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Abstract: An intelligent, accurate, and powerful object detection system is required for automated
driving systems to keep these vehicles aware of their surrounding objects. Thus, vehicles adapt their
speed and operations to avoid crashing with the existing objects and follow the driving rules around
the existence of emergency vehicles and installed traffic signs. The objects considered in this work are
summarized by regular vehicles, big trucks, emergency vehicles, pedestrians, bicycles, traffic lights,
and traffic signs on the roadside. Autonomous vehicles are equipped with high-quality sensors and
cameras, LiDAR, radars, and GPS tracking systems that help to detect existing objects, identify them,
and determine their exact locations. However, these tools are costly and require regular maintenance.
This work aims to develop an intelligent object classification mechanism for autonomous vehicles.
The proposed mechanism uses machine learning technology to predict the existence of investigated
objects over the road network early. We use different datasets to evaluate the performance of the
proposed mechanism. Accuracy, Precision, F1-Score, G-Mean, and Recall are the measures considered
in the experiments. Moreover, the proposed object classification mechanism is compared to other
selected previous techniques in this field. The results show that grouping the dataset based on their
mobility nature before applying the classification task improved the results for most of the algorithms,
especially for vehicle detection.

Keywords: autonomous vehicle; object detection; object classification; Udacity dataset; BDD100K
dataset; machine learning; road network

1. Introduction

Autonomous vehicles or self-driving cars have been proposed recently over the road
network. They are also known as driverless vehicles that can operate and execute vital
activities without the assistance of humans [1]. Thus, these vehicles should be able to inves-
tigate their surrounding environment accurately. Several systems have been developed to
improve the performance of autonomous vehicles in several road scenarios and situations.
Some systems have been designed to drive under bad weather conditions (i.e., fog, rain,
snow) [2–4]. Other systems have been developed to clearly and accurately control the
vehicles at curving roads, junctions, traffic lights, blind turns, and on-street parking [5–10].

On the other hand, many researchers have worked on object detection and classifica-
tion problems over the road network (i.e., regular vehicles, emergency vehicles, cyclists,
trucks, pedestrians, etc.) [11–15]. These studies effectively aim to reduce the increasing
number of traffic accidents over road networks. They also reduce the driver’s stress and
tension during their trips [16]. More importantly, they aim to help ultimately replace the
drivers in autonomous vehicle scenarios. The surrounding environment of autonomous
vehicles is essential for safe road network trips. Investigating the existing objects should
be accurate and quick to avoid crashes and accidents. The system of autonomous vehicles
is based mainly on perception and decision-making processes. For example, the route
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of autonomous vehicles toward the targeted destinations should be set based on some
predefined parameters. This includes the physical location of the destination, the map of
the surrounding road network, and the navigation trip on the road network [17,18].

Quick responses and actions are required from autonomous vehicles upon detecting
any object over the road network. These responses depend mainly on the main characteris-
tics of the detected object. Determining the main features of the existing objects: their nature,
location, and size is one of the most critical problems that require further development in
the system of autonomous vehicles. For instance, vehicles have to decrease their speed to
increase the in-between safe distances if a nearby vehicle is detected traveling in front of
them. They must change their traveling lane and open the way for emergency vehicles
if they are seen behind them. Moreover, warning signs on the road should be analyzed
and understood to react accordingly by following the recommended speed or noticing
the existing exit point. Detecting a located traffic light at a signalized road intersection
determines whether that vehicle can pass through that intersection or it should wait for the
green signal.

Machine learning (ML) techniques, such as deep convolution neural networks, have been
used in computer vision to detect objects over the road network. The object detection problem
over the road network has been handled by analyzing the road’s closed-circuit television
(CCTV) footage. With the help of a CCTV camera, images are taken every second. Thus, every
vehicle on the road is detected in every image. These studies have classified objects after
detecting them [19]. Processing images acquired robust light detection and extended-range
equipment. Moreover, some research studies have focused on the correlated problem of
vehicle sensor location problem [20–25]. Besides, LiDAR and radar technologies can generate
a map of its environment to detect, locate, and track moving targets [26]. Vehicles, pedestrians,
bicycles, motorcycles, and other obstacles on or beside roads are all objects of interest in
automotive driving applications [26]. Thus, radars provide direct perception-related inputs by
extracting depth-related characteristics with highly predictable processing approaches. Then,
RGB cameras are used to create images that replicate human vision, capturing light in red,
green, and blue wavelengths. Processing these images can help to identify existing objects,
differentiate them from the background, and analyze a scene. On the other hand, the Global
Positioning System (GPS) helps in the navigation system of these vehicles by determining the
longitude, latitude, speed, and direction of each vehicle.

