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Abstract: Given the influence of the randomness of driving conditions on the energy management
strategy of vehicles, deep reinforcement learning considering driving conditions prediction was
proposed. A working condition prediction model based on the BP neural network was established,
and the correction coefficient of vehicle demand torque was determined according to the working
condition prediction results. An energy management strategy and deep reinforcement learning
were integrated to build an energy management strategy with deep reinforcement learning based
on driving condition prediction. Simulation experiments were conducted according to the actual
collected working condition data. The experimental results show that the energy management
strategy, i.e., deep reinforcement learning considering working condition prediction, has faster
convergence speed and more vital self-learning ability, and the equivalent fuel consumption per
100 km under different driving conditions is 6.411 L/100 km, 6.327 L/100 km, and 6.388 L/100 km,
respectively. Compared with the unimproved strategy, the fuel economy can be improved by 3.18%,
3.08%, and 2.83%. The research shows that the energy management strategy, the deep reinforcement
learning based on driving condition prediction, is effective and adaptive.

Keywords: index hybrid commercial vehicle; energy management strategy; deep reinforcement
learning; working condition prediction

1. Introduction

The power system of a hybrid electric vehicle is composed of multiple power sources,
and the power distribution of different power sources is realized through an energy man-
agement strategy to improve the vehicle’s fuel economy and driving range. As one of the
crucial technologies of hybrid electric vehicles, the vehicle control strategy primarily solves
plug-in hybrid electric vehicles’ energy management and torque distribution. It can be
divided into a control strategy based on base rules, a control strategy based on optimization
class, and a control strategy based on learning.

The rule-based control strategy can also be called the logic threshold-based control
strategy, and its core idea is to ensure that the engine works in the high-efficiency zone.
When the engine load is small, the machine stops, and the motor is driven separately;
when the engine load is moderate, the engine works in the high-efficiency area, and the
engine starts to charge or go; when the engine load is large, the motor can assist so that
the machine only works in the high-efficiency area. This control strategy allows the engine
to provide steady-state power and the motor to provide transient ability to improve the
vehicle’s fuel economy. This type of control strategy is simple, reliable, and practical. Ping
Li et al. [1] used particle swarm optimization (PSO) to optimize the threshold parameters
of the rule-based energy management strategy. To improve the adaptability of the control
strategy, multiple historical driving cycles are used to optimize the parameters, resulting in
a rule-based energy management control strategy that adapts to unknown driving cycles.
Abdoulaye Pam [2] et al. used DP to determine the ideal energy efficiency of the studied
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vehicle in a given driving cycle. A rule-based EMS algorithm can be derived by analyzing
the DP-EMS results. Charbel J Mansour [3] proposed a strategy optimization method, a
rule-based energy management method which takes dynamic programming as the global
optimization program to realize the real-time implementation of the energy management
strategy of the Prius plug-in hybrid electric vehicle. The optimization process considers
the ideal travel the driver selects on the vehicle-mounted global positioning system and is
associated with the traffic management system. The control strategy based on rule class is
widely used in engineering because of the small amount of calculation required and its fast
calculation speed. However, it relies too much on formulation experience and needs better
portability; it is challenging to achieve optimal control of vehicle power in application.

The operation of the rule-based control strategy is independent of the working condi-
tions. Although it can improve the vehicle’s fuel economy to a certain extent, the results
could be more optimal. According to the optimization objectives, the optimization con-
trol strategy can be divided into instantaneous and global optimization control strategies.
Mansour C [4] et al. proposed a simple adaptive rule strategy based on short-term driving
pattern recognition and dynamic programming global optimization program. Mingming
Gao et al. [5] proposed an extended-range electric bus energy management strategy based
on a convex optimization algorithm, which can be better applied to the REEB energy man-
agement system to meet the requirements of the power system. The Radau pseudo spectral
knot method (RPKM) is proposed by Kegang Zhao [6] to solve the energy management
strategy of series-parallel plug-in hybrid electric vehicles based on global optimization
to improve computational efficiency. Jian Wu et al. [7] used PSO combined with various
driving conditions to optimize the logic threshold parameters of a rule-based energy man-
agement strategy with the vehicle dynamic performance index as the constraint condition
and the equivalent fuel consumption rate as the optimization objective.

With big data and computer technology development, machine learning is widely
used in vehicle energy management strategies. The learning-based control strategy does not
depend on the ‘expert experience’ and the digital model calculation of the controlled object.
However, it uses advanced data mining methods and historical/real-time empirical data to
obtain prediction results or control strategies. With the help of intelligent algorithms, the
state space continuity and state action space continuity of energy management problems
are realized, and the discretization problems in the optimization of the DP algorithm are
avoided [8–12]. Tawfiq M. Aljohani et al. [13] proposed a real-time, metadata-driven electric
vehicle path optimization method to reduce road energy demand. The strategy uses the
state-behavior-reward-state-behavior (SARSA) algorithm to learn the maximum travel
strategy of electric vehicles as agents. Weihan Li et al. [14] proposed a multi-objective
energy management strategy based on cloud-based hybrid architecture. This strategy
has a deep deterministic policy gradient, which can improve the system’s electrical and
thermal safety and minimize the system’s energy loss and aging cost. Weihan Li et al. [15]
designed a new reward to explore the optimal working range of high-power battery packs
without imposing strict charging state constraints. In the training of deep q-learning models,
different load curves are randomly combined to avoid over-fitting problems.

Yue S et al. [16] solved the vehicle energy management problem of compound power
supply using the sequential difference method. Li Wei et al. [17], from the University
of Chinese Academy of Sciences, added the battery life factor into the reward function
of the deep reinforcement learning algorithm (DRL) to extend the battery life and verify
their strategy’s adaptability to working conditions in simulation verification. Tang Xiaolin
et al. [18] from Chongqing University used the deep value network algorithm to complete
the upper-level tracking control and the lower-level energy management, thus improving
the fuel economy of the two vehicles. Zhao Chunling et al. [19], from Chongqing Jiaotong
University, applied the DRL algorithm to the energy allocation problem of PHEVs, which
not only reduces pollutant emission of diesel engines but also greatly improves the fuel
economy of the whole vehicle. Zhang Song et al. [20] took hybrid electric buses as the
research object, applied DDQN and TD3 algorithms to vehicle energy management, and
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adopted priority empirical playback to optimize the strategy, proving the effectