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Abstract: Battery electric vehicles (BEV) are suitable alternatives for achieving energy independence
and meeting the criteria for reducing greenhouse emissions in the transportation sector. Evaluating
their performance and energy consumption in the real-data driving cycle (DC) is important. The
purpose of this work is to develop a BEV DC for the interlinked urban and suburban route of
Addis Ababa (AA) in Ethiopia. In this study, a new approach of micro-trip random selection-to-
rebuild with behaviour split (RSBS) was implemented, and its effectiveness was compared via the
k-means clustering method. When comparing the statistical distribution of velocity and acceleration
with measured real data, the RSBS cycle shows a minimum error of 2% and 2.3%, respectively. By
splitting driving behaviour, aggressive drivers were found to consume more energy because of
frequent panic stops and subsequent acceleration. In braking mode, coast drivers were found to
improve the regenerative braking possibility and efficiency, which can extend the range by 10.8%,
whereas aggressive drivers could only achieve 3.9%. Also, resynthesised RSBS with the percentage
of behaviour split and its energy and power consumption were compared with standard cycles. A
significant reduction of 14.57% from UDDS and 8.9% from WLTC-2 in energy consumption was
achieved for the AA and its suburbs DC, indicating that this DC could be useful for both the city
and suburbs.

Keywords: battery electric vehicle; drive cycle selection; driver behaviour; energy consumption;
range extension; suburbs DC

1. Introduction

There has been a global increase in battery electric vehicles (BEVs) owing to their
potential to offer emission-free, highly efficient, and safe transportation [1–3]. However,
the primary obstacles to adopting e-mobility are the range anxiety associated with a
long charging time and the high investment cost of charging stations [4]. To enhance
the commercial market share of BEVs, the challenges of grid power forecasting, energy
consumption estimation, and lifecycle analysis need to be addressed. Furthermore, BEV
design must satisfy top-level customer attributes and requirements associated with dynamic
performance and energy consumption. Accordingly, accurate calculation of driving range
and energy consumption is a primary task in the predesign analysis of BEV powertrain
and energy storage systems. For such predictions, the driving cycle (DC) has been widely
utilised as an input parameter to track the road trajectory on a simulation platform [5].
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Furthermore, DC is considered a standardised testing tool for certifying new designs and
evaluating the performance of different types of vehicles.

In recent years, several extensive studies have been conducted on the development of
standard and legislative DCs worldwide, targeting the testing and evaluation of engine
emissions and fuel consumption. These include the United States of America’s (USA) Envi-
ronmental Protection Agency (EPA-75), Urban Dynamometer Driving Schedule (UDDS),
Federal Test Procedure (FTP-75), Highway Fuel Economy Test (HWFET), New York City
Cycle (NYCC), the New European Driving Cycle (NEDC), and the Worldwide Harmonised
Light Vehicles Test Cycle (WLTC), to mention a few [2,6].

As DC is a second-by-second speed and time profile that represents typical real-time
driving patterns in a particular urban area and region, its characteristics differ between
regions and cities. Such a driving pattern can be influenced by an individual’s driving
behaviour and the interaction with the road traffic environment. However, driving be-
haviour information cannot be measured directly using driving profile parameters. Various
methodologies have been presented to determine driving behaviour based on driving data.
Author [7] used naturalistic driving data to identify driving style; refs. [8,9] presented
different classifications of driving behaviour, such as aggressive, average, and mild. Some
previous studies demonstrated the existence of a high correlation between the driving style,
the acceleration, and the velocity of a cycle by introducing the possibility of a percentage
of aggressiveness. Many studies have confirmed that aggressive driving styles record
higher values of energy consumption than drivers driving calmly do. However, in most
studied regional BEV DCs, the driving pattern has been characterised by focusing on the
acceleration behaviour only and ignoring the braking behaviour [10,11]. Other studies
have indicated the presence of significant differences in braking power intensity between
aggressive and coast braking [12,13].

Researchers and automotive manufacturers have been using readily available stan-
dard and legislative DCs to evaluate and certify the design requirements of BEV [14–16].
However, this approach means that accurate estimation cannot be achieved as there are
significant differences in torque, power, and braking characteristics of BEV and ICEV in a
wide speed-operating range [17,18]. In recognition of the significant differences in standard
and real-data DCs to determine country-specific energy consumption, different countries
and automotive manufacturers have successfully developed the most realistic DCs that are
unique to each city or region [19,20].

