
Citation: Waykole, S.; Shiwakoti, N.;

Stasinopoulos, P. Interpolation-Based

Framework for Generation of

Ground Truth Data for Testing Lane

Detection Algorithm for Automated

Vehicle. World Electr. Veh. J. 2023, 14,

48. https://doi.org/10.3390/

wevj14020048

Academic Editors: Biao Yu,

Linglong Lin and Jiajia Chen

Received: 14 December 2022

Revised: 2 February 2023

Accepted: 7 February 2023

Published: 9 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Interpolation-Based Framework for Generation of Ground
Truth Data for Testing Lane Detection Algorithm for
Automated Vehicle
Swapnil Waykole, Nirajan Shiwakoti * and Peter Stasinopoulos

School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
* Correspondence: nirajan.shiwakoti@rmit.edu.au

Abstract: Automated vehicles, predicted to be fully electric in future, are expected to reduce road
fatalities and road traffic emissions. The lane departure warning system, an important feature of
automated vehicles, utilize lane detection and tracking algorithms. Researchers are constrained to test
their lane detection algorithms because of the small publicly available datasets. Additionally, those
datasets may not represent differences in road geometries, lane marking and other details unique
to a particular geographic location. Existing methods to develop the ground truth datasets are time
intensive. To address this gap, this study proposed a framework for an interpolation approach for
quickly generating reliable ground truth data. The proposed method leverages the advantage of the
existing manual and time-slice approaches. A detailed framework for the interpolation approach
is presented and the performance of the approach is compared with the existing methods. Video
datasets for performance evaluation were collected in Melbourne, Australia. The results show that the
proposed approach outperformed four existing approaches with a reduction in time for generating
ground truth data in the range from 4.8% to 87.4%. A reliable and quick method for generating
ground truth data, as proposed in this study, will be valuable to researchers as they can use it to test
and evaluate their lane detection and tracking algorithms.

Keywords: lane detection algorithm; electric vehicle; custom database; image processing; advanced
driver assistance systems

1. Introduction

Traffic crashes are increasing and becoming one of the critical issues worldwide with
the rapid development of expressways and the growth of motor vehicle numbers. In recent
years, automated ground vehicles have emerged as an essential component of intelligent
transportation systems (ITS). Further, automated vehicles, predicted to be fully electric in
future, will reduce road traffic emissions. A fully automated vehicle will drive people to
their destination without any shared control with the driver, including controlling safety-
critical tasks. It is necessary to integrate computers, controls, communications, and different
automation technologies in ITS in order to improve transportation safety, throughput, and
efficiency, while lowering energy consumption and environmental impact [1]. The car
communicates with the driver, the surroundings, and the infrastructure. These interactions
are enhanced in intelligent cars by sensing, sharing information, and actuating different
primary or secondary driving activities. The Advanced Driving Assistant Technology
(ADAS) system is the foundation of ITS. The primary goal of ADAS systems is to enhance
road safety, reduce traffic congestion, and increase driving comfort by increasing various
ADAS features [2].

Nowadays, most automobile advances are driven by embedded technologies and
software solutions that identify potentially unsafe driving scenarios. It is argued that ADAS
may reduce human driving mistakes [3]. One key breakthrough in the automotive industry
is the advent of electric cars, which presents various potentials for ADAS development, but
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also many obstacles. Much research is being conducted in automated vehicles to develop
enhanced ADAS to provide safety to drivers. Lane detection and tracking have been critical
features of ADAS for safe driving and avoiding accidents.

Automated ground vehicle control systems can be divided into three components:
environment prediction and planning; decision-making; and vehicle motion control. Ve-
hicle motion control is separated into two categories: longitudinal motion control and
lateral motion control. Longitudinal motion control is also known as longitudinal velocity
tracking control, and it is a critical component of an intelligent driving control system [4].
Several control algorithms have been applied to longitudinal velocity tracking control. The
longitudinal controller controls the vehicle speed, while the lateral controller controls the
lateral offset and relative heading between the planned trajectories and the vehicle. The
controller design challenge is addressed using a mathematical model that describes both
lateral and longitudinal motions. The controller would ensure that the vehicle follows a
speed profile while automatically regulating the vehicle speed to maintain a safe distance
from the preceding vehicle [5]. A mixture of lane maintaining and overtaking in the left
and right scenarios is utilized to test the controllers, which provide excellent tracking and
comfort preservation [6,7].

