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Abstract: While the market for medium- and heavy-duty battery-electric vehicles (MHD EVs) is still
nascent, a growing number of these vehicles are being deployed across the U.S. This study used over
2.3 million miles of operational data from multiple types of MHD EVs across various regions and
operating conditions to address knowledge gaps in total cost of ownership and operational range.
First, real-world energy cost savings were determined: MHD fleets should experience energy cost
savings each year from 2021 to 2035, regardless of vehicle platform, with the greatest savings seen in
transit buses (up to USD 4459 annually) and HD trucks (up to USD 3284 annually). Second, to help
fleets across various geographies throughout the U.S. assess the suitability of EVs for their year-round
operating needs, operational range was modeled using the XGBoost algorithm (R2: 70%) given
22 input features relevant to vehicle efficiency. Finally, this paper recommends (1) that MHD fleets
apply energy-saving practices to minimize the impacts of cold temperatures and high congestion
levels on vehicle efficiency and range, and (2) that local hauling fleets select trucks with a nominal
range nearly double the expected maximum daily range to account for range losses under local,
urban driving conditions.

Keywords: BEV (battery electric vehicle); heavy-duty; medium-duty; cost; range; energy efficiency;
machine learning

1. Introduction

Electrifying the transportation sector has become one of many global strategies to
combat climate change and improve air quality, along with the adoption of other zero-
emission technologies. Medium- and heavy-duty (MHD) electric vehicles (EVs) have the
advantage of being more energy efficient than diesel vehicles, in addition to producing
zero tailpipe greenhouse gas emissions. In an experimental driving cycle evaluation study,
three HD EV platforms, namely a step van, a yard tractor, and a Class 8 truck, consumed
3–6 times less energy than diesel counterparts [1]. MHD EVs are now capable of meeting
certain commercial duty cycles and replacing internal combustion engine vehicles, given
current technologies. An assessment using MHD vehicle trip data indicates that Class
2b–7 EVs can support 62–76% of commercial vehicle travel demand in California [2]. In
recent years, the number of MHD EV options available on the market has significantly
increased, up 36% globally since 2021 [3]. Despite rapid improvements in MHD EV energy
efficiency and model availability, the adoption of these vehicles has occurred more slowly
due to barriers like high up-front costs, range and charging limitations [4–6], and public
skepticism that MHD EVs can meet fleet duty cycle requirements [2,7]. This paper seeks to
advise fleets on two major barriers to EV adoption: total cost of ownership and range.

Compared to diesel vehicles, EVs offer reduced energy costs that significantly benefit
their total cost of ownership. A preliminary model-based comparison [8] showed that
MHD EVs were 2–4 times more energy efficient than diesel vehicles, while a 2018 California
Air Resources Board (CARB) meta-analysis using data from real deployments found that
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battery-electric trucks and buses were 3–6 times as efficient as diesel counterparts, with a
vehicle’s precise estimated energy efficiency ratio (EER) depending on its vehicle platform
and duty cycle, with greater efficiency at lower average speeds [9]. Given that electricity
is consistently cheaper than diesel per unit of energy [10] and that heavier vehicles tend
to consume more energy per mile than light vehicles [11], fleets switching from diesel to
electric MHD vehicles should experience energy cost savings, which helps reduce total
cost of ownership. In addition, past research has shown that electric truck ownership
becomes more economical as load capacity increases, with energy savings as a function of
weight [12]. This study not only supported these previous model- and data-based findings,
but also estimated the energy cost savings associated with improved efficiency.

To address users’ uncertainty about real-world EV performance, predictive models
have been widely used to project EV energy consumption, efficiency, and range and to
understand their determinants and trade-offs (Table 1). A recent study on 40-ft and 60-ft
battery-electric buses found that bus speed significantly affects average energy consumption
per mile [13]. Previous light-duty EV research has successfully adopted simulation-based
models, machine learning models (e.g., regression, PCA, and tree-based models), and
neural networks to identify features that most strongly impact vehicle efficiency to guide
fleets’ actions. Energy efficiency and range were found to be strongly correlated with a
vehicle’s battery capacity [14,15], speed profile [15–18], weight [15], acceleration [15], and
road profile [17]. While light-duty EV energy efficiency has been widely studied using
real-world big data–driven methodologies, there remains a knowledge gap in predicting
the energy efficiency and range of MHD EVs. The methodologies used to study light-
duty EVs can be applied to MHD EVs to better understand the key determinants of
vehicle efficiency and make predictions on efficiency and range under real-world physical
conditions. Findings from such analyses can help ease fleet uncertainty regarding EV
performance before procurement and can improve MHD EV efficiency in operation given
fleet-specific duty cycles and vehicle model selections.

Table 1. Methods and significant features from previous research modeling energy efficiency of
light-duty EVs.