In this work, we aim to use data classification techniques as an intelligent object
classification approach. This is to classify the detected objects according to their main
characteristics. We have investigated the performance of these techniques based on several
datasets. Then, collecting several considered objects into three main groups based on the
mobility nature of these objects (i.e., vehicles, people, and signs) is applied. The the grouped
datasets obtained better Accuracy, Precision, F1-Score, G-Mean, and Recall results. We
compare the performance of six main machine learning algorithms to recommend the
most suitable one for object detection on road networks. The performance of the proposed
approach has been improved by modifying the datasets and grouping similar objects in a
single group.

The rest of this paper is organized as follows: Section 2 investigates some recent
relevant studies about object detection and classification in autonomous driving scenar-
ios. Section 3 provides a brief discussion of the classification algorithms utilized in this
work. Section 4 presents the pre-processing techniques we applied to prepare the dataset.
In Section 5, the experiments and results are presented, discussed, and compared to previ-
ous studies. Finally, Section 6 concludes the entire paper.

2. Literature Review

Object classification is a method of determining which class instances an object belongs
to. Autonomous vehicles must classify objects over the road network to take different
actions with different existing objects. Moreover, the location of each detected object should
be precisely determined. To obtain a complete 3D perspective of the area, object detection
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is becoming a subdomain of computer vision (CV) [27]. Among the goals of self-driving
cars include saving lives and increasing safety by minimizing accidents, as well as making
private transportation possible, efficient, and reliable [28,29]. Specific object recognition is a
sub-problem of the general object recognition problem. This requires assigning distinguish-
ing attributes to each object with proper names [30]. Three-dimensional object detection
is a crucial task for the autonomous driving of an optical navigation module. Various
sensors, such as millimeter-wave radar, camera, or laser radar (LiDAR), provide road
scene information to the optical navigation module. Then, classification techniques process
the gathered information to give a derivable area for autonomous vehicles [31]. Udacity
presented the dataset generated from the GTI (Grupo de Tratamiento de Imágenes, Madrid,
Spain) vehicle image collection and the KITTI (Karlsruhe Institute of Technology, Karlsruhe,
Germany and Toyota Technological Institute, Nagoya, Japan) vision benchmark suite. It
employs a histogram of oriented gradients (HOG) feature extraction algorithm to recognize
multiple vehicles in images and classify them using various classification techniques. The
experimental result shows that the efficiency is higher while using the LR when compared
to the decision tree (DT) algorithm and the support vector machine (SVM) [32].

Ortiz Castelló et al. have evaluated version 3 of the “You Only Look Once” (YOLOv3)
and YOLOv4 networks by training them on a large, recent, on-road image large-scale Berke-
ley Deep Drive (BDD100K) dataset, with a significant improvement in detection quality.
Additionally, some models were retrained by replacing the original Leaky Rectified Linear
Unit (Leaky ReLU) convolution activation functions from the original YOLO implementa-
tion with two advanced activation functions. The self-regularized non-monotonic function
(MISH) and its self-gated counterpart (SWISH) resulted in significant improvements in
detection performance over the original activation function. YOLO is a real-time object
detection algorithm that identifies specific objects in videos or images. YOLO uses features
learned by a deep convolutional neural network to classify each object. The BDD100K
dataset was used to train the algorithms. It is a large, comprehensive dataset that includes
a variety of objects in various weather conditions, locations, and times of day, as well as a
wide range of light conditions and occlusion. Average Precision (AP) is the primary mea-
sure used in this comparison study. The MISH model gets the best performance, followed
by the SWISH function. However, both lead to better results than the original Leaky ReLU
implementation [27].

Moreover, deep convolutional networks are used to classify objects accurately by
Mobahi and Sadati [29]. This study used the BDD100K dataset to train and test the
algorithm using Python and the open-source PyTorch platform using the CUDA tool, which
allows image processing. The experiments were performed using a single-shot multi-box
detector (SSD), faster R-CNN (Region-Based Convolutional Neural Network), and PyTorch
algorithms. They classified three scales of objects: small, medium, and large [29]. Karlsruhe
Institute of Technology, Toyota Technological Institute (KITTI), and Multifog KITTI datasets
have been used in other experimental studies. Mainly, the AP measure has been determined
to compute the performance of the 3D object detection task. The findings were greatly
enhanced by employing a Spare LiDAR Stereo Fusion Network (SLS-Fusion) [2]. Then, the
proposed 3D object detection algorithm divides objects into three difficulty levels: easy,
moderate, and hard. Based on the 2D bounding box sizes, occlusion, and truncation extents
appearing on the image. The hard level focuses on classifying objects in foggy weather for
self-driving vehicles [2].