Ground truth data in the context of computer vision involves a series of images, a set of
labels on the images, and establishing a model for object recognition, including the number,
location, and relationships of important characteristics, among other things (environmental
factors). Depending on the complexity of the challenge, the labels are placed manually or
automatically using image analysis.

The lane departure warning system (LDWS) utilizes lane detection and tracking algo-
rithms and is now an important feature of ADAS or automated vehicles. The availability
of high-quality datasets is important for developing new computer vision algorithms. In
the literature, lane detection algorithms are usually classified under three categories: the
model-based approach; a features-based approach; and a learning-based approach [8].
Learning-based approaches, on the one hand, require a large amount of ground truth data
during their training process, whereas high-quality data are required for a detailed and
equal assessment and comparison of other methods. Datasets and benchmark evaluations,
which allow us to quantify progress in lane detection and tracking systems, have stimu-
lated much innovation in the computer vision and machine learning fields. Some data
types, such as camera images or depth images in indoor scenarios, are relatively simple
to obtain with high precision. Low-cost sensors that can quickly produce a large amount
of data are available for such image modalities. Manual user annotation can be used to
obtain other ground truth data, such as object annotations or multiclass pixel-wise image
annotations [8].

There are many large-scale datasets available for the performance evaluation of an
algorithm of optical flow and object detection [9]. There are very few extensive dataset
available for lane detection and tracking algorithms with a high-quality dataset of outdoor
scenes, especially in the case of degraded lane markings. High-precision dense videos and
huge annotated images are required to test an algorithm in ADAS. One way to obtain a
large high-precision dataset is the ground truth dataset, which can be collected by mounting
a camera and other equipment at the front of the vehicle. This is a time-consuming and
costly procedure unless the ground truth data can be generated in a reasonable time. Other
types of ground truth data, such as outdoor depth images and optical flow, are also rare to
pull out. Stereo cameras and laser scanners may provide depth information, but they are
either inaccurate or provide very sparse data.

Objective and Scope of the Study

This study aims to develop high-precision ground truth data based on an interpola-
tion approach, which takes advantage of the existing manual and time-slice approaches.
Researchers are constrained in testing their lane detection algorithms because of the low
number of publicly available datasets. Additionally, those datasets may not represent differ-
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ences in road geometries, lane marking, and other details unique to a particular geographic
location. Researchers have developed a few procedures for collecting ground truth (custom)
datasets, but it is time-consuming to generate high-precision data to test the algorithm.
Therefore, to address this knowledge gap, this study develops an interpolation approach to
quickly generate high-precision data for testing and evaluating the performance of lane
detection and tracking algorithm.

This study provides methodological advancement in terms of quickly generating
ground truth data (i.e., data with annotations added to them), which researchers can then
use for testing lane detection algorithms. Without ground truth annotation, lane detection
algorithms cannot be trained and tested. At the present time, researchers are constrained
in testing their lane detection algorithms because of the low number of publicly available
datasets. Further, the generation of ground truth annotation is mainly limited to a time-
consuming and less reliable manual approach. In the manual approach, annotation depends
on the user’s skill or judgement; thus, the performance of lane annotation varies from
person to person. For example, if two people with varied experience perform the manual
approach, the annotation result may differ. This is one of the limitations we overcome with
our proposed approach, besides the reduction in time for annotation.

Since ground truth annotation is a crucial step before testing lane detection algo-
rithms, any method that can overcome the disadvantages of the time-consuming task of
manual annotation is a methodological advancement. With our proposed semiautomatic
interpolation-based framework for generating ground truth annotation, researchers can
quickly make a reliable dataset to be ready for training and testing lane detection algo-
rithms. Interpolation is a method by which related known values are used to estimate an
unknown value or set of values. We have defined finite number rows and identified the
unknown value through an interpolation approach to connect a smooth line or curve on the
images by connecting these points. Our proposed approach allows researchers to quickly
generate a variety of reliable ground truth datasets that they can deploy to test their lane
detection algorithms for different road geometries, lane marking, and other details unique
to a particular geographic location. Video datasets for performance evaluation of our pro-
posed approach are collected in Melbourne, Australia. The performance of the proposed
approach is tested by comparing results with other existing approaches (including manual
annotation as a benchmark) to demonstrate the superiority of our proposed approach.