Literature Model Features That Significantly Impacted
Light-Duty EV Energy Efficiency

Qi et al., 2017 [16] PCA, decision tree, ANN Negative kinetic energy, positive kinetic energy, speed, traffic

Fetene et al., 2017 [14] Regression Speed, acceleration, trip distance, season, rush hour, battery level
when trip starts, temperature, precipitation, wind speed, visibility

Modi et al., 2019 [19] CNN Significant features not specified, but the selected model used the
following features: speed, road elevation, tractive effort

Weiss et al., 2020 [20] Regression Vehicle weight

Xu et al., 2020 [17] Simulation-based inference model Speed, road type

Ahmed et al., 2022 [15] Regression Speed, acceleration, vehicle weight

Research regarding MHD EVs’ performance in real-world deployment settings has
been scarce [21], and industry stakeholders struggle with a lack of information and data to
understand MHD EVs’ actual duty cycle suitability, total cost of ownership, and perfor-
mance in the face of variables like climate, terrain, and driving speed [7]. The Medium-
and Heavy-Duty Electric Vehicle Data Collection project, funded by the U.S. Department of
Energy (DOE), collected data from 144 MHD vehicles across six vehicle platforms and nine
U.S. states and made it publicly available for researchers. Using this diversified and robust
real-world vehicle performance dataset, this paper aims to fill the knowledge gap surround-
ing the in-use energy efficiency of MHD EVs, refining the methodology and expanding
upon a conference paper submitted and presented at the 36th Electric Vehicle Symposium
& Exposition (EVS 36) [22]. This study (1) compared the energy costs of MHD EVs and
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their conventional diesel internal combustion engine (ICE) counterparts, (2) generated a
machine learning model to predict energy efficiency and highlight significantly impactful
features, and (3) applied the model to predict operational range for transit buses and HD
trucks in both local and regional duty cycles in four U.S. cities.

2. Materials and Methods
2.1. Materials and Data

Onboard data loggers, either from third party suppliers or pre-installed by vehicle
manufacturers, were used to collect data directly from vehicles’ Controller Area Network.
Data was aggregated by day or by trip, depending on each data logger’s frequency of
reporting. Data validation and cleaning were conducted to prepare the data for analysis:
measurement errors and outliers were eliminated, metric units were standardized, and
missing values were imputed. For example, when a vehicle’s energy consumption data was
not usable due to data quality concerns (i.e., Fleet10), it was calculated using the vehicle’s
battery capacity and state of charge (SOC) used. The resulting vehicle performance dataset,
which covered a total of 144 vehicles from six different vehicle platforms operated by
28 fleets across 16 U.S. cities, contained 37,352 vehicle-days and 2.3 million miles traveled.
Table 2 and Figure 1 summarize the makeup, status, and geographic distribution of the
on-road vehicle dataset.

Table 2. Summary of vehicles included in this study.

Vehicle
Platform

Gross Vehicle
Weight Rating

(lbs.)

Number of
Vehicles

in Analysis

Number of
Vehicle-Days
in Analysis

Transit Bus >33,000 90 28,093
Type C School Bus >33,000 17 1809

Class 8 Day Cab Tractor >33,000 14 1269
Class 7 Box Truck 26,001–33,000 7 1144
Class 6 Box Truck 19,501–26,000 6 2025
Class 4 Step Van 14,001–16,000 10 3012

Total 144 37,352
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Data needed for the energy cost savings analysis was gathered from external sources.
Baseline diesel average fuel economy values were sourced by taking the average of all fuel
economy values corresponding to each vehicle platform from (1) CALSTART’s TCO tool [8]
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and (2) the U.S. DOE Alternative Fuels Data Center’s average fuel economy dataset [23],
where available. The price of diesel (USD/gallon) was gathered from the U.S. Energy
Information Administration’s (EIA) diesel price forecast dataset [24]. The price of electricity
(USD/kilowatt-hour (kWh)) was gathered from (1) the EIA’s electricity price forecast
dataset [24] and (2) levelized costs of delivered electricity USD 0.17–0.38 per kWh estimated
by the National Renewal Energy Laboratory (NREL) given a set of 20 scenarios, ranging
from kilowatt- to megawatt-scale charging and accounting for variations in location type,
utilization rate, cost of electric vehicle supply equipment (EVSE) installation and upgrades,
and various utility rates [25].

Some data parameters corresponding to input features for the vehicle energy efficiency
model in Section 3.2 were not directly collected by onboard data loggers; in these cases,
data were downloaded from external sources (Table 3).

Table 3. Features as inputs to the energy efficiency predictive model.

