within the allowed range.

PICE(t) = PICE(t).clip
[

Pmin
ICE (t), Pmax

ICE (t)
]

(24)

Both the actor network and the target actor network apply action masks to improve
the deep reinforcement learning capabilities. The clip method can be used for algorithms
such as DDPG and TD3 that output continuous actions based on the AC framework and
deterministic strategies. It can set the Q-value of the invalid action to negative infinity on
the Q-value function vector for Q-value-based algorithms such as DQN and DDQN, so the
invalid actions are not selected by argmax Q-value [29]. For algorithms such as proximal
policy optimization, the action mask can be implemented by tuning the probability of
an invalid action to be sampled to zero [30].

3.4. Design of TD3-Based EMS

In this study, the TD3-based EMS of hybrid electric dump trucks is taken as the research
object. The definition of state, action, and reward in the TD3-based EMS is as follows.

The vehicle velocity, vehicle acceleration, and battery SOC are defined as states to
accurately represent the vehicle’s state. The vehicle motion state is reflected by the vehicle
velocity and vehicle acceleration, and the vehicle energy management state is reflected by
the battery SOC.

s = {v, acc, SOC} (25)

where acc is the vehicle acceleration.
The power of the ICE is defined as the action, while the optimal operating line (OOL)

of the ICE is applied to reduce the action variables, in order to simplify the power sys-
tem model and improve the convergence efficiency of DRL. The OOL is shown by the
red solid line in Figure 6, where each power corresponds to the associated speed and
associated torque.

a = {PICE|PICE ∈ [0, 243kW]} (26)

The reward function includes the instantaneous fuel consumption cost, the battery
aging cost, and the sustainability penalty of the SOC. The optimal strategy is searched by
maximizing the reward function.

r =− [w1 · f uel(t) + w2 · ∆Qloss(t) + w3 · (SOC(t)− SOCinit)
2] (27)

where the first term is the instantaneous fuel consumption cost, the second term is the
battery aging cost, the third term is the sustainability penalty of the SOC, w3 is the SOC
sustainability penalty coefficient and SOCinit is the initial SOC.

Since the TD3 algorithm is based on the AC framework and applied to continuous
state space and continuous action space, it is combined with the neural networks. The
structure of the actor and critic network is shown in Figure 7. There are three neurons in
the input layer and one neuron in the output layer for the actor network. There are four
neurons in the input layer and one neuron in the output layer for the critic network. There
are three hidden layers with 512, 256, and 128 neurons for the actor and critic networks.
All networks consist of fully connected layers with ReLU activation function for hidden
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layers and Tanh activation function for output layers. The target actor network and target
critic network have the same structure as the actor and critic networks, respectively, and
the Adam optimizer is used to update the networks.

Figure 6. The optimal operating line of the engine.

Figure 7. The structure of the neural networks.

The relevant hyper-parameters are listed in Table 3. The learning rate affects how fast
the policy learns. Too large will prevent the policy from searching for the optimal solution,
and too small will make the policy learn inefficiently. The discount factor in reinforcement
learning is the discount of the expected future reward at the current moment and regulates
the effect of the future reward on the agent. Because of the exponential relationship of
the discount factor, when the discount factor takes a larger value, γn is larger, the longer
the steps the agent considers in the future, and the training difficulty increases. When the
discount factor takes a smaller value, γn is smaller, the agent focuses more on the current
reward, and the training difficulty decreases. The discount factor is as large as possible in
order to allow the agent to consider as much of the global regression as possible, provided
the algorithm can converge, so it takes the value of 0.99. The mini-batch size is the number
of samples for a single training session, and the experience buffer size is the maximum
capacity to record the training experience, and the earliest samples are removed if the
training experience exceeds the maximum capacity.

The overall control framework of this study is illustrated in Figure 8. The actor network
in the agent outputs action based on the state of the vehicle, action acts on the vehicle after
action mask, the ICE power is controlled, vehicle feedback the reward of fuel consumption,
battery aging and SOC maintenance cost, the experience buffer stores the samples and
mini-batch is sampled to training the neural networks.
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Table 3. Hyper-parameters for TD3-Based EMS.