Furthermore, Mirza et al. used YOLOv3, PointPillars, and AVODS (Aggregate View
Object Detection) methods to detect and classify objects over the road network. These
methods perform much better on the KITTI dataset than the NuScenes, Way Forward in
Mobile (Waymo, Mountain View, CA, USA), and A*3D datasets. On night scenes, the mean
Average Precision (mAP) achieved by PointPillars is the best. However, it fails in adverse
weather situations such as rain [4]. Then, to increase the performance of classifying objects
in foggy weather circumstances, Mai et al. trained the Spare LiDAR Stereo Fusion Network
(SLS-Fusion) using the KITTI dataset (i.e., the Multifog KITTI dataset). In addition, Al-Rifai
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has used the YOLOv3 algorithm with Darknet-53 CNN for object classification on the
road network; they detect and classify cars, trucks, pedestrians, and cyclists [13]. On the
other hand, Krizhevsky et al. [33] proposed a deep convolutional neural network that has
been used to extract the image representations automatically. The perception system of an
autonomous vehicle converts sensory data into semantic information, such as lane marking,
drivable areas, and traffic sign information. Moreover, this system has been developed to
identify and recognize objects on the road (e.g., vehicles, pedestrians, cyclists) [34]. Cameras
can recognize pedestrians using a convolutional neural network (CNN) and determine
vehicle positions by merging the picture position with the LiDAR point cloud [35]. Deep
learning can be used to process the sounds of emergency vehicles from a long distance
and determine the direction from which they are approaching. Autonomous vehicles must
notice the responding emergency vehicles [36].

On real and synthetic data, 3D object detection and classification are implemented by
Agafonov and Yumaganov [37]. Vehicles are used as detected objects, the KITTI dataset is
used, and the open-source simulator Consul Auditing and Reporting Language (CARLA)
is used as a source of synthetic data. This simulator is provided for testing diverse traffic
situations to train autonomous vehicle control systems. The AP of classification objects is
measured for these scenarios as an evaluation measure [37]. Table 1 summarizes the recent
studies in object classification mechanisms over the road network, illustrating their main
findings and limitations. After looking over the most recent and pertinent studies, we may
summarize the deficiencies and weaknesses as follows:

• Some investigations produced results that showed a considerable increase in the
amount of time needed for processing.

• Some studies fail in adverse weather situations such as rain.
• They did not perform well in the classification of large-scale objects.
• When it comes to categorizing large-scale items, several of the earlier studies did not

perform particularly well.
• Some studies have a high misclassification rate for small objects compared to larger ones.
• There is still room for improving the accuracy measures achieved by the current

studies, which results in a higher overall quality of the findings.

Table 1. Summary of the previous research studies.

Paper Tested Algorithms Main Objective Finding Measures Limitation Dataset

(Ortiz
Castell´o et al.,
2020) [27]

YOLOv3, YOLOv4,
MISH, and SWISH

Obtain more accurate mod-
els to confidently classify
the on-road conditions
aimed to decrease limita-
tions in processing capacity
and bandwidth

YOLOv4 convolutional
layers using the new MISH
and SWISH functions pro-
duced better results with
minor improvements in
classification quality; MISH
was the function that made
the best results

Average, Preci-
sion, and AP5

The expense of an
essential rise in
processing time

MS-COCO
and
BDD100K

(Mobahi and
Sadati, 2020)
[29]

SSD, Faster R-CNN,
and PyTorch

To improve the classifica-
tion in a simple way of
different scales, especially
small ones from the self-
driving car

Compared to recent ap-
proaches, it performed bet-
ter in the category of small-
scale objects by PyTorch
and improves the accuracy
of object classification at
various scales, especially
the small ones

Average, Pre-
cision, (IoU),
Average Precision
(scale)

Detecting large-
scale objects

BDD100K

(Mai et al.,
2021) [2]

SLS-Fusion, Pseudo-
LiDAR++

Investigate the effects of
fog on object classification
in driving scenarios to
increase performance in
foggy weather

This result is very satisfying
because it indicates the SLS-
Fusion algorithm’s robust-
ness while dealing with
foggy datasets

Average Precision
(AP) over union
(IoU) thresholds
at 0.5 and 0.7

Depends on the
quality of cameras
or LiDAR used

KITTI Clear
+MultiFog
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Table 1. Cont.