Feature Groups Features Sources

Duty Cycle Average Driving Speed, Total Distance, Total
Run Time, Driving Time, Idling Time Percentage MHD EV Data Collection (CALSTART, 2023)

Vehicle Configuration
Manufacturer, Model Name, Model Year, Weight
Class, Vehicle Platform, Body Style, Rated
Energy, Nominal Range, Estimated Payload

MHD EV Data Collection (CALSTART, 2023);
ZETI Database (CALSTART, 2023) [26]

Use Case Vocation, Sector MHD EV Data Collection (CALSTART, 2023)

Geography Region, State MHD EV Data Collection (CALSTART, 2023)

City
Profile

Climate Average Ambient Temperature,
Average Precipitation

NOAA daily average temperatures [27];
NLDAS-2 hourly dataset [28]; ERA-5-Land
hourly dataset [29]

Road Average Road Grade R package {slopes} [30] applied on
OpenStreetMap network [31]

Congestion Annual Hours of Delay (general, highway) Urban Mobility Report Congestion Data (Texas
A&M Transportation Institute, 2021) [32]

For each vehicle in the dataset, a climate profile consisting of temperature and pre-
cipitation data was gathered. When not collected by onboard data loggers, daily average
ambient temperatures were downloaded from the National Oceanic and Atmospheric
Administration (NOAA) [27]. Trip-level temperatures were downloaded from the National
Aeronautics and Space Administration’s (NASA) NLDAS-2 dataset [28] at the midpoint
location and time of the trip. Hourly precipitation was downloaded per city for 2018–2022
from the ERA-5-Land hourly dataset [29] and summed by day or trip, depending on the
granularity of the corresponding vehicle’s data.

When downloading annual congestion data, 2019 data were used to avoid the ex-
ogenous impact of the COVID-19 pandemic [32]. The metric of annual hours of delay for
general roads was used for buses and local hauling trucks, while annual hours of delay for
highways was used for regional hauling trucks. For cities not covered by the congestion
dataset, metrics were collected for each city’s nearest neighbor by physical distance.

City road slope was computed using road network data from Open Street Map [31],
1 arc-second Digital Elevation Model from the U.S. Geological Survey (USGS) TNM
database [33], and the R package {slopes} [30]. Road segments were filtered to only include
primary, secondary, tertiary, trunk, residential, and link roads for all above road types
excluding residential. Road grade for each road segment was computed, and an aggregated
mean over road grades of all road segments was used in modeling for each city.

Since actual payload data were not available, maximum payload per vehicle model
was obtained from CALSTART’s Zero-Emission Technology Inventory (ZETI) database [26],
which contains vehicle specification data for 843 models of MHD trucks and buses [34].
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When payload was measured in units other than weight (e.g., passengers or volume), these
units were converted to weight using assumptions indicated in the Urban Bus Toolkit [35].
For example, the number of passengers that could be carried in a bus was assumed to
be 1.75 times the number of bus seats to represent both seated and standing passengers.
Payloads of buses were calculated by first converting seat capacities to passenger capacities
and then multiplying passenger capacities by the 178-lb average adult weight.

2.2. Methods
2.2.1. Energy Efficiency Comparison and Energy Cost Savings Analyses

Figure 2 below shows the procedure used for the energy efficiency comparison analysis
and energy cost savings analysis. In this study, energy cost was defined as the cost of fuel
in U.S. dollars (USD) needed to drive a vehicle one mile. Maintenance costs were not
included due to a lack of sufficient historical maintenance data to accurately assess an EVs’
longer-term maintenance needs.
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Figure 2. Procedures of (a) efficiency comparison analysis and (b) energy cost savings analysis.

First, a comparison of energy efficiency between each EV platform and its diesel
counterpart was conducted (Figure 2a). Real-world energy consumption rate (kWh/mi)
and energy efficiency in miles per diesel gallon equivalent (MPDGe) were determined for
each EV platform from average daily energy consumed and average daily distance traveled,
using baseline diesel comparison average fuel economy from CALSTART’s TCO tool [8]
and the U.S. DOE Alternative Fuels Data Center’s average fuel economy dataset [23].

For each vehicle platform, average energy cost savings per mile were (1) projected from
2021–2035 using EIA price projections [24] and (2) calculated using the average levelized
electricity costs estimated by NREL [25] with 2022 diesel price projections [24] (Figure 2b).

Together, these complementary sources of electricity prices presented a more nuanced
understanding of EVs’ energy costs: while the EIA source provided price projections on a
per-year basis over a broad time period, NREL’s estimates, despite their lack of temporal
granularity, accounted for the real-world variability of charging costs associated with
20 diverse charging infrastructure scenarios.