The structure of the paper is organized as follows. Section 2 presents a literature review
on related works for the generation of ground truth data, a comparison of existing datasets,
and approaches to develop ground truth data. It is followed by Section 3, which explains the
data collection procedure adopted for this study and the proposed interpolation approach
framework. Section 4 discusses the proposed approach’s advantage over other existing
approaches. Finally, conclusions and recommendations for future works are presented.

2. Literature Review

The following subsections discuss related work on generating ground truth or custom
data, and the comprehensive analysis of available datasets. Data used for lane detection and
tracking and the evaluation of algorithms are explained, along with existing approaches to
develop ground truth data.

2.1. Related Work to a Generation of Ground Truth Data

Veit et al. [10] used the ROMA dataset to test a number of feature extractors for road
markings. With camera details and ground truth for the lane markers, the ROMA dataset
offer high-quality color images. The total length of its image sequence is below 20 s. In ad-
dition, it appears that the dataset is compiled from a set of random images that would make
it inappropriate to test lane marking that combines algorithms with lane tracking. Never-
theless, datasets are also available that contain image sequences for testing. For instance,
while driving on local city roads, Leibe et al. [11], Wanf et al. [12], and Brostow et al. [13]
generated image sequences with different scenarios. Although the recorded image content
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of the dataset had a fluctuation in illumination, different lane marking and surfaces, and the
neighboring vehicles, the overall length of the image content is less than 10 min. In addition,
ground truth files are not provided, which is this dataset’s main drawback. While the
dataset generated by Aly et al. [14] contains a ground truth file, scenes are not included in
sequences of the image on the recorded videos on the highway. The PESTS2001 dataset [15]
included image sequences of a highway, whereas the dataset from Sivaraman et al. [16]
generated image sequences of a street and highway. Unfortunately, both datasets have com-
promised image quality by applying lossy compressions such as JPEG and MPEG-4. Finally,
the datasets by Santos et al. [17], Lim et al. [18], and EISATS [19], provide a comprehensive
collection of images that would be ideal for lane marking testing. The images in [17–19]
display variations in the types of illumination, traffic flow conditions, road texture, and
lane marking, that reflect the conditions. In addition, in these datasets, the total length
of the sequence is more than 10 min, and even the camera parameters that are required
for generating camera models are also given. These datasets are applicable for different
applications, except for lane detection. Consequently, files containing ground truth data
are unavailable, so objective analysis may not be obtained. In addition, testing algorithms
on the dataset listed in [16–18] appear to measure their finding based on visual inspection,
and may be biased. A dataset containing a large amount of image data along with ground
truth is required to make a systematic, objective evaluation.

2.2. Comprehensive Analysis of the Available Dataset

The development of lane detection and tracking for ADAS is of great interest to
the automotive society. However, access to resources is extremely restricted because of
the significant commercial involvement in this area of research. Data that are used for
assessment and research is one of the most valuable tools. Compared to areas of study
such as face detection or the identification of optical characters (OCR), where labeled
and structured datasets are often available for training and testing, there appear to be no
such tools for lane detection and tracking. The issue caused by the absence of common
datasets is that it is difficult to currently compare available lane detection algorithms easily.
Additionally, the lack of common testing data make verifying other implementation results
difficult. In this scenario, one of the viable solutions is to enforce each algorithm and its
performance verification. However, the sheer quantity of algorithms that have already been
published in journals and conferences makes this challenge difficult to achieve. Table 1
shows a comparison of different dataset features available in the existing literature for
lane detection, including CU Lane [20], Caltech [21], NEXET [22], DIML [23], KITTI [24],
TuSimple [25], UAH [26], and BDD100K [27].

Table 1. Comparison among different lane datasets.