The techniques reported in most earlier studies for synthesising DCs are random
selection, clustering, pattern classification, and modal analysis. Random selection is better
for heterogeneous traffic conditions but requires exhaustive statistical analysis [21,22].
The pattern classification method is helpful for studying traffic patterns, but accurate
measurement is difficult [21,23]. The cycles developed by the modal method, in which the
Markov chain concept is implemented, fail to match real-data population parameters [24].
The k-means technique has the flexibility to deal with a variety of driving data but fails
to represent real data accurately [22,25]. Furthermore, the cycles constructed by different
methods are of varying duration, such as WLTC-3 (1800 s), Indian urban (2690 s), Sydney
(637 s), WLTC-2 (1477 s), UDDS (1400 s), and Singapore (2344 s) [12]. The total duration of
some regional DCs has been set to 1200–1300 s in order to simplify the simulation burden.

Almost all previous studies on the synthesis of BEV DCs have been based on data from
road conditions in developed countries, with only a few contributions from developing
countries such as India [22]. Very few studies [26], such as on Addis Ababa (AA), Ethiopian
urban DCs, and [13] DCs for Egypt, have developed representative DCs for low-income
countries, focusing on emission rates and fuel consumption estimation. However, as
concluded by [17,18], these DCs could not be replicable for BEV evaluation and certification.
Furthermore, in the development process of these cycles, the study area covered was only
the urban territory, with no consideration given to the influence of suburbs on the inner city
driving pattern and trip duration. In most capital cities of low-income countries such as AA,
the driving pattern is influenced by roads’ mixed-use by pedestrians and different vehicles,
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single-lane vehicle composition, poor road quality and the absence of traffic signals [4,22].
As Ethiopia’s capital and the seat of the African Union (AU), AA is characterised by a
comprehensive economic, political, cultural, and diplomatic environment, with varying
topography, population dynamics, and highly congested traffic conditions. AA is a highly
populated city with more than 5.23 million residents, and it is growing at a rate of 4.4%
annually. The city has a total of around 630,000 registered vehicles, and the count along a
single-lane asphalt road is 168 vehicles per kilometre [26]. AA is surrounded by small towns
such as Bishoftu (east), Sandafa (north), Sululta (northwest), Holeta (west), and Sebeta
(south), with 60 km of suburban routes from the city centre along cross-country main roads.
Public transportation using city buses is preferred by most low-income people and extends
to the five towns as destinations, starting from the central station (stadium), operating
daily from 5.00 a.m. to 9.00 p.m. Furthermore, passenger cars are the preferred means
of transport by those in the middle-income class living in AA and looking for low-cost
accommodation in neighbouring towns [10].

To the authors’ knowledge, no investigations have yet been reported on the develop-
ment of a BEV DC for a connected urban and suburban setting focusing on emerging large
cities such as Addis Ababa (AA). Furthermore, the authors found that a single method
was not sufficient to explore all essential driving features and behaviours in the regional
driving profile. Therefore, the aim of this study was to assess country-specific low-energy
consumption BEV DC based on Global Positioning System (GPS)-recorded real-time data
from AA and its suburban (AASU) routes. This article proposes a new construction method
that combines micro trip random selection-to-rebuild with behaviour split (RSBS) to synthe-
sise an AASU representative DC. Thereafter, using the same data and k-means clustering
method, another cycle was synthesised to compare its effectiveness and representativeness
for regional data.

This approach can be used for both city and suburb driving cycles, considering driver
behaviour to minimize energy consumption and increase the range of battery electric vehicles.

2. Materials and Methods
2.1. Route Selection

Routes were selected so as to represent typical driving patterns observed in the study
area, considering home-to-work trips, population differences, and road classifications [26].

Accordingly, the inner city routes covering all types of routes and trip segments and
extending to all five neighbouring towns were selected, marked in yellow in Figure 1a.
The inner city road network is shown in Figure 1b. The longest route, which also features
an expressway, stretches from AA to Bishoftu. Overall, this route is 59.8 km long and is
comprised of a 19.8 km expressway, a 15.9 km suburban ring road and a 4.8 km feeder
road, while the remaining 10.6 km and 8.7 km are the AA and Bishoftu inner city routes,
respectively. City express bus manufactured by Yutong, China and passenger car of Toyota,
Japan that were instrumented with GPS tracker of Itrack, India were used to collect data.