Paper Tested Algorithms Main Objective Finding Measures Limitation Dataset

(Mirza et al.,
2021) [4]

YOLOv3, PointPillars,
AVODS

Aim to handle autonomous
object classification sys-
tems in weather circum-
stances including rain, fog,
and snow, and examine
how performance degrades
when weather conditions
degrade

Detectors that work well in
clear weather can fail in ad-
verse weather conditions;
to cover such situations
benchmarking datasets
must be improved

Average Precision
(AP50)

Fails in adverse
weather condi-
tions such as
rain

NuScenes,
Waymo,
KITTI, A*3D

(Al-refai and
Al-refai, 2020)
[13]

YOLOv3-Darknet
CNN

The goal is to detect
four different categories
of pedestrians, vehicles,
trucks, and cyclists, and
to evaluate dataset images
gathered from public road-
ways using the front-facing
camera of a vehicle

YOLOv3-Darknet algo-
rithm has high misclas-
sification rate for small
objects like pedestrians and
cyclists compared to larger
objects like cars

Precision Recall High rate of mis-
classification for
small objects com-
pared to larger
objects

KITTI

(Agafonov
and Yu-
maganov,
2020) [37]

AVOD, PointRCNN,
and SECOND

The object classification ex-
periment was on a car cat-
egory to evaluate the per-
formance of the algorithms
for 3D object detection and
classification on both real
and synthetic data

3D objects detection and
classification methods
when trained on synthetic
data cannot be applied to
detect objects with real data

AP on 2D images,
AP on BEV projec-
tions, AP of 3D ob-
jects

Fails to detect 3D
objects in realistic
synthetic data

KITTI
CARLA

This research seeks to design an intelligent object classification approach for au-
tonomous vehicles, as well as provide an efficient model to address these weaknesses.

3. Background

This section briefly discusses some specialized methods and algorithms tested and
utilized in this work. This includes decision tree (DT), naive Bayes (NB), K-nearest neighbor
(KNN), stochastic gradient descent (SGD), multi-layer perceptron (MLP), and logistic
regression (LR) algorithms.

3.1. Decision Tree (DT)

One of the earliest and most well-known ML algorithms is the DT. DT is an ML
algorithm that divides learning activities. The tree is constructed by dividing the dataset
into smaller sets until each partition is clean and pure. In a typical DT, each node will exist
on multiple levels, and the node at the very top of the tree, known as the root node, will
be the first level. Every internal node is a test on one of the input variables or attributes.
Depending on the test result, the classification algorithm takes a branch to the right or left
to reach the appropriate child node. The testing and branching processes are repeated until
it reaches the leaf node. The leaf nodes, also known as terminal nodes, correspond to the
decisions made [38,39]. This structure of the DT algorithm is illustrated in Figure 1.

3.2. Naive Bayes (NB)

Naive Bayes (NB) is a method of classification that is founded on Bayes’ theorem. This
theorem introduces the concept of feature condition independence, and the classification
model is simple and clear [40]. Equation (1) below illustrates the considered model.

P(A/B) =
P(A)× P(B/A)

P(B)
(1)

Given that B has already occurred, we can calculate the likelihood of A occurring in
the future. In this case, B is the evidence, while A is the hypothesis. Independent predictors
and characteristics are assumed in this example. In other words, the presence of a given
trait does not affect the presence of another [41].
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Figure 1. DT algorithm structure.

3.3. K-Nearest Neighbor (KNN)

The K-nearest neighbor (KNN) algorithm is a supervised learning method. This
approach depends on measuring the distance between the newly input data that needs to
be classified and all of the other data in the dataset. The ‘K’ in the KNN algorithm refers to
the number of nearest neighbors considered when casting a vote. The same sample item
can be classified in various ways depending on the value one chooses to assign to the ‘K’
variable. Finding a record of K-nearest neighbors involves discovering all most similar to it
in terms of standard features. This stage is also known as distance calculation or similarity
search. The distance can be calculated using several equations such as Euclidean distance
(ED), Manhattan distance (MD), and others [42]. Equation (2) illustrates how to compute
the Euclidean distance. Equation (3) computes the Manhattan distance between any two
objects (i.e., X, Y).

ED : d(x, y) =
n

∑
i=1

(xi − yi)
2 (2)

MD : d(x, y) =
n

∑
i=1
|(xi − yi)| (3)

For classification issues, the algorithm assigns a class label based on the majority vote
(i.e., the label that appears more frequently in neighbors). The accuracy of the findings is
determined by comparing the model’s predictions and estimations to the available classes
in the testing set [39,41]. Figure 2 illustrates the KNN algorithm where the arrows point to
the K nearest nodes to the target node.