Sr. No CU Lane
[20]

Caltech
[21]

NEXET
[22]

DIML
[23]

KITTI
[24]

TuSimple
[25]

UAH
[26]

BDD100K
[27]

Sequences More than 55
hrs videos 4 clips Not

available
Not

available
22 se-

quences
7000 se-
quences

500 min
videos

100,000
videos

Images 133,235 1225 50,000 470 14,999 140,000 N/A 120,000,000

Multiple cities - -
√ √

-
√ √

-

Multiple weathers -
√ √ √

- -
√ √

Multiple times of day
√ √ √ √

- -
√ √

Multiple scene types
√ √ √ √ √ √ √ √

Multiple cameras
√

-
√ √ √

- -
√

Multiple street - -
√ √ √

-
√ √

Labelled streets -
√ √ √

-
√ √ √

Note:
√

: Item under “Sr. No” column is included, and -: Item under “Sr. No” is excluded.
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Researchers have used improvised datasets in terms of visual content to explore
multitask learning for a self-driving car. In earlier decades, researchers were constrained
because of a small set of datasets available for research. However, recently, Berkeley Deep
Drive, University of California, Berkeley, developed the BDD100K dataset, consisting of
100K driving videos with diverse scene types for researchers. A dataset for structure has
been covered in BDD100K according to different types of lanes, such as lane category, lane
direction, lane continuity, and drivable area. In the lane category, the following types of
lane markings have been covered with annotation: road curb, double white lanes, double
yellow lanes, double other, single white lanes, single yellow lines, and other single and
crosswalks. Additionally, parallel lanes and vertical lanes are annotated in the lane direction.
Annotated images with full and dashed lanes are covered in lane continuity, and derivable
and alternative types of lanes come under the drivable area.

Based on the review of studies on lane detection and tracking [8,9], and the summary
of datasets presented in Table 1, it can be observed that there are limited datasets in the
literature that researchers have used to test lane detection and tracking algorithms. It was
also observed that there are a lack of specific datasets from Australian roads.

In future, more datasets may be available for researchers as this field continues to grow,
especially with the development of fully automated electric vehicles. The verification of the
performance of the algorithms for lane detection and tracking system is carried out based
on the ground truth dataset. Ground truth data require a collection of images and a set of
labels on the image in the context of computer vision and models for object recognition.
The number, position, and relationships of key characteristics need to be included. Labels
are added to the image either automatically or manually, depending on the complexity
of the problem. The label set includes interesting points, the corners of lane boundaries
and descriptors of features. Using a range of machine learning methods, a model can be
trained, and the detected characteristics can be fed into a classifier at run time to calculate
the correspondence between detected characteristics and modeled features.

2.3. Approaches for Developing Ground Truth Data

There are four popular approaches to developing ground truth data, as briefly de-
scribed below:

(1) Manual approach
This method is transparent, straightforward, and often used to generate accurate

ground truth. It is conducted as follows:

• The user can manually annotate the lane markings of the left lane’s boundary at
various points in an image.

• Same steps are repeated for the right lane boundary.
• All the steps are repeated for the video clip.
• Finally, the ground truth is generated and saved in the file.

This approach, however, has two issues: it is a slow procedure, and it requires proper
details to annotate a single curve in an image, which can take up a lot of time. Gaps between
two dashed lines are not annotated, because the lane boundary is difficult to estimate in
these areas [28].

(2) Time-slice approach
By stacking an empty image with a row of pixels from frames in the video collection,

a time-sliced (TS) image is produced. To further explain, each frame of a video set with F
frames can be considered as an image with M × N dimensions [29].

(3) E-NET approach
In a study by [30], 168 images with a resolution of 1024 × 1280 pixels and normal RGB

channels are included in the complete dataset. Around five to seven mast cells make up
each image. About 40% of all cells have connected boundaries and appear to be near to one
another. Images were divided into 240 × 560 tile segments, in accordance with the size of
the neural networks. An expert manually segmented the dataset using the ground truth.
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The complete dataset was divided into test and validation parts at a ratio of 74:51, with the
samples being randomly shuffled [30].

(4) Automated test approach
The automatic data-labeling method for creating crack ground truths (GTs) within

concrete images is presented in this approach [31]. The primary technique entails producing
first-round GTs, pretraining a model based on deep learning, and producing second-round
GTs. A learning-based crack detection model can be trained in a self-supervised way using
the generated second-round GTs of the training data. After being retrained using the
second set of GTs, the deep learning-based model that was previously trained is successful
at detecting cracks. This method’s primary purpose is the suggestion of an automated GT
generating approach for pixel-level fracture detection model training [31].