2.2.2. Vehicle Efficiency Prediction: Model Selection, Feature Engineering and
Model Training

Knowing the mechanisms that affect vehicle efficiency can inform fleets’ operations by
predicting efficiency performance and ultimately range. When selecting from a wide array
of machine learning algorithms, we considered the tradeoff between interpretability and
performance. On one end of the spectrum, linear models are the most interpretable but are
generally weak in predictive performance, especially when dealing with high-dimensional
data and non-linear relationships. On the other end, neural networks can achieve higher
predictive performance at the expense of high computation costs and low interpretability,
as they are essentially “black box” models. Tree-based algorithms stood out to best fit our
use case, as they offer a balance between interpretability and predictive performance and
can be trained and tuned reasonably quickly.
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For this study, three tree-based algorithms (i.e., XGBoost, Gradient Boosted Trees or
Gradient Boosting, and Random Forest) were selected to train the efficiency prediction
model. These algorithms adopted a range of ensemble methods, such as bagging and
boosting, to help overcome model overfitting, which is commonly seen in decision trees.
Additionally, two linear models that use L1 and L2 regularization techniques, also known
as Lasso and Ridge Regression, were adopted as baseline models in this study, given their
ability to perform automatic feature selection in high dimensional datasets.

Before training the machine learning models, exploratory data analysis and feature
engineering were conducted to select and transform 22 features as inputs for the models
(Table 3). Figure 3 illustrates the feature engineering procedure. Since vehicle types and
regions were imbalanced in the data, we applied stratified sampling when splitting train
and test data to ensure the test score properly reflected predictive performance of all
categories of interest. K-Nearest-Neighbor (KNN) imputation was used to fill in missing
numerical features with the mean of five nearest neighbors, followed by rescaling to meet
linear model requirements. Although tree-based models generally perform well with
imbalanced data, SMOGN resampling [36] was applied on the training data for all models
to further improve model performance on underrepresented areas of datapoints. Then,
one-hot encoding and ordinal encoding were applied, resulting in 75 features in total.
Finally, quadratic terms of ambient temperature and driving speed were added to the
linear models to better fit their non-linear relationships with the target variable (i.e., energy
consumption rate), but it was unnecessary to add these terms for tree-based models.
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In model training, this study applied five commonly used machine learning algorithms
for comparison to predict vehicle efficiency, calculated as total energy consumption divided
by driving distance and measured by energy consumption rate (kWh/mi). Using Scikit-
Learn [37] and other Python packages, the study was able to tune the hyperparameters
with the random search method and perform k-fold cross-validation to avoid overfitting
on the training set. Mean Absolute Error (MAE) was the key evaluation metric used in
training since MAE assigns equal weights to all errors, which is less sensitive to the impact
of outliers.

2.2.3. Operational Range Prediction: One Year of Duty Cycle Simulation and
Range Forecast

It is critical for fleets to assess how MHD EVs will accommodate their operations
and duty cycle needs when planning procurement. Predicting operational range values
in real-world operating conditions under vehicle type–specific duty cycles can help fleets
gauge the maximum range a vehicle might achieve versus manufacturer specification. The
efficiency model developed in Section 3.2 was used to address this issue by predicting
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and visualizing the operational range of MHD EVs based on hypothetical operating con-
ditions, manufacturer-rated battery capacities, and an assumed 90% SOC battery buffer
(Equations (1) and (2)). We chose three different vehicle types (i.e., transit bus, local HD
truck, and regional HD truck) in four different cities (i.e., Los Angeles, Louisville, Missoula,
and Chicago) to assess the impact of real-world operating conditions and duty cycles on
MHD EV ranges. The 2022 BYD K9M was selected as the vehicle model for transit buses,
while the 2021 Freightliner eCascadia was chosen for local and regional HD trucks. Vehicles
were assumed to be brand new and operating at full State of Health. City profile data were
gathered using the same methodology as described in Section 2.1.

Operational Range (mi) = Usable Battery Capacity (kWh)/Vehicle Efficiency (kWh/mi) (1)

Usable Battery Capacity (kWh) = Nominal Battery Capacity (kWh) × Battery State of Health (%) ×
Battery State of Charge Buffer (%)

(2)

One year of operating duty cycle data was simulated in R. Using our real-world data
as a benchmark, we summarized monthly and weekly averages of daily total distance, total
run time, and driving time for each of the three simulated vehicle types (i.e., transit bus,
local HD truck, regional HD truck). For each pair of month and day of week, 200 data
points were simulated using the averages and standard deviations of residuals, assuming a
normal distribution. The simulated data pool was then cleaned by removing outliers and
negative data points. For each day in 365 days, one data point was randomly sampled
from the simulated data pool based on day of week and month. Forecasting with the R
package {forecast} was used if data were missing or underrepresented in a certain time
in the 356 days. Daily average driving speed and idling time percentage were calculated
from the simulated features. All duty cycle features were engineered and validated to have
ranges and distributions similar to the real-world data.