3.4. Stochastic Gradient Descent (SGD)

This algorithm is called stochastic or minibatch gradient descent because, each time it
iterates, it chooses new samples randomly to put in the minibatch. However, this algorithm
needs to figure out an extra parameter: the size of the minibatch it uses. It is a widely used
and popular algorithm as the ML algorithm [43]. Stochastic refers to a method or technique
associated with a random chance. Consequently, a few random samples are selected instead
of the whole dataset for each iteration. SGD seeks to discover the global minimum by
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altering the network’s structure after each training step. This method decreases error by
estimating the gradient for a randomly selected subset rather than determining the gradient
for the entire dataset. In practice, random sampling entails shuffling the dataset randomly
and proceeding through the batches sequentially. SGD conducts frequent high-variance
changes that permit significant variations in the objective function [44].

Figure 2. KNN algorithm structure.

3.5. Multi-Layer Perceptron (MLP)

A multi-layer perceptron is a supervised learning algorithm that trains functions
through a dataset. MLP is structured similarly to how the brain evaluates and processes
information. The three primary layers are the input layer, at least one hidden layer, and
the output layer. The values of the features are sent to the input layer. The hidden layer
is positioned between the input and output layers, and the values of the artificial neuron
nodes are calculated by multiplying the total number of input node values by their weights.
This is illustrated in Equation (4).

n

∑
i=1

(xiwi) (4)

where n is the number of input nodes, x is the value of an input node i, and w is the
weight of the input node i. The weights determine how much impact the input has on
the output. The value of each neuron is then generated using an activation function. The
activation function maps any real input into a confined range, commonly [0, +1] or [−1, +1].
Finally, the value of the neuron at the output layer is calculated by multiplying the total
number of the hidden layer neuron values with their assigned weights, which determines
the predicted output.

MLP and feed-forward neural networks (FNN) are two names for the same type of
deep neural network. The perceptron is a well-known ML technique that inspired neural
networks [45]. The three layers architecture is illustrated in Figure 3.

Figure 3. MLP algorithm structure.
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3.6. Logistic Regression (LR)

Logistic regression is a statistical classification model that counts the association
between a categorical dependent variable and one or more independent variables. This is
by utilizing probability scores as the predicted values of the dependent variable [46].

4. The Proposed Object Detection Approach for Autonomous Vehicles

In this section, we start by discussing the methodology of the proposed approach.
Figure 4 illustrates the steps of the proposed approach methodology. The Udacity and
BDD100K datasets are collected from Roboflow and Kaggle repositories. Data preprocessing
techniques are applied to handle the missing values in the datasets. In addition, the datasets
are split into 80% training data and 20% testing data. The most popular ML mechanisms,
such as the DT, NB, KNN, SGD, MLP, and LR algorithms, are used to classify the objects
for the Udacity and BDD100K datasets. Finally, the five main evaluation measures for
evaluating a classification model are Accuracy, Precision, F1-Score, G-Mean, and Recall. In
the second stage, we divided the BDD100K dataset into groups, and the steps mentioned
above were re-applied to these groups to obtain a new model compared to the model
produced from the first stage.

Figure 4. The methodology model of the proposed approach.

We provide the procedure followed in preparing and cleaning the used datasets. The
imbalanced data issue is discussed as its effects on the obtained results. Making the data
more complete and getting more accurate results can be achieved by preprocessing the
data. The data preparation process comprises executing Python code to find missing and
duplicated values. Every class has a numeric value in the Udacity and BDD100K datasets.
The data preprocessing techniques are applied to handle the missing values in the Udacity
and BDD100K datasets. Then, the datasets are split into 80% as training and 20% as testing
data. The classification algorithms are applied to classify the dataset. Finally, the measures
for the algorithms are calculated. The main categories in the Udacity dataset include
pedestrian, car, truck, traffic light, and biker. In contrast, the BDD100K dataset includes
pedestrian, rider, car, truck, bus, motorcycle, bicycle, traffic light, and traffic sign categories.
We can see that the BDD100K is much more sophisticated compared to the Udacity dataset.

4.1. Data Collection

The Udacity dataset was collected using Udacity’s self-driving car simulator [47]. With
this simulator’s training mode, drivers can record themselves driving the car on certain
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tracks. This method is called “behavioral cloning” because it copies the user’s actual actions
as they navigate the vehicle. The information is shown as images taken from three angles,
mainly from the center, left, and right. The dataset contains 97,942 labels across 11 classes
and 15,000 images, including thousands of pedestrians, bikers, cars, and traffic lights. This
dataset was exported via Roboflow [48].