3. Proposed Framework

In this work, we have proposed a framework for generating a ground truth dataset
that can be used for testing lane detection algorithm. Our proposed approach leverages
the advantages of manual and time-slice approaches through the interpolation approach.
While the philosophy of the interpolation approach is applicable to all types of roads, we
have used linear interpolation for straight roads and cubic spline interpolation for curved
roads. The linear interpolation is the straight line connecting the two known positions,
shown in Figure 1a. The equation of slopes gives the value of y along the straight line for x
in the interval:

y∗ − y∗1
y∗2 − y∗1

=
x∗ − x∗1
x∗2 − x∗1

(1)
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y∗ = linear interpolation values.
x∗ = independent variable.
x∗1 & x∗2 = values of the function at one point.
y∗1 & y∗2 = values of the function at another point.
Cubic spline interpolation is a mathematical approach for creating new points within

the boundary of a given collection of points, shown in Figure 1b. These new points are
function values of an interpolation function composed of numerous cubic piecewise poly-
nomials. The cubic spline is the function S(x) with given properties S(x)[xi, xi + 1] = Si(x).

On the basis of the interpolation principle, the ground truth dataset was developed
based on the videos obtained using monocular camera image sequences of traffic scenes
in Melbourne, Australia. We have used the Driving Scenario Designer app (available in
MATLAB R2021a) and MATLAB tools to annotate images.

It is difficult to estimate lane boundaries in the gaps, and to address this challenge,
we have selected user-annotated points to specify a maximum number of rows close to
each other. Then, we created cubic interpolation in these annotated points to get a smooth
curve because lane markings are not straight everywhere (for straight roads, we used linear
interpolation), so the controller can predict the lane boundaries based on the optimization.
In this way, we can generate a dataset for lane detection and tracking algorithms in arbitrary
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scenarios with different traffic flow conditions. Finally, a comparison of the performance of
the proposed approach with other existing methods is conducted.

3.1. The Requirement of Ground Truth Dataset

The image data and the metadata are required to formulate a full dataset. The image
data must consist of a series of image sequences captured at a speed of over 20 km/h while
driving. Additionally, the time between the end of one sequence and the start or second
recording is suggested to be a minimum of 2 min. This prevents the image data from being
a collection of random images in the dataset. The criteria for the dataset from captured
images are the following:

1. Duration of sequences: each recorded image sequence must have a length of at least
20 s. This approach will help test algorithms to use a frame-to-frame detection consistency.

2. Color: recorded image must be in 24-bit RGB format.
3. Uncompressed storage: recorded image sequence must store in a lossless format.

There are two reasons for putting this provision in place. Some researchers have used
real-time systems for research, in this case, real-time systems analyze files directly
from the camera. So, the dataset’s images must represent the camera’s performance.
Lossy compression creates artefacts of the compression and damage image quality.

4. Image format: to provide sufficient detail of the road surface, image must be at least
(480 * 640) resolution.

5. Camera parameters: information about the intrinsic and extrinsic camera’s parameters
should be provided for camera models to be recreated. Focal length, the field of view,
and image format, are among the intrinsic parameters. The extrinsic parameters
include the ground plane’s yaw, pitch, roll, and the height of the optical center of
the sensor.

6. Lane marking: lanes are on straight and curving paths, with solid and dashed lane
markers. They are the most common lane markers on roads in Australia. They must
be present in the image details. The image details must also include images where
lane markers are missing, to test for false positives.

7. Type of road: captured image data must include scenes from both streets and motorways.
8. Illumination effect: scenes in images that have various lighting changes, such as a

vehicle driving via tunnels, under bridges, under shadows, etc., during the day time,
night-time, and cloudy conditions. Data should be recorded to reflect variation in the
levels of ambient light.

9. Weather condition: recorded image must include the weather condition, such as dry,
rain, or snow.

10. Traffic flow condition: image must give traffic flow situations, such as heavy traffic,
modern traffic, and light traffic, etc.

11. The ground truth describes the lane boundaries of the road in curve form, and these
requirements are implemented by the shape of the roads and the position of the curve
identified on the road. Curves identified on the lane boundaries should be smooth,
and they must exhibit no visible kinks in their lane boundaries.

12. Generated curve must be at the center of the lane makers: if there are double lane
markers, it should be between two lines. The curve must start at the top of the Region
of Interest (ROI) and extend to the bottom of the image, along the lane boundary, after
specifying a ROI.