2.2. Data Collection and Processing

Initially, the driving profile data files were recorded by GPS at a frequency of 0.1 Hz
using six vehicles, three from each passenger and city bus category. The collected raw
data were filtered and denoised to minimise errors and to obtain smooth data and then
concatenated into a unified dataset using MATLAB code, as shown in Figure 2a. Initially,
a car speed below 1 m/s was changed to 0 m/s as its real applicability was insignificant,
while speeds above 120 km/h were adjusted to the allowable maximum speed limit of
120 km/h. Next, data corresponding to the dwell time where vehicles stopped for a
duration of more than 180 s were removed. Higher acceleration values due to a GPS error
and sudden peaking speed were considered outliers. A void in speed values and alternating
zero speed values may be recorded due to a GPS sensor defect or by being blocked by tall
buildings [11,27]. The outliers of void and false data were treated using shape-preserving
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cubic interpolation, followed by the Bayes wavelet signal denoising method to smooth and
transform to 1 Hz.
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Finally, processed data equivalent to an approximate distance of 1390.47 km were
determined for use in DC development methods, as shown in Figure 2b. Table 1 summarises
the processed data, where zero drift and void are only 0.5% and 0.11%, respectively. A
total of 8.18% of data was removed due to the long dwell time. The speed-acceleration
distribution of the filtered and unified dataset can be seen in Figure 3.
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Table 1. Unified dataset before and after filtration process.

Data Type Total Number of Data Percentage of Data (%)

Raw data 179,894 100.00
Long dwell 14,724 8.18
Zero drift 900 0.50
False zero 200 0.11
Removed 15,824 8.80
Filtered 164,070 91.20
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2.3. Driving Feature Definition and Pattern Characterisation

Numerous studies have proposed different calculated parameters related to speed-
acceleration distribution and time proportion in order to define driving features. They are
categorised as level, distribution, and oscillatory measures.

However, there is no clear evidence of relevant parameters to predict the power and
energy demand of a BEV. In this study, the 12 most prominent features with more variability
and less of a relationship between them were selected after box plot statistical correlation
analysis had been performed on 17 feature parameters presented in Table 2.

Table 2. Driving features used to characterise Addis Ababa and its suburban driving pattern.

No. Feature Category Driving Features Symbol

1

Level measures

Average speed (km/h) Vave
2 Maximum speed (km/h) Vmax
3 Average running speed (km/h) Vrave
4 Average acceleration (m/s2) aave
5 Maximum acceleration (m/s2) amax
6 Average deceleration (m/s2) dave
7 Maximum deceleration (m/s2) dmax
8 Total duration (s) Ttot
9 Approximated distance (km) Dlng
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Table 2. Cont.

No. Feature Category Driving Features Symbol

10

Oscillatory measures

Relative positive acceleration (m/s2) RPA
11 Positive aggressiveness index (m2/s3) PAI
12 Relative negative acceleration (m/s2) RNA
13 Negative aggressiveness index (m2/s3) NAI

14

Distribution measures

Time percentage of idling (%) Tidle
15 Time percentage of cruising (%) Tcruz
16 Time percentage of acceleration (%) Taccel
17 Time percentage of deceleration (%) Tdecel

When characterising driving patterns, the impact of driving behaviour, mainly as a
result of the driver’s driving style, must be included [28]. Although it is difficult to measure
driving behaviour, there is a high correlation between driving style and acceleration-related
feature parameters. Hence, acceleration-related features, including aave, dave PAI, NAI,
RPA and RNA, were analysed to define different driving behaviours to characterise the
driving pattern. RPA and RNA were considered principal components since they have a
high correlation with the BEV energy consumption rate and the regenerative potential of
braking kinetic energy per range, respectively [2,29,30]. RPA and RNA are defined as [31]

RPA =
∫

v(t) a(t)+/
∫

v(t)dt (1)

RNA =
∫

v(t) a(t)−/
∫

v(t)dt (2)

where V(t) is speed; a(t)+ is positive acceleration; a(t)− is negative acceleration, and dt is
the change in time.