Parameters Value

Actor network learning rate 0.0001
Critic network learning rate 0.0002

Discount factor 0.99
Mini-batch size 256

Experience buffer size 1 × 106

Figure 8. Overall control framework.
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4. Results

In Section, EMSs are trained under the China Heavy-duty Commercial Vehicle Test
Cycle for Dump Truck (CHTC-D) driving cycle to verify the effectiveness of the proposed
EMS. The velocity of the CHTC-D driving cycle is shown in Figure 9. The simulation
model is built in Python, and the DRL framework is programmed with Python using the
PyTorch package. First, the convergence efficiency is compared between EMSs with and
without action masks. Second, it compared and analyzed the battery capacity loss and fuel
economy under DDPG-based EMSs and TD3-based EMSs with and without considering
battery aging. Finally, it is simulated on the China-World Transient Vehicle Cycle (C-WTVC)
driving cycle to verify the applicability of the TD3-based EMS.

Figure 9. Velocity of the CHTC-D driving cycle.

4.1. The Impact of Action Mask

The action mask filters out invalid actions that cause the MG1 to overshoot in speed
and torque and cause damage to the powertrain. At the same time, action masks can reduce
useless exploration and improve learning efficiency. In iterative learning, the optimal
EMS can be searched by a trial-and-error approach based on the DRL-based EMS. The
learning process ends when the reward remains stable and converges. To achieve the global
optimization objective, the number of episodes of the learning process is defined to be
500 for all EMSs. Figure 10 shows the reward for the training process and these results
for the same driving cycle (CHTC-D) in online testing. It can be found that the reward
maintains stable convergence, and the DRL-based EMSs search for the optimal policy
through their self-learning capability. Also, it can be seen that the strategies without action
masks converge slower than the ones with action mask, proving that the action mask can
improve the training efficiency of the DRL-based EMSs.

All EMSs initially have low rewards because the neural network parameters are
randomly initialized. In the beginning, EMSs are learned without any prior experience that
facilitates energy optimization. The reward then floats up and down as the DRL-based
EMSs keep exploring, with different results between great and poor. The overall effect
is upward.

The ICE power of the DRL-based EMS for one of the episodes is shown in Figure 11.
The maximum allowed power per second for ICE is the solid red line. Due to the exploration
of TD3-based EMS without action masks, the ICE power exceeds the allowed range several
times. This condition can damage electrical systems or cause unsafe accidents in industrial
applications and therefore needs to be avoided. The ICE power never exceeds the maximum
limit because the TD3-based EMS with action mask technique can filter out invalid actions,
which demonstrates the excellent reliability of the proposed action mask approach. Both
TD3-based EMSs and DDPG-based EMSs studied later use AM techniques to enable policies
to avoid invalid actions while improving training efficiency.
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Figure 10. Rewards for the episode. (a) TD3-based EMSs. (b) DDPG-based EMSs. (c) Convergence
speed for different EMSs.

Figure 11. The ICE power of the DRL-based EMS for one of the episodes. (a) TD3-based EMS without
action mask. (b) TD3-based EMS with action mask.

4.2. Battery Capacity Loss and Fuel Consumption

Energy management strategies for non-plug-in hybrid electric dump trucks require
battery SOC sustainment capabilities to ensure that the strategy does not run out of battery
energy by using only battery power. The SOC of the TD3-based EMSs and the DDPG-based
EMSs under the CHTC-D driving cycle is shown in Figure 12. It can be seen that the SOC
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of all strategies returns to around the initial value of 0.6, which indicates that all strategies
can achieve battery energy balance. At the same time, the SOC fluctuates in a small range
of 0.57–0.61 and the battery can operate in shallow cycles, which helps to increase the
charging and discharging efficiency and reliability of the battery.

Figure 12. SOC of the hybrid electric dump truck under the CHTC-D driving cycle. (a) TD3-based
EMSs. (b) DDPG-based EMSs.

The loss of battery capacity is shown in Figure 13. The battery capacity loss is present
at all EMSs and increases more when do not consider battery aging. The largest loss of
battery capacity is reported for the DDPG-based EMS without considering battery aging,
with a maximum capacity loss of 0.0434% per 100 km. The smallest battery capacity loss
is achieved by the TD3-based EMS considering battery aging, with a minimum capacity
loss of 0.0270% per 100 km. These results demonstrate that EMS which takes into account
battery aging slows down battery capacity loss.

Figure 13. The loss of battery capacity. (a) Battery capacity loss at each time. (b) Total battery
capacity loss.

The battery power of different EMSs is shown in Figure 14. One DDPG-based EMS,
which does not consider battery aging, leads to maximum battery capacity loss, while the
other TD3-based EMS, which considers battery aging, leads to minimum battery capacity
loss. It can be seen that the maximum battery power of 163 kW for DDPG-based EMS and
100 kW for TD3-based EMS. The TD3-based EMS, which takes into account battery aging,
takes a smaller battery power load than the DDPG-based EMS, which does not take into
account battery aging. As a result, a smaller battery load reduces the battery capacity loss
and extends battery life.
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Figure 14. The battery power of different EMSs. (a) DDPG-based EMS, No. (b) TD3-based EMS, Yes.