13. In the presence of either solid or dashed markers, the lane boundary curve must
be given.

3.2. Data Collection

To generate the ground truth datasets, we collected video clips covering more than
120 km of distance, including day and night, and under different weather conditions in four
suburbs (Bundoora, Heidelberg, Kew, and Brighton) of Melbourne, Australia. Additionally,
it includes both unstructured (no clear lane markings) and structured roads (clear lane
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markings). Some videos were taken during the day time in Bundoora, Heidelberg, and Kew,
with structured and unstructured roads, while some videos were collected in Brighton
during the night. The parameters of the lens of the monocular camera used for data
collection are shown in Table 2. We used this camera system because the ultracompact
set provides a range of CMOS image sensors. The camera allows some image processing
features, such as gamma correction and color interpolation, to plot a smooth curve with
connecting points. The parameters of the lens are shown in Table 2.

Table 2. Parameters of the lens used in the camera.

Attribute of Lens Parameters of Lens

Name of the company Optics
Model number 60-255

Focal length 5-55(Mm)
Aperture F1.3-1.6 C

Sensor Not available
Working distance 800-1000(Mm)

Lens design Back surface

For creating a ground truth dataset, it includes the following steps:
Model design: the model explains the structure of the objects, such as intensity, count,

and location, and the relationship between a group of scale-invariant feature transform
(SIFT) features. The model should be properly adjusted to the problem and image knowl-
edge in order to yield significant outcomes.

Training dataset: in order to work with the model, this set was collected and labelled,
and includes both positive and negative images and different features. Negatives include
images and attributes that are intended to generate false matches on the lanes [32].

Test set: several images are collected for testing against the training set to predict the
accurate match for the model.

Classifier design: this is designed to meet the speed and accuracy of the application
objectives, including data organization and model search optimizations.

Training and testing: this dataset was collected to verify a group of images against
ground truth [33].

Table 3 illustrates various road traffic environment features captured in the video data,
collected in Melbourne, while Figure 2 summarizes the overall data collection process to
postprocessing and evaluation.

Table 3. Road traffic environment features captured in the video data collection.

Features Clip 1 Clip 2 Clip 3 Clip 4 Clip 5

Weather condition Cloudy Heavy rain in the
night-time Sunny Cloudy Heavy rain in the

day time

Road surface Rough surface Rough surface Smooth Smooth Rough

Color of lane marking White White White White White

Traffic situation Modern Modern Light Light Light

Speed 60 km/h 68 km/h 70 km/h 64 km/h 66 km/h

Number of frames 14 17 21 25 11

Type of lane marking Dash Solid Dash and solid Dash and solid Dash and solid

Timing Day time Night-time Day time Evening Day

Location Heidelberg Brighton Bundoora Bundoora Kew

Structured and
unstructured roads Yes Yes Yes Yes Yes

Clothoid roads Yes Yes Yes Yes Yes
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Traffic situation Modern Modern Light Light Light  
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3.3. Proposed Interpolation Approach

The proposed interpolation approach is a quick and effective technique for processing
reliable ground truth data. One of the benefits of this method over the manual approach
is that interpolation values give the spatiotemporal representation of the video clip; as a
result, annotations can be carried out rapidly and with better accuracy.

We have divided this interpolation approach into three major steps.
Step 1:
In stage 1, we define a finite number of rows in which the boundary of the lane is

annotated. These rows are shown in Figure 3. It is important to define at least three rows
or more for producing a smooth curve of the lane boundaries for a good result. First,
we started by defining only two rows, but noticed it was not of sufficient accuracy. So,
we tested with three, or more than three rows (mostly three to four rows) using linear
interpolation (for straight roads) or cubic spline interpolation (for curved roads).

World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 10 of 17 
 

approach is that interpolation values give the spatiotemporal representation of the video 
clip; as a result, annotations can be carried out rapidly and with better accuracy. 

We have divided this interpolation approach into three major steps. 
Step 1: 
In stage 1, we define a finite number of rows in which the boundary of the lane is 

annotated. These rows are shown in Figure 3. It is important to define at least three rows 
or more for producing a smooth curve of the lane boundaries for a good result. First, we 
started by defining only two rows, but noticed it was not of sufficient accuracy. So, we 
tested with three, or more than three rows (mostly three to four rows) using linear inter-
polation (for straight roads) or cubic spline interpolation (for curved roads). 