2.4. Trip and Micro Trip Division

A trip cycle here covers the driving profile from the dispatching centre to the des-
tination without a prolonged stop duration. For AA intercity and feeder routes, the
segmentation of trips was based on a long stop of more than 1200 s. However, a trip on
the ring road and expressways was extracted by matching the Google Maps location with
data points. Trip data points established from the criteria set to define kinematic modes,
as shown in Table 3, were used to remove outliers. Thereafter, the 490 trips found were
categorized into three speed phases (low/medium/high) based on a speed threshold of
(40/80) [32]. The Addis Ababa and its suburbs route showed the majority of the distance
travel at a vehicle speed of 1–40 km/h along 740.68 km (53.3%) and travel in 101,994 s with
69.94% to the whole trips. The lowest distance travel in the medium speed category was
41–80 km/h with only 249.86 km (17.97%) to whole distances travel and taking 26,227 s
in the duration of travel (17.99%). The high-speed trips at 81–120 km/h with medium
distances of travel at 399.93 km (28.75%) contributed the least, about 17,485 s, which is
12.01% of the whole travel time.

Similarly, filtered and smooth data were classified into micro trip (MT) and stop bins
based on criteria set to remove unrealistic values, and there were 4463 MT and 3236 stop
data bins. Statistical models were built to obtain an idea of how the different parameters of
trip cycles and MTs behaved and what their distribution was.
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Table 3. Criteria set to define kinematic mode trip cycles and micro trips.

Kinematic Mode Speed (V) Acceleration (a) Duration (T) Distance (D)

Stop mode V < 1 m/s >−0.15 m/s2 and <0.15 m/s2 Tidle 0
Acceleration V > 1 m/s >0.15 m/s2 and <4.5 m/s2 Tcruz Dcruz

Cruising V > 1 m/s >−0.15 m/s2 and <0.15 m/s2 Taccel Daccel
Deceleration V > 1 m/s <−0.15 m/s2 and >−4.5 m/s2 Tdecel Ddecel

2.5. Development Methods of Driving Cycle
2.5.1. Random Selection-to-Rebuild with Behaviour Split (RSBS)

A new approach was devised to utilise the suitability of random selection for het-
erogeneous traffic conditions, such as AASU routes [29], and to characterise the driving
behaviour split based on acceleration-related features, focusing on the assessment of their
influence on demand power intensity and energy consumption.

The length of the total duration of the candidate cycle for AASU routes was set based
on the statistical results of trip cycles, whereas phase durations for each of the three speeds
were calculated proportionate to the collected data. The results are presented in Table 4.

Table 4. Characteristic distribution for short trips and stops of the three-speed phases.

Profile Characteristics Low Medium High

Traffic speed limit (km/h) 30–40 60–80 100–120
Real data proportion (%) 70 18 12

Phase duration (s) 924 238 159
Average short trip duration (s) 64 251 131

Average stop duration (s) 11 5 5
Short trips 10 1 1

Stops 11 2 2

Equations (3) and (4) used in the synthesis of WLTC were adapted to determine the
optimum number of short trips (ST) for each speed phase. Thus, ten (10) STs were obtained
with corresponding eleven (11) stops for the low-speed phase and single but relatively
longer trips for the medium and high-speed phases. A separate statistical analysis was per-
formed to assign the first ST and chaining sequence of each. Then, driving behaviour was
split based on the position of the average score on a quartile graph obtained from cumula-
tive diagram functions (CDF) of acceleration-related features [33]. The combination of short
trips (STs) was made from each mild and aggressive acceleration and braking behaviour.

NST = TSP − TAS/TAST − TAS (3)

NS = NST + 1 (4)

where NST and NS are the numbers of short trips and stops, and TSP, TAST, and TAS are
the durations of speed phase, average short trip, and average stop, respectively. After
combining STs, the candidate cycle with the smallest chi-squared values of RPA and RNA
were selected from each behaviour. Finally, the combination cycle consisting of each
behaviour in proportion to the percentile score distribution was synthesised as a candidate
cycle for the AASU driving profile.

2.5.2. K-Means Clustering Method

Here, the k-means clustering approach was implemented to group the samples with
data similarity without a given classification category. Initially, the features were scaled
to the same range before applying a dimensionality reduction by PCA. Dimensionality
reduction was performed by employing principal component analysis (PCA) to avoid
crowding and visualise the results more effectively. Then, eigenvectors and eigenvalues of
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the exposed covariance matrix were calculated, which helped to select the most essential
initial features based on the variability being prioritised. The quality and representativeness
assessed through the variance were explained using a Pareto graph.