3. Results and Discussion
3.1. Energy Efficiency Advantages Indicate Energy Cost Savings
3.1.1. Energy Efficiency Comparison Analysis

The distribution of the real-world energy consumption rate for each of the six vehicle
platforms is shown in Figure 4. When comparing the real-world energy efficiency of EVs
and the fuel economy of baseline vehicles, MHD EVs performed an average of 3.4–5.8 times
as well as their conventional counterparts, mirroring CARB’s estimated EER results [9]
(Table 4).
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Table 4. Average and 95% confidence interval of energy efficiency by vehicle type and platform.

Vehicle Type Vehicle Platform Average EV Energy
Efficiency (MPDGe)

Average Baseline Fuel
Economy (MPDG)

Energy Efficiency
Ratio (EER)

Medium-Duty Truck Class 4 Step Van 34.18 (±0.22) 9.04 3.8
Class 6 Truck 28.09 (±0.18) 8.21 3.4

Heavy-Duty Truck Class 7 Truck 16.89 (±0.35) 4.40 3.8
Class 8 Truck 20.58 (±0.40) 3.56 5.8

Bus
Type C School Bus 27.16 (±0.73) 7.06 3.8
35–40-ft Transit Bus 19.07 (±0.08) 3.83 5.0

HD trucks and transit buses had the highest estimated EERs, while MD trucks and
school buses—the most efficient vehicle platforms for both fuel types—had lower EERs.
Vehicle platforms maintained similar efficiency rankings relative to each other regardless of
fuel type, aside from Class 8 trucks, which were the least efficient diesel vehicles but third
least efficient EVs, behind Class 7 trucks and transit buses. Although it is expected that
Class 8 trucks may experience worse real-world efficiency than Class 7 trucks, which have
lower maximum payloads than Class 8 trucks, external factors such as climate, percent
idling time, and driver behavior may have impacted these two truck platforms’ relative
real-world performance.

3.1.2. Energy Cost Savings Comparison Analysis

EIA 2022 price projections indicated that MD trucks, HD trucks, school buses, and
transit buses had estimated average cost savings of USD 0.195, USD 0.493, USD 0.201,
and USD 0.529 per mile, respectively; by 2035, these per-mile projected cost savings are
projected to increase by 14.2% on average, to USD 0.224, USD 0.552, USD 0.238, and USD
0.589 per mile, respectively.

In a 2024 cross-section of these results (Figure 5), energy cost savings were smaller
when using electricity prices based on NREL’s breakeven costs relative to the EIA’s national
average electricity price projections. However, for both estimates, the average cost per mile
was consistently lower for EVs than for baseline vehicles. Thus, even when accounting
for the installation and maintenance of EVSE infrastructure, fueling MHD EVs is still less
expensive per mile on average than fueling their diesel counterparts.
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Finally, for each vehicle platform in the real-world dataset, estimated total annual
fuel cost savings were determined using EIA-projected average cost per mile and aver-



World Electr. Veh. J. 2023, 14, 330 9 of 17

age annual distance traveled per vehicle in each vehicle platform (Figure 2b). Because of
the combination of their high per-mile fuel cost savings and high annual distance trav-
eled, transit buses and HD trucks had high estimated annual fuel cost savings (Figure 6).
Transit buses, which had the highest per-vehicle average annual mileage (7570 miles per
year), experienced the greatest fuel cost savings, followed by Class 8 and Class 7 trucks,
which had local/regional duty cycles and traveled an average of 4937 and 4779 miles per
year, respectively.
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These results support previous DOE findings that a vehicle’s duty cycle strongly
impacts total cost of ownership [7]: although electric school buses had 43% better energy
efficiency performance (MPDGe) than electric transit buses, their lower annual average
distance (1837 miles) resulted in 90% lower cumulative total fuel cost savings. Thus,
switching from diesel to electric is much more cost-effective for higher-mileage than lower-
mileage vehicle platforms.

3.2. Vehicle Efficiency Predictions Based on Known Real-World Factors

Many factors affect actual EV efficiency, including ambient temperature, driving
speed, topography, and manufacturing configurations. However, studies determining
these variables’ relative impacts are lacking. This paper incorporated real-world data
from these factors and developed machine learning models on in-use performance data to
estimate energy consumption rate (kWh/mi).

3.2.1. Model Performance Evaluation

Each of the five machine learning models was evaluated using the following metrics:
R2, Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error
(RMSE) (Table 5). Among the five models, tree-based models (XGBoost, Random Forest,
and Gradient Boosted Trees) had better performance than linear models (Lasso and Ridge
Regression). While the three tree-based models produced R2 values of 69–70%, XGBoost
had the highest R2 (70%) and was selected as the best model to predict operational range in
Section 3.3. The XGBoost model can explain 70% of the variations in the target variable
(energy efficiency), which is good performance considering the large scale and diversified
sources of real-world data.
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Table 5. Model performance evaluation metrics.