On the other hand, the BDD100K dataset is one of the most commonly used datasets
for object detection and classification in autonomous driving. The diversity of the data
is essential to test the robustness of perception algorithms. This dataset includes a wide
range of scene types, including city streets, residential areas, and highways. In addition, the
videos were taken in a wide range of climatic conditions and at various times throughout
the day. In this dataset, there are up to 90 objects per image [29]. The BDD100K dataset
contains 13 classes (i.e., traffic sign, traffic light, pedestrian, rider, car, bus, truck, train,
motorcycle, bicycle, vehicle, another person, and trailer). General snapshots consisting
of several selected images taken from the Udacity and BDD100K datasets are shown in
Figures 5 and 6, respectively.

Figure 5. A snapshot of several images from the Udacity dataset.

Figure 6. A snapshot of several images from the BDD100K dataset.

4.2. Data Preparation

We cleaned the data for more accurate results in the Udacity dataset. This cleaning
was by combining all of the classes that fall under the umbrella of the traffic light cate-
gories into a single class that we have named “Traffic Light”. The combined group com-
prises trafficLight-GreenLeft, trafficLight-Green, trafficLight-RedLeft, trafficLight-Yellow,
trafficLight-YellowLeft, and trafficLight-Red. Then, 80% of the dataset is used for training,
and 20% is used for testing. Moreover, data preprocessing techniques are applied to handle
the missing values in the dataset, which involves executing code to discover missing and
duplicated values [47,48].

On the other hand, to clean the data and obtain more accurate results, classes that did
not record high views were eliminated to enhance the data balance at the BDD100K dataset.
The eliminated types include other persons, vehicles, trains, and trailers, rarely detected
over the road networks in real scenarios. Data preprocessing techniques are applied to
handle the missing values in the dataset, a preparation that involves executing code to
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discover missing and duplicated values. In addition, the dataset offers real-world images
while working within constrained environments and attempting challenging tasks.

4.3. Grouping Modification

The BDD100k dataset is imbalanced data, and the performance of the tested classifica-
tion algorithms is low in terms of Accuracy, Precision, F1-Score, and G-Mean on this dataset
compared to the Udacity dataset. To enhance the balance situation of the tested dataset, the
instances of the BDD100K dataset were grouped based on the nature of the objects. This
should improve its performance. These groups were obtained by gathering objects of an
exact nature together. These groups include vehicles, people, and signs collected from the
nine classes that appeared in the previous section. The pedestrian and rider objects are
grouped in the people category. The traffic light and traffic sign objects are grouped in the
sign group. Finally, the car, truck, bus, motorcycle, and bicycle objects are all grouped in
the vehicle group.

5. Experiments and Results

In this section, we first present the tested experiments on the investigated datasets.
Then, we discuss and analyze the obtained results. Five main evaluation measures have
been used in these experiments: Accuracy, Precision, F1-Score, G-Mean, and Recall. The
accuracy of a classifier is measured as the proportion of the total number of correct predic-
tions. Precision measures the number of instances accurately recognized as positive relative
to all the optimistic predictions, whereas Recall measures them relative to all the positive in-
stances. Moreover, F1-Score is a weighted average of Precision and Recall. Finally, G-Mean
evaluates classification results on both the majority and minority classes equally. Even if
the negative instances are classified correctly, a low G-Mean indicates poor performance in
classifying the positive cases [49]. G-Mean maximizes each class’s accuracy while keeping
this accuracy balanced [50]. These measures range from 0 to 1, where 1 means the highest
score. These measures are used to evaluate and compare the performance of six main
classification algorithms. The DT, NB, KNN, SGD, MLP, and algorithms are considered in
this experimental study.

Object classification is a computer vision task that classifies the visual objects gathered
in digital pictures from photos and video frames into different classes, such as persons,
traffic lights, vehicles, and bicycles. The Udacity and BDD100K datasets are the most
commonly used for object classification in autonomous driving environments. This section
shows the results of classifying the objects over the road network for autonomous vehicles
to investigate their surrounding environment on these datasets. Moreover, it compares the
obtained results of our approach to previous studies in this field.

5.1. Evaluation of Classification Algorithms on the Udacity Dataset

Table 2 illustrates the results obtained using the Udacity dataset for the main investi-
gated classification algorithms. As observed from the results, the DT algorithm produced
the best results when it was used to train a model. It achieves a G-Mean value of 98%,
representing an excellent percentage of positive predictive values concerning all the pre-
dictive values. However, the results of the rest of the measures equal a percentage of 97%.
Compared to the DT, the G-Mean of the KNN algorithm is 2% lower. We also note that the
MLP comes third with good results after KNN; it has a 1% lower G-Mean value than the
KNN with a value of 95% for the G-Mean measure. The MLP algorithm is followed by the
SGD algorithm, which achieved 90% G-Mean, 5% lower than the MLP. The LR is 2% lower
than the SGD; its score is 88% in G-Mean. Comparatively, the NB has the lowest score of all
of the algorithms with 87% G-Mean and it achieves 80% at the rest of the measures.
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Table 2. Score values of the various measures for each algorithm in the (Udacity) dataset.