The distribution of operating points on the battery for different EMSs is shown in
Figure 15. It can be seen that the battery current rate (C-rate) of the two strategies without
considering battery aging is as high as four, and the C-rate of numerous operating points
is higher than three. For EMSs that take into account battery aging, there are a few cases
where the battery C-rate is higher than three. The results show that the battery current
can be controlled by EMSs that take into account the battery aging, which can help to slow
down the battery capacity loss by keeping the battery operating at a lower C-rate. An EMS
that takes into account the battery aging results in a battery that operates in the low-load
region and extends the battery life.

Figure 15. Distribution of operating points on the battery for different EMSs. (a) TD3-based EMS, No.
(b) TD3-based EMS, Yes. (c) DDPG-based EMS, No. (d) DDPG-based EMS, Yes.
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Since the fuel consumption of a vehicle is the main objective of studying energy
management strategies, the fuel consumption of the ICE is shown in Figure 16. The lowest
fuel consumption is achieved by the DDPG-based EMS, which consumes 24.74 L/100 km
without considering battery aging. The maximum fuel consumption is achieved by the
DDPG-based EMS considering battery aging with a consumption of 25.27 L/100 km.
Moreover, the fuel consumption of TD3-based EMS is 25.06 L/100 km without considering
battery aging, and 25.27 L/100 km without considering battery aging. The results show
that fuel consumption will increase a little when considering battery aging.

Figure 16. The fuel consumption of the ICE. (a) Fuel consumption at each time. (b) Fuel consumption
for 100 km.

The distribution of engine operating points can reasonably reflect the performance
of the strategy. As shown in Figure 17, the distribution of ICE power for different EMSs
corresponds to the brake-specific fuel consumption (BSFC) curve of the optimal operating
line of the ICE, and the red curve shows the BFSC for each power. Most of the ICE
operating points are located in the lower regions of the BSFC, especially in the two EMSs
where battery aging is not considered. It indicates that the DRL-based EMSs learn to
maximize the efficiency of ICE. However, to mitigate the loss of battery capacity, EMSs
considering battery aging operate ICE in higher BFSC region by optimizing the operating
point of the battery, resulting in an increase in ICE fuel consumption. At the same time,
the engine operating point in the lower power region is more significant when considering
battery aging. That is bad for fuel economy, but it extends battery life.

The fuel consumption and battery capacity loss for different EMSs under the CHTC-
D driving cycle are shown in Table 4. The two EMSs with the lowest fuel consump-
tion, without considering battery aging, are 24.81 L/100 km for the TD3-based EMS and
24.74 L/100 km for the DDPG-based EMS, resulting in the largest battery capacity loss of
0.0423% and 0.0434%. When the EMSs take into account battery aging, the fuel consumption
of the TD3-based EMS increased to 25.06 L/100 km and the battery capacity loss decreased
to 0.0270%, the fuel consumption of DDPG-based EMSs increased to 25.27 L/100 km and
the battery capacity loss decreased by 36.17% to 0.0286%. It can be seen that when the
EMS considers battery aging, it mitigates the loss of battery capacity but also leads to an
increase in fuel consumption. There is a small increase in fuel consumption, but a large
improvement in battery capacity loss when the EMS considers battery aging.
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Figure 17. The distribution of ICE power. (a) TD3-based EMS, No. (b) TD3-based EMS, Yes. (c) DDPG-
based EMS, No. (d) DDPG-based EMS, Yes.

Table 4. Fuel consumption, battery capacity loss, and cost under CHTC-D driving cycle.

EMS
Consider
Battery
Aging

F.C.
(L/100 km)

F.C. Cost
(CNY)

Battery
Capacity
Loss (%)

Battery
Aging Cost

(CNY)

Total Cost
(CNY) Performance

TD3-based
No 24.81 178.63 0.0423 28.99 207.62 95.82%
Yes 25.06 180.43 0.0270 18.51 198.94 100%

DDPG-based
No 24.74 178.13 0.0434 29.75 207.88 95.70%
Yes 25.27 181.94 0.0286 19.60 201.54 98.71%

Note: F.C. is the fuel consumption.