Finally, MTs were grouped by k-means clustering, which calculated the distance
between data points to find the closest ones based on their driving features. Prior to
clustering, the silhouette coefficient employed and cluster quality were evaluated to find
the ideal number of clusters that best fit the data set. A representative number of MTs
was selected from each cluster based on their closeness to the cluster centres until a cycle
duration of 1320 s cycle was achieved. The duration distribution for each cluster was
calculated in proportion to the data count as follows [22]:

TMTC(i) = (TC(i) / TDC)TMT (5)

where TMTC(i) is the duration of MT from the ith cluster; TC(i) is the duration of the ith
cluster; TMT is the total duration of MTs clustered, and TDC is the total duration of the
candidate DC.

3. Results and Discussion
3.1. Results of Statistical Analysis
3.1.1. Real-Data Trip Features

The analysis of trip distances is shown in Figure 4a and recorded an average value
of 7.28 km, with the highest frequency in the range of 3–4.5 km. Furthermore, 80% of
the trip distances covered less than 9.83 km in CDF. It should be noted that the driven
distance of a candidate DC was found to be in a range of 4 km to 15 km but must be near
the established CDF value. Regarding trip duration, 25% recorded the highest frequency
with a duration of about 750 s (12.5 min). Additionally, the third quartile, as indicated in
Figure 4b, was located at 1358 s (22.63 min). Hence, the representative driving cycle should
be close to the third quartile, while the duration was adjusted to 1320 s (22 min) to minimise
the computational burden.
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A significant difference of 46% was noted between the average speeds (w/o stop)
and average driving speeds (w/stop) in the low-speed phase compared with 8% in the
high-speed phase, as shown in Figure 5a,b. This indicates that the influence of stop time on
average vehicle speed was based on the percentage of stop time.
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Figure 5. Comparison of driving speeds.

After analysing the CFD of all ten (10) short trips in the low-speed phase, it was found
that more than 80% primarily coincided with 64 s (see Figure 6b) heighted in blue (left),
and a high frequency (55%) occurred below 20 s (see Figure 6a,b). Hence, the fifth MT, with
an average speed of 18 km/h and lasting 64 s, was found to be the best fit with real data
and was selected to be the first MT of the low-speed phase. A stop duration between MTs
would be steady sampling, and to address the smooth transition, it was decided that the
average stop duration of the trip cycle would be 11 s.
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3.1.2. Driving Behaviour Split

Figure 7a,b illustrate the distribution of acceleration-related principal components
used for acceleration and braking behaviour splitting.
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Figure 7. Acceleration and deceleration distribution of low, medium, and high-speed trip cycles.

High-speed phases have a low APA, RPA and time idling but a long distance. A
medium APA, high RPA, medium distances, and medium stop time represent the medium-
speed phase. Finally, the low-speed phase was found to have a high APA, medium RPA,
high stop time and shorter distances.

Different CDFs for positive and negative acceleration features were obtained, as shown
in Figure 8a, and driving behaviours were identified by dividing the average position of
each MT on the CDF graph of the 0–1st quartile, 1st–3rd quartile, and 3rd–4th quartile.
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The driving behaviour with an average a+ < 0.5 m/s2 was identified as mild and
with a+ > 2 m/s2 as aggressive, with behaviour between the two being average [21]. As
shown in Figure 8b, the driving behaviour of the 0–1st quartile scored 40% is mild, the
1st–3rd quartile scored only 40% is average, and the 3rd–4th scored 20% is aggressive.
Consequently, only 40% of MTs, rather than half, were considered to be the average drivers
identified by moderate braking. Hence, a representative AASU DC must be constructed by
incorporating 40% mild, 40% moderate, and 20% aggressive behaviours in both ascending
and descending speed profiles.
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3.2. Drive Cycle Synthesised by the RSBS Method

The speed-acceleration distribution of the synthesised four cycles (i.e., mild, aggressive
driving, aggressive braking, and combined) are presented in Figures 9 and 10.
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Figure 10. Speed-acceleration of the DC by the RSBS method for aggressive and combined behaviours.

After behaviour division, the speed difference between mild and aggressive was
considerably lower, but a remarkably high variation existed between accelerations in the
two behaviours. This variation was lower for the low phase and higher for the high phase.
Hence, it could be concluded that as the speed increased, the gap between quartile one and
quartile three decreased for both positive and negative accelerations.