Algorithms Accuracy Precision F1-Score G-Mean Recall

DT 97% 97% 97% 98% 97%

NB 80% 80% 80% 87% 80%

KNN 94% 94% 94% 96% 94%

MLP 91% 91% 91% 95% 91%

SGD 84% 84% 84% 90% 84%

LR 81% 81% 81% 88% 81%

Figure 7 shows a graphical representation of these measured measures: Accuracy,
Precision, F1-Score, G-Mean, and Recall of all the algorithms for the Udacity dataset.
It should be clearly noted from the figure that the DT algorithm is the best algorithm
that obtained the highest accuracy. We can also rank the algorithms according to their
performance for all the measures as DT, KNN, MLP, SGD, LR, and NB, where DT has the
highest and NB has the lowest values.

Figure 7. Score values of the various measures for Udacity dataset.

5.2. Evaluation of Classification Algorithms on the BDD100K Dataset

The results we obtained using the BDD100K dataset are presented in Table 3. MLP
achieved the best results, with a G-Mean value of 84% (i.e., the best result among all mea-
sures for the same algorithm). This measure considers the balance between the classification
performances of both the majority and minority classes. The results of the other measures
are all equal, with a percentage of 72%. The KNN algorithm’s G-Mean measure is 2% lower
than the MLP. Compared to other algorithms, the SGD and DT algorithms have the lowest
G-Mean score of 75%. In contrast, the DT algorithm outperforms the SGD algorithm in all
other measures by 1%, with an overall score of 59%.
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Table 3. Score values of the various measures for each algorithm for the BDD100K dataset.

Algorithms Accuracy Precision F1-Score G-Mean Recall

DT 59% 59% 59% 75% 59%

NB 59% 59% 59% 76% 59%

KNN 68% 68% 68% 82% 68%

MLP 72% 72% 72% 84% 72%

SGD 58% 58% 58% 75% 58%

LR 62% 62% 62% 78% 62%

Figure 8 graphically shows the score measures: Accuracy, Precision, F1-Score, G-Mean,
and Recall of the tested algorithms for the BDD100K dataset. From the figure, it should
be noted that the MLP Algorithm is the best that obtained the highest Accuracy. KNN
followed by LR has the best G-Mean, which achieved 78% G-Mean, 4% lower than the
KNN and 6% lower at the rest of the measures with a percentage of 62%. While NB is
2% lower than the LR, its score was 76% in the G-Mean and is 3% lower at the rest of the
measures with a percentage of 59%.

5.3. Evaluation of the Grouped Dataset

In this section, we evaluate the same measures on the grouped BDD100K dataset,
displayed in Table 4. The results here are much higher than those on the same ungrouped
dataset. The LR, NB, KNN, and MLP are the best algorithms that obtained the highest
score across all of the measures for the vehicle group. They scored 96% for G-Mean. These
algorithms are followed by the SGD algorithm, which achieved 95% G-Mean, 1% lower
than these algorithms. Comparatively, the DT algorithm has the lowest score of all of the
algorithms, 2% lower than the SGD; its score was 93% in G-Mean. The other measures
recorded a value of 94% for LR, NB, KNN, and MLP algorithms, a value of 89% for the DT,
and a value of 93% for the SGD algorithm.

For the people group, the LR, NB, KNN, and MLP are the best algorithms that obtained
the highest score across all measures. For the sign group, the MLP is the best algorithm
that obtained the highest score across all of the measures; it scored 78% across all. The MLP
was followed by the LR, which was 1% lower than the MLP algorithm. KNN is 5% lower
than the MLP, its score was 73% across all of the measures.

Figure 9 illustrates score measures: Accuracy, Precision, F1-Score, G-Mean, and Recall
of the tested algorithms for the obtained groups based on the nature (i.e., vehicles, people,
and signs) from the BDD100K dataset. It is observed from the figure that the vehicle
group gets the highest score in all measures. The results of the signs group were the worst
among them.

5.4. Comparison Results

This section compares our obtained results to another recent comparable paper.
It also compares the score for the BDD100k dataset overall classes with the scores from the
modified grouped dataset.