The cost per 100 km for different EMSs is given in Table 4. It can be seen that the
DDPG-based EMS without considering the battery aging has the highest cost of 207.88 CNY,
and the battery cost accounts for 14.31% of the total cost. When battery aging is considered,
the TD3-based EMS has the lowest cost, with a 4.30% reduction to 198.94 CNY and a battery
cost of 9.30% of the total cost. At the same time, the TD3-based EMS outperforms the
DDPG-based EMS in the results when considering battery aging since the TD3 algorithm is
an improvement of the DDPG algorithm, which reduces the overestimation bias of values
in DDPG networks. The results demonstrate that the TD3-based EMS, considering the
battery, can extend the battery life while the fuel consumption is slightly increased.

Also, it is trained on the road cycle parts and high-speed cycle parts of the China-
World Transient Vehicle Cycle (C-WTVC) driving cycle to verify the applicability of the
TD3-based EMS. The velocity of the C-WTVC is shown in Figure 18. The C-WTVC driving
cycle, lasts for 900 s, with a top velocity of 87.8 km/h.
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Figure 18. Velocity of the C-WTVC driving cycle.

The reward and SOC for the C-WTVC driving cycle are shown in Figure 19. It can be
seen that when the reward remains stable and converges, it means that the TD3-based EMS
is trained successfully and the optimal EMS is explored. The SOC also returns to its initial
value of around 0.6, which indicates the adaptability of the TD3-based EMS that can be
applied to different driving cycles.

Figure 19. Reward and SOC. (a) Rewards for the episode. (b) SOC under the C-WTVC driving cycle.

The fuel consumption, battery capacity loss, and cost under the C-WTVC driving
cycle are shown in Table 5. It can be seen that the TD3-based EMS without considering
the battery aging has a cost of 237.09 CNY, and the battery cost accounts for 8.47% of the
total cost. When battery aging is taken into account, the cost of the TD3-based EMS is
231.18 CNY and the cost of the battery is 5.60% of the total cost. Moreover, the battery life
is extended by 35.49% when considering battery aging. Due to the high-velocity bias of the
C-WTVC driving cycle, EMS prefers to use ICE in high-speed situations, resulting in high
fuel consumption. Compared to the CHTC-D driving cycle, the battery is not used as often,
resulting in relatively less battery capacity loss and lower battery cost as a percentage of
the total cost. However, the EMS considering battery aging can still improve battery life
and reduce the total cost.
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Table 5. Fuel consumption, battery capacity loss, and cost under C-WTVC driving cycle.

EMS
Consider
Battery
Aging

F.C.
(L/100 km)

F.C. Cost
(CNY)

Battery
Capacity
Loss (%)

Battery
Aging Cost

(CNY)

Total Cost
(CNY) Performance

TD3-based
No 30.14 217.01 0.0293 20.08 237.09 97.51%
Yes 30.31 218.23 0.0189 12.95 231.18 100%

5. Conclusions

In this study, a DRL-based EMS, namely the TD3-based EMS, is proposed to extend
the battery life and reduced usage cost for hybrid electric dump trucks. The TD3-based
EMS utilizes neural networks and the AC framework for continuous action control with
continuous state space. An optimized objective function including battery aging cost
and fuel consumption coat is established, and the TD3-based EMS is designed in this
study. Finally, the EMSs are simulated and analyzed under the CHTC-D driving cycle and
C-WTVC driving cycle.

The results show that the TD3-based EMS has a strong ability to adapt to the energy
management problem of hybrid electric dump trucks through the self-learning capability
of DRL. EMSs with action masks filter out invalid actions in the exploration stage, which
avoids unsafe exploration and improves training efficiency. It extends battery life and
slightly increases fuel consumption when the DRL-based EMSs consider battery aging.
Moreover, TD3-based EMS performs better than DDPG-based EMS. Finally, the best-
performing strategy is the TD3-based EMS considering battery aging. The proposed EMS
is compared to the TD3-based EMS without considering battery aging. The battery life
is extended by 36.17% under CHTC-D and 35.49% under C-WTVC, and the total cost is
reduced by 4.30% and 2.49% when the EMS considers battery aging. In addition, TD3-based
EMS can output actions based on the real-time state of the vehicle, and action masks can
avoid invalid actions, which is suitable for industrial applications.

There are two things that should be done in the future. One is to improve learning
efficiency and the other is to test on real vehicles. The contribution of this study is that
TD3-based EMS using an action mask and considering battery aging, the action mask can
filter out invalid actions and the EMS considering battery aging reduces the total usage cost
and extend battery life. The TD3-based EMS gives a reference for real-time applications.
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