For mild cycles (see Figure 9), a low variation in acceleration was found among
different driving profiles (−3.75%) with an increase in driving speed, but for aggressive
driving, the variation was higher (−22.5%). Although behaviour splitting has a significant
influence on urban cycles, a considerable dispersion in acceleration-related features was
found in the medium and high-speed segments.
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3.3. Drive Cycle Synthesised by the k-Means Method

The Pareto graph in Figure 11a indicates that only five (5) principal components (PCs)
achieved the explained variability of 99.8% rather than the twelve (12) PCs implemented.
The variance explained by the first, second, and third PCs was 40%, 22.6%, and 19.4%,
respectively, and the total variance explained by the employment of the first three PCs was
correct since they represented about 82.01% of the data set variability.
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Figure 11. Contribution and influence of driving features on PCs and their variance explained.

The two-dimensional bi-plot presented in Figure 11b shows the contribution and
influence of the driving features on the first two PCs. The highest variability was found
in speed-related features, distance, and time percentage of the stop because they were the
main contributors to the variance explained by the first PC. Acceleration-related features,
including APA, ANA, RPA, RNA, PKE, and NKE, mainly influenced the second compo-
nent. The third component was mainly affected by the stop and time proportion of each
kinematic mode.

The three PCs were grouped by k-means into the optimum number of six clusters, as
shown in Figure 12b with the higher silhouette value of 0.78, and uniform width obtained
when compared with the 0.74 silhouette values and non-uniform widths of five clusters
shown in Figure 12a. Short trips were then selected from all the clusters based on their
closeness to the cluster centres until a total duration of 1320 s was obtained.
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3.4. Characteristic Distribution of Synthesised Drive Cycles and Real Dataset

Relative, mean relative, and root mean square errors of speed and acceleration-related
features between candidate DCs and the entire dataset were calculated. The difference
between the speed distributions of the real data from DCs by the RSBS and k-means
methods were compared and are shown in Figure 13a,b, respectively.
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The energy consumed by a 1200 kg mid-size car to negotiate the road load was cal-
culated from the candidate AASU DC among different behaviours for comparison. In Fig-
ure 14a, the area under the curve of the aggressive cycle peaked higher at 3.34 kWh at a 
greater speed compared with the mild cycle’s 3 kWh. Figure 14b shows energy consump-
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Figure 13. Comparison of speed distribution between real data and DCs of RSBS and k-means.

The average difference in RSBS DC from real data was found to be lower (2%) than that
of the higher (5%) k-means DC. Other statistical properties are compared in Table 5, which
indicates that there was a significant distortion in the statistical distribution of k-means
DC from the original data set. However, the relative error between RSBS DC and real
data was the lowest, and this was selected as the best representative BEV DC suitable for
AASU routes.

Table 5. Essential characteristics of RSBS, k-means, WLTC-2 DCs, and real data.

Drive
Cycles

Cycle
Phase

Duration
(s)

V w/o Stops
(km/h)

V w/Stops
(km/h)

aave
(m/s2)

dave
(m/s2)

D
(km)

RPA
(m/s2)

RNA
(m/s2)

RSBS
Low 882 19.8 17.6 0.43 −0.46 4.196 0.185 −0.22

Medium 255 56.1 53.7 0.625 −0.705 2.942 0.5 −0.66
High 183 81.4 73.9 0.45 −0.61 2.835 0.29 −0.32

k-means
Low 950 18.9 16.7 0.645 −0.645 4.42 0.43 0.40

Medium 240 40.4 36.4 0.54 −0.705 2.43 0.56 0.65
High 132 85.4 82.1 0.625 −0.621 3.01 0.72 0.91

Real data
Low 101,994 21.30 14.7 0.44 −0.36 400. 0.34 −0.29

Medium 26,227 59.75 33.4 0.54 −0.74 249.9 0.63 −0.62
High 17,485 94.9 78.1 0.39 −0.42 740.7 0.45 −0.36

WLTC−2
Low 589 26.0 51.4 0.92 −1.07 3.132 0.244 0.2112

Medium 433 44.1 74.7 0.96 −0.99 4.712 0.629 0.2489
High 455 57.8 85.2 0.85 −1.11 6.820 0.962 0.1994

3.5. Comparison of Energy Consumption between Standard and AASU Candidate DCs

In a typical DC, the tractive effort provided by a vehicle’s power/energy source must
overcome all road loads, including aerodynamic, rolling, gravitational, and acceleration
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resistance expressed. Estimation of the on-board energy storage system for BEV was
averaged cumulative energy as a function of driving speed over the interval dt:

ETotal =

tf∫
0

Ftrav(t)dt =

tf∫
0

P(t)dt (6)

The energy consumed by a 1200 kg mid-size car to negotiate the road load was
calculated from the candidate AASU DC among different behaviours for comparison. In
Figure 14a, the area under the curve of the aggressive cycle peaked higher at 3.34 kWh at a
greater speed compared with the mild cycle’s 3 kWh. Figure 14b shows energy consumption
per 100 km. High consumption at high speeds was due to the coupled effect of high speed
with high acceleration, which has a considerable correlation with energy consumption.
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WLTC-2 has the highest maximum acceleration of all cycles, which was thought to be 

Figure 14. Comparison of energy consumption for different driving behaviours of AASU.