 
Figure 3. Defining a finite number of rows (four rows in this case) in the image. 

It is to be noted that, in Figure 3, other markups, such as cars, signals, etc., are also 
shown. This is because we want to demonstrate (as a sample) how ground truth annota-
tion for lane findings can be applied to a supervised lane detection and tracking algorithm, 
which also need to detect surrounding obstacles and objects to avoid a collision. 

Step 2: 
This stage is made up of two substages put within a frame. The specification of each 

substage is provided below. 
1. Annotations: an interpolation image is generated by filling an empty image (with-

out annotation) in the video clip with rows of image pixels. The sliced image, which is 
initially an empty image, is then generated with dimensions F × N, where F is the video 
clip’s frame count, and each image has dimension M × N in the video clip. The sliced 
image has dimensions of F × N as F copies of N pixels wide, unlike the images in the video 
clip. We have used 240 × 640 image size in this study. In the empty image, rows will be 
specified. The row corresponds to the sliced image row to simplify the nomenclature in 
this explanation, while the row is a row in the image in the video clip. Next, in the image, 
we specify the row from which pixels will be copied. Then, a single row of pixels from 
each image of the video clip is copied to a specific row in the empty image by using a loop. 
To elaborate, from the first image in the video clip (Figure 3), row = 300, 400, and 500. The 
first row of the sliced image is copied. Then, from the row = 300, 400, and 500 in time-
sliced, the second image in the video clip is copied to the second-row image. Likewise, 

Figure 3. Defining a finite number of rows (four rows in this case) in the image.



World Electr. Veh. J. 2023, 14, 48 10 of 15

It is to be noted that, in Figure 3, other markups, such as cars, signals, etc., are also
shown. This is because we want to demonstrate (as a sample) how ground truth annotation
for lane findings can be applied to a supervised lane detection and tracking algorithm,
which also need to detect surrounding obstacles and objects to avoid a collision.

Step 2:
This stage is made up of two substages put within a frame. The specification of each

substage is provided below.
1. Annotations: an interpolation image is generated by filling an empty image (with-

out annotation) in the video clip with rows of image pixels. The sliced image, which is
initially an empty image, is then generated with dimensions F × N, where F is the video
clip’s frame count, and each image has dimension M × N in the video clip. The sliced
image has dimensions of F × N as F copies of N pixels wide, unlike the images in the video
clip. We have used 240 × 640 image size in this study. In the empty image, rows will be
specified. The row corresponds to the sliced image row to simplify the nomenclature in
this explanation, while the row is a row in the image in the video clip. Next, in the image,
we specify the row from which pixels will be copied. Then, a single row of pixels from each
image of the video clip is copied to a specific row in the empty image by using a loop. To
elaborate, from the first image in the video clip (Figure 3), row = 300, 400, and 500. The first
row of the sliced image is copied. Then, from the row = 300, 400, and 500 in time-sliced, the
second image in the video clip is copied to the second-row image. Likewise, row = 300 from
the F, the image will be copied to the F row in the time-sliced. The rows of pixels appear to
be stacked in the time-sliced image since they are sequentially copied and positioned. The
generated time-slice image is shown in Figure 4, where rows are copied from the image on
the left to the sliced image on the right.
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2. Interpolation: in this step, we first annotate a few points in the time-sliced image
at the center of the left lane marker. Then, we perform curve fitting to link the points by
interpolation (Figure 4). Instead of the nearest neighbor or linear interpolation, cubic spline
interpolation is used here. It produces a smooth curve between the points, as shown in
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Figure 4. In the interpolation image, curve fitting estimates lane marker positions between
the annotated points (p1, p2, p3, along the yellow line), as shown in Figure 4.

Step 3:
At the end of stage 2, in each image of the video clip, we have lane boundary points

in four rows. However, it will not create a smooth curve by simply connecting the four
positions with straight lines. Therefore, again we use interpolation. However, this time, in
each image, interpolation is performed across the rows, as shown in Figure 5.
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To elaborate, we have selected three points on the left lane boundary. The interpolation
of the cubic spline binds the four rows and defines the position of the lane boundary on
rows 300–500 at the same time, as shown in Figure 4. The cubic spline results in a smooth
curve from r [0] to r [4] for the left lane boundary in the image.