The DT algorithm in our approach produced an Accuracy of 97%, while C. R. Ku-
mar [32] obtained 93%. We have also seen an increase in the Precision measure; we obtained
98% while they obtained 90%. Furthermore, the F1-Score and Recall were 97%, whereas
the score for the other paper was 90%. We have achieved a higher percentage in Accuracy,
Precision, F1-Score, and Recall measures compared to C. R. Kumar [32]. This is justified by
the fact that, when we cleaned the dataset, we combined all of the classes that fall under the
umbrella of the traffic light categories into a single class that we have named “Traffic Light”.
Table 5 shows the comparison results between recent similar work and our contribution to
the Udacity dataset.
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Figure 8. Score values of the various measures for BDD100K.

Table 4. Score values of the various measures for groups in the BDD100K dataset.

Groups Algorithms Accuracy Precision F1-Score G-Mean Recall

Ve
hi

cl
e

gr
ou

p

DT 89% 89% 89% 93% 89%

NB 94% 94% 94% 96% 94%

KNN 94% 94% 94% 96% 94%

MLP 94% 94% 94% 96% 94%

SGD 93% 93% 93% 95% 93%

LR 94% 94% 94% 96% 94%

Pe
op

le
gr

ou
p

DT 91% 91% 91% 91% 91%

NB 95% 95% 95% 95% 95%

KNN 95% 95% 95% 95% 95%

MLP 95% 95% 95% 95% 95%

SGD 93% 93% 93% 93% 93%

LR 95% 95% 95% 95% 95%

Si
gn

gr
ou

p

DT 68% 68% 68% 68% 68%

NB 57% 57% 57% 57% 57%

KNN 73% 73% 73% 73% 73%

MLP 78% 78% 78% 78% 78%

SGD 71% 71% 71% 71% 71%

LR 77% 77% 77% 77% 77%
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Figure 9. Score values of the various measures for groups.

Table 5. Comparison with similar work for the different measures (Udacity dataset).

Measure DT (C. R. Kumar, 2021) DT (Our Approach)

Accuracy 93% 97%

Precision 90% 98%

F1-score 90% 97%

G-Mean X% 97%

Recall 90% 97%

Further, the test ranking for the Udacity dataset for the various classifiers is applied in
Table 6. It can be observed from the table that the DT has achieved the best rank for all the
measures followed by KNN. In contrast, NB has the worst ranking compared to the other
classifiers. The Friedman chi-square value based on the ranks equals 25.0 with a p-value of
0.000139. Considering α = 0.05, we can reject the null hypothesis indicating a significant
difference between the various classifiers.
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The second comparison is between the overall classes of the BDD100k dataset and the
scores obtained after modifying the dataset by grouping similar categories into three main
groups: vehicles, people, and signs. We got results that we compared with results obtained
from the grouped dataset. After grouping the dataset, we saw an improvement in all of the
measures adopted in our study. The following are our findings for the various measures
we used: the MLP algorithm yielded the best results for G-Mean in BDD100K with an 84%
score. In contrast, the best result we obtained from the group dataset of vehicles using
the LR, NB, and KNN for G-Mean was 96%. The LR, NB, KNN, and MLP algorithms
achieved the most outstanding results on all scales for 90% of the people group. The MLP
algorithm achieved 78% on all measures for the group of signs, the highest score in the
group. Except for the NB in the group of signs, all results in split groups were better than
the overall results of the dataset. Here, we can state that collecting the original data into
groups improved the prediction and classification results. This is the objective of our work
by enhancing the performance of detecting the existing objects from the dataset used.

Table 6. Ranks for the different measures (Udacity dataset).

DT NB KNN MLP SGD LR

Accuracy 1 6 2 3 4 5

Precision 1 6 2 3 4 5

F1-Score 1 6 2 3 4 5

G-Mean 1 6 2 3 4 5

Recall 1 6 2 3 4 5

Total Rank 5 30 10 15 20 25

6. Conclusions and Future Work

This paper shows a comparison of machine learning algorithms. Six supervised learn-
ing algorithms are compared in this study. The datasets used in this research are Udacity
and BDD100K. In the training step, we use 80% of the dataset to train each algorithm. Finally,
methods are used to evaluate 20% of the datasets. The results show the decision tree we
used produced a G-Mean of 98%, with the highest score in the Udacity dataset and the
best score across all experiments. In contrast, the results obtained from the groups were
better than the original dataset for the vehicles group using the LR, NB, and KNN with a
G-Mean of 96%. The results of the algorithms were improved due to dividing the original
dataset into groups, which, in turn, accomplishes the objective of our research, which is
the increase in performance using our approach. The vehicle groupings come out on top
with the highest score possible for this measure. The results for the signs group were the
worst of all of them. However, except for the Precision measure, the remaining measures for
the people group had the best results for all the groups. In the future, other studies might
consider data classification according to the object’s size, speed, and whether it is moving or
fixed. In addition, experiments can be conducted with other algorithms.
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