Regression Models R2 Mean Absolute
Error (MAE)

Mean Squared
Error (MSE)

Root Mean Squared
Error (RMSE)

Lasso (L1 Regularization) 0.550 0.351 0.236 0.486

Ridge (L2 Regularization) 0.567 0.339 0.227 0.476

Gradient Boosted Trees (GBR) 0.694 0.252 0.161 0.401

Random Forest (RFR) 0.699 0.255 0.158 0.397

XGBoost (XGB) 0.702 0.253 0.156 0.396

3.2.2. Model Result Analysis

A preliminary analysis indicated that MHD EVs were most efficient when operated
at daily average speeds between 20 and 40 mph compared to lower speeds. At speeds
below 20 mph, a higher percentage of idling time versus driving time was observed, which
likely contributed to worse efficiency. This analysis also indicated that MHD EVs driving
more than 100 miles per day achieved a higher average efficiency than those traveling
less. Again, a higher percentage of idling time was observed in shorter trips, resulting
in worse efficiency. The ideal operating environment included minimal traffic, mild to
warm ambient temperatures (50–80 ◦F) [38], and relatively flat terrain. Finally, decreases in
vehicle size and weight significantly increased vehicle efficiency.

While these results were not unexpected, further analysis was conducted to reveal the
most important factors in the XGBoost model. The SHAP (Shapley Addictive exPlanations)
value [39] was examined to determine the predictive impact of each feature on vehicle
efficiency (Figure 7). Clear horizontal separation (red dots on one side and blue on the
other) shows the direction and magnitude of the impact each feature has on the output.
For example, high driving speed values had a negative effect on the output (kWh/mi) and
thus are associated with improved efficiency. Among the top 10 features, all features except
model year showed clear efficiency trends, with consistent impacts on the magnitude
and direction of change in efficiency. Specifically, higher average driving speed, average
ambient temperature, and total distance were associated with improved energy efficiency
of MHD EVs. In contrast, lower congestion hour delay, rated energy (i.e., battery capacity),
idling time percentage, payload, and total run time were associated with reduced efficiency.
Model year was one of the important features, but it is unclear whether older or newer
models were more efficient in general.

All tree-based models achieved similar R2 scores. Each model’s feature importance
ranking was slightly different, but all three models included average driving speed, average
ambient temperature, total distance, and congestion in their respective top features (Table 6).
While the algorithm identified the original equipment manufacturer (OEM) Proterra as
a significant feature, this is likely a result of the selection bias in the data sample from
MHD EV early deployments, where there is a disproportionately high number of Proterra
buses—about 45% of vehicle-days and 37.5% of vehicle count. Therefore, the significance
of this feature might not be generalizable to the overall U.S. MHD EV population as the
diversity of OEMs in real-world deployments increases.

Table 6. SHAP identified top features impacting the prediction on vehicle efficiency.

Top Features XGBoost Random Forest Gradient Boosted Trees

Average driving speed #1 #2 #3

Average ambient temperature #2 #3 #1

Manufacturer Proterra #3 #1 #6

Total distance #4 #5 #5

Congestion hour delay #5 #6 #2
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Figure 7. The XGBoost model’s top 10 features ordered by feature importance (left: bee swarm plot
to show the direction and magnitude of the impact each feature has on vehicle efficiency; right: bar
plot to show the mean absolute impact of each feature on vehicle efficiency). In the bee swarm plot,
positive SHAP values indicate datapoints with feature values (red: high feature value, blue: low
feature value) that are associated with more energy use or lower efficiency. In contrast, negative SHAP
values signify datapoints with feature values that are associated with less energy or higher efficiency.

Average driving speed was consistently among the top important features across all
models, meaning it had a critical effect on efficiency. Energy efficiency of transit buses
became less optimized and substantially more variable when average driving speed was
less than 10 mph (Figure 8). HD trucks were more likely to have energy efficiency as high
as 4 kWh/mi when average driving speed was less than 15 mph. However, for both vehicle
types, when average speed reached 20–40 mph, the efficiency converged to a narrow range
of values and stabilized around 1.5–2 kWh/mi.
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The average driving speed feature was aggregated by day, which must be understood
within the context of fleet operations. Throughout a real-world operational day, vehicles
drive at a range of speeds and alternate among driving, idling, and off statuses. Vehicles
may idle in traffic, run on the highway, or stop-and-go on local city roads. Lower daily
average speed may indicate a larger share of driving in urban congested areas with frequent
or longer stops and shorter total distance traveled. These driving conditions are commonly
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observed in urban delivery trucks, city bus circulators, and school buses. A daily average
speed of 20–40 mph may imply a duty cycle with fewer stops and less traffic or loading
time, and MHD trucks operating at these average speeds were observed to achieve higher
energy efficiency. Future studies on MHD EVs may tailor efforts to further understand
mechanisms behind their energy efficiencies at different speeds.