Similarly, this procedure is carried out for the right lane boundary and then repeated
for all the images in the video clip. Figure 4 displays the position on rows 300–500 for
image 1 of the left and right lane boundaries. Furthermore, a sample interpolation image is
shown in Figure 5 above this image, and two observations can be made:

1. Solid lane markers observed as a straight line;
2. Dashed lane markers observed small vertical strips.

Figure 6 summarizes the three steps involved in the interpolation approach. The XML
file generated from the proposed interpolation approach is presented in the Appendix A
(Figure A1).
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4. Discussion

The proposed approach focuses on interpolation to automate user-annotated points
and, therefore, speed up the process of generating ground truth data. A reliable and quick
method for generating ground truth data will be of immense importance to researchers
as they can use it to test and evaluate their lane detection and tracking algorithms. We
compared the performance (time taken to process and generate the ground truth data) of
our proposed method with other existing methods: manual [28], time-slice [29], E-Net [30],
and automated test [31], and the results are shown in Table 4. For comparison, we used
different video clips with various duration, as shown in Table 4. All clips have solid
and dashed lane markings. On average, from Table 4, it can be seen that our proposed
interpolation approach took less time (5.78 min) as compared to other existing methods,
such as the manual (46 min), time-slice (6.07 min), E-NET (6.35 min) and automated
tests (6.97 min). This is a reduction of 87.4%, 4.8%, 8.9%, and 17.1%, respectively, in
the processing time. When implementing lane marker classification in different weather
conditions, the challenge is with ROI selection since the necessary image characteristics
could be influenced by weather conditions, such as rain. While the proposed interpolation
approach outperformed previous approaches in all environments, some extra time was
needed for rainy conditions, compared to other normal days. For example, as compared
to normal weather (sunny and dry: clip 3), it took around 16 s longer to extract the lane
marker features and obtain interpolation values between defined rows in heavy rain at
night-time (clip 2), and around 9 s longer in heavy rain during the day time (clip 5).

As interpolated values are obtained in our proposed approach, it has the capability
to define the exact location of the lane boundaries. Further, the interpolation approach is
not restricted to any specific lane marking, and road structure and weather conditions do
not influence the ground truth dataset. The selection of an appropriate number of rows
for interpolation may be a limitation, but can be overcome with the experience. At this
stage of understanding, we believe that our proposed interpolation approach will provide
a better result for testing the lane detection and tracking algorithm. This may explain why
our approach is suitable for all types of lane marking. Table 4 shows the comparison of the
interpolation approach with other approaches.
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Table 4. Comparison of the proposed interpolation approach with other approaches.

Clip and
Duration Duration for Processing (mins)

Manual
Approach

Interpolation
Approach E-NET Automated Test

Approach
Time-Slice
Approach

Clip 1
[1 min] 47 5.00 6.00 8.00 6.01

Clip 2
[1.12 min] 41 4.56 5.00 7.32 5.00

Clip 3
[1.19 min] 53 7.00 7.30 6.53 7.09

Clip 4
[1.43 min] 44 6.37 6.70 7.00 8.00

Clip 5
[1.36 min] 45 6.00 6.78 6.04 7.04

Average 46 5.78 6.35 6.97 6.07

Standard
Deviation 4.48 0.99 0.88 0.74 1.15

5. Conclusions

This study developed an interpolation approach for quickly generating reliable ground
truth data. The proposed method takes advantage of the existing manual and time-slice
approaches. The interpolation approach has been developed in three different steps: define
a finite number of rows; find interpolation values; and create a smooth curve by connecting
interpolation values. The system can be used to quickly produce large numbers of high-
quality camera images, depth and optical flow videos, and textual annotations at the
pixel level.

Furthermore, the proposed framework enables the creation of ground truth data for
complex driving scenarios, which could be useful in developing lane detection and tracking
systems for advanced driver assistance systems, or for testing algorithms for automated
vehicles. Other applications of this proposed framework could be the determination of
visual odometry, and the detection of motion models and scenes. Further, due to the
semiautomatic nature of the proposed approach, the user can annotate each image by
clicking a mouse button. Future work may explore combining data acquired from the
front and rear cameras to determine the vehicle’s position on the road, and identify lane
detection and tracking.
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