Figure 15a,b shows a comparison of the effect of braking behaviour division on
regenerative potential with coast and panic braking. More braking kinetic energy of
1.65 kWh (21.2%) was wasted by aggressive drivers than the 1.3 kWh wasted by coast
drivers. Studies have indicated that the regeneration potential with current advances was
only 8% of energy for aggressive drivers and up to 25% for coast drivers [34].
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Accordingly, the regenerated energy can extend the range per single charge of BEV by
10.8% and 3.9% for the coast and aggressive drivers, respectively. Hence, splitting behaviour
and ignoring braking mode will result in a significant error in net energy consumption
estimation and battery size due to the distortion in characteristics of DC synthesised from
that of a real driving scenario.

Finally, the averaged RSBS DC was compared with k-means, WLTC-2, and UDDS
cycles [2]. The standard cycles were selected based on the equivalence in total duration
of WLTC-2 1477 s and UDDS 1400 s, method of construction, and data representative-
ness. WLTC-2 has the highest maximum acceleration of all cycles, which was thought
to be more realistic. The maximum acceleration of UDDS was lower compared with the
transient cycles.

The cumulative energy consumption rate and consumption per 100 km by RSBS, k-
means, WLTC-2, and UDDS DC were calculated, and the results are shown in Figure 16a,b.
Less energy was consumed by RSBS DC than by the WLTC-2 and UDDS cycles at a wide
operating range, except at peak velocity.
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Figure 16. Comparison of energy consumption between WLTC-2, UDDS, and AASU candidate DCs
by RSBS and k-means.

A significant difference was found with a low overall net consumption per 100 km
range of 22.5 kWh compared with 24.25 kWh and 26.34 kWh of WLTC2 and UDDS net
consumptions, respectively. Net consumption by RSBS and k-means DC was comparable
at low speeds; however, at higher speeds, the k-mean consumed less due to the average
low acceleration dispersion.

For the high-speed expressway, part of the RSBS DC, a distinct operating point could
be found at 120 km/h, where more energy was consumed and power was demanded (see
Figure 17). However, this was because the higher drag force was not related to driving
behaviour. Although the consumption was high for high speed, the proportion of the route
segment was only 10% compared with 70% for urban and 20% for suburban routes, and
the influence on net energy demand per range was insignificant. WLTC-2 demanded high
power in the urban DC due to the maximum speed coupled with aggressive acceleration
within a short driving range, whereas UDDS required moderate power in a representative
rural section, except in an aggressive single trip.
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4. Conclusions

In this work, GPS data from highways in Addis Ababa and its suburbs were used
to build a minimum energy consumption BEV DC. Two techniques were employed to
synthesise the DC, k-means and RSBS.

First, RSBS DC with a minimum error of 2% was chosen after assessing the statistical
distribution and representativeness against real data. This was because k-means revealed a
considerable distortion with a 5% error. It was discovered through behaviour splitting that
drivers who exhibit aggression tend to use more energy due to their frequent panic stops
and subsequent accelerations.

When in braking mode, coasters can increase regeneration efficiency by up to 25%.
They can extend the range by 18.9%, while aggressive drivers can only achieve 3.9%. Lastly,
a comparison of averaged AASU and conventional cycles’ power and energy consumption
was made. For the Addis Ababa driving cycle, a notable decrease in energy estimation
of 14.57% from UDDS and 8.9% from WLTC-2 was attained. This study’s DC effectively
captures Addis Ababa’s and its suburb’s driving profile, and it may be used to calculate
the energy consumption of other emerging large cities and vehicle types.

Moreover, this study’s conclusion may be applicable to the grid of power as well as
the economic and lifetime analysis of BEVs. It is advised that in the future, driving and
road slope profiles be combined in a parallel simulation to help provide a more precise
estimate of energy use.
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