3.3. Operational Range Predictions

A summary of simulated year-long duty cycles for transit buses and local and regional
HD trucks are presented in Table 7. In the vehicles’ simulated duty cycles, transit buses
traveled the farthest with the longest run time and driving time but had the lowest daily
average driving speed due to frequent stops or residential speed limits. Local HD trucks
traveled the shortest distance with the shortest driving time and highest idling time per-
centage. Regional HD trucks traveled long distances with the highest speed and lowest
idling time percentage. In the simulated data, the maximum distance traveled in a day was
177 miles for a regional HD truck and 103 miles for a local HD truck. Regional HD trucks
spent a greater fraction of time driving, indicating that they tend to travel on highways and
have fewer stops.

Table 7. Averages and 95% confidence intervals of simulated duty cycle features.

Vehicle Type Total Distance
(miles)

Driving Time
(hours)

Total Run Time
(hours)

Average Driving
Speed (mph)

Idling Time
Percentage (%)

Transit bus 83.5 (±3.8) 5.6 (±0.2) 8.4 (±0.4) 15.6 (±0.7) 25.2 (±2.6)

Local HD truck 45.3 (±1.4) 2.8 (±0.1) 4.1 (±0.2) 18.0 (±0.9) 28.5 (±2.0)

Regional HD truck 71.3 (±4.0) 3.2 (±0.2) 4.3 (±0.2) 22.7 (±1.3) 23.3 (±1.5)

For transit buses, operational range was modeled across four U.S. cities with different
climates, congestion levels, and hilliness (Table 8, Figure 9). For each city, congestion and
hilliness remained constant throughout the year, while climate variables changed seasonally.
Average ambient temperature was the feature with the strongest impact on operational
range. The modeled transit bus in Los Angeles, with the warmest winters, showed the
most consistent operational range throughout the year, despite a high congestion hour
delay that was 30 times that of Louisville. The operational range of the transit bus in
Missoula dropped significantly in cold winter months, during which average ambient
temperature fell as low as 6 ◦F. In the summer, when ambient temperature was no longer
the limiting factor, transit buses in Missoula had a longer average operating range than
in the other regions, likely thanks to Missoula’s light traffic. In Chicago, a city with low
average ambient temperatures and high congestion levels, transit buses were predicted to
have low operating range throughout the year compared to transit buses in other cities.

Table 8. Profiles of four U.S. cities.

City Average Ambient
Temperature (◦F)

Precipitation
(Inches)

Congestion Hour
Delay (h)

Average Road
Grade (%)

Los Angeles, CA 65.7 (±1.0; 46–86) 0.002 (±0.0004) 952,183,000 2.1

Louisville, KY 59.6 (±1.7; 22–86) 0.006 (±0.0005) 30,610,000 1.7

Missoula, MT 41.8 (±1.6; 6–74) 0.003 (±0.0002) 2,263,000 1.4

Chicago, IL 53.2 (±2.0; 10–85) 0.005 (±0.0005) 331,657,000 0.5

The comparison between the local HD truck and the regional HD truck highlighted
the impact of duty cycle on operational range when climate, congestion, and road slope
are held constant (Table 7, Figure 10). Throughout a year, local HD trucks consistently had
a lower operational range than regional HD trucks, due to lower daily average driving
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speed, shorter total distance traveled, and a higher percentage of idling time. This could be
a result of local HD trucks operating in urban areas and thus spending more time idling or
in traffic. From the model estimates, a local-haul HD truck fleet may need to deploy trucks
with a nominal range nearly double the expected daily range to meet duty cycles in colder
months. While the same truck model had a longer range as a regional HD truck overall,
there were still days when the regional truck’s predicted operational range dropped to
about 65% of its nominal range. In summary, fleets need to select proper MHD EV models
to be prepared for these rare occasions when transitioning to a fully electric fleet.
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Figure 9. Transit bus year-round operational range predictions (blue points) for the 2022 BYD
K9M vehicle model in four U.S. cities (top left: Los Angeles, CA; top right: Louisville, KY; bottom
left: Missoula, MT; bottom right: Chicago, IL). A trend line (dark blue line) showing a seven-day
moving average of predicted range is added to each scatter plot to illustrate the corresponding city’s
seasonal pattern and the impact of temperature on operational range. A reference line (dashed red
line) is added to compare predicted operational range with the transit bus’s nominal range.
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Figure 10. HD truck year-round operational range predictions (green points) for the 2021 Freightliner
eCascadia vehicle model in Louisville, KY (left: local duty cycle; right: regional duty cycle). A
trend line (dark blue line) of a seven-day moving average of predicted range is added to each
scatter plot to illustrate the corresponding city’s seasonal pattern and the impact of temperature
on operational range. A reference line (dashed red line) is added to compare nominal range to the
predicted operational range.
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4. Conclusions

As EV adoption grows, the value of a publicly accessible operational dataset from
early MHD EV deployments will only increase. This study made use of such a dataset
to (1) provide a high-level understanding of energy cost savings across various types of
MHD EVs and (2) execute a novel approach employing the predictive power of machine
learning to model MHD EVs’ energy efficiency. The outcome of this analysis could help
fleets across various geographies throughout the U.S. assess the suitability of EVs for their
operational needs.

4.1. Energy Efficiency Comparison and Energy Cost Savings Analyses

MHD EVs were found to perform an average of 3–6 times as efficiently as their diesel
ICE counterparts, demonstrating that theoretical efficiency advantages associated with
EVs hold true in practice. By using EVs instead of diesel vehicles, fleets should experience
significant energy cost savings from 2021 to 2035, regardless of vehicle platform, with the
greatest savings expected for fleets with transit buses (up to USD 4459 per bus annually)
and HD trucks (up to USD 3284 per truck annually), especially those with high-mileage
duty cycles. Even when accounting for the additional costs associated with installing and
maintaining EVSE infrastructure, fueling MHD EVs was still projected to be less expensive
per mile on average than fueling diesel MHD vehicles.

4.2. Vehicle Efficiency Prediction and Year-round Operational Range Forecast

This study found that a vehicle’s operational range could be substantially lower than
its nominal range under driving conditions with low temperatures, high congestion, and
local duty cycles, and thereby highlighted the importance of estimate operational range
when choosing a MHD EV. Using the efficiency model presented in Section 3.2, fleets
can forecast a vehicle’s year-round operational range to evaluate whether it meets their
operating needs. Based on these results, there are two notable considerations that fleets
should anticipate before purchasing and operating MHD EVs.

1. Because temperature and congestion can significantly impact EVs’ efficiency and
range, fleets should select vehicle models that can satisfy most of their range needs
throughout an entire year, while extending operational range in colder months and
congested areas by applying energy-saving practices. For example, fleets should plan
to pre-heat vehicle cabin and keep vehicle doors closed as much as possible, charge
midday on extremely cold days, and optimize routes and schedules to avoid heavy
traffic where possible.

2. Due to variations in duty cycle characteristics, local-haul operations (less than 100 miles
daily) can have 25% lower operational range than regional-haul operations
(100–300 miles daily), despite using the same vehicle model in the same example
city. Furthermore, local HD truck fleets may need to deploy trucks with a nominal
range nearly double their expected maximum daily range to meet route needs under
more extreme driving conditions, such as colder temperatures, and local duty cycle
requirements, such as the high idling time percentage and traffic levels found in urban
delivery duty cycles. Alternatively, fleets can consider downsizing HD trucks to MD
trucks or vans if they have sufficient payload.

4.3. Limitations and Future Work

While this study addressed several critical issues for fleets, it also had limitations. The
energy cost savings analyses were based on average efficiency values, average miles driven
per vehicle platform, and average price estimates, and EIA fuel prices did not account for
EVSE installation or maintenance costs. As a result, an individual vehicle may experience a
different real-world efficiency and different cost savings from those estimated in this study.
Additionally, electricity demand charges and vehicle efficiency improvement rates can be
incorporated into future scenario analyses.
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When modeling energy efficiency, predictions for trucks were limited to local and
regional haul (less than 300 miles per day) and were not generalized to long-haul duty
cycles. Compared to route-based energy consumption modeling, our model required less
granular inputs, both in terms of time (i.e., duty cycle at vehicle-day level) and geography
(i.e., city served as the geographic area of operation for all climate inputs). The energy
efficiency model is therefore best used to quickly estimate a vehicle’s efficiency in a given
city or to compare a vehicle’s performance across cities or duty cycles. However, the model
can still be improved with additional computational resources and data. Incorporating
a higher number of features and more detailed features would enable better predictions.
For example, using actual cargo weight data rather than a maximum payload constant for
each vehicle model would improve the payload feature’s explanatory power, especially for
trucks. Similarly, incorporating a targeted route as an input would provide details about
actual road grade and traffic level that are not decipherable from city-level approximations
(i.e., average road slope and congestion level).

Future work can use the output of the efficiency model to understand energy costs for
fleets given their selected vehicle model, use case, and city profile. Finally, we plan to build
a user-friendly, web-based tool that employs the model to help fleets predict operational
capabilities of MHD EVs operating in their regions, thereby boosting fleets’ confidence
in the EV transition. This tool will be a resource for accelerated MHD EV deployment;
by addressing EV performance knowledge gaps in an intuitive, accessible manner, it will
enable a better understanding of real-world MHD EV efficiency and range among fleet
managers, policymakers, and the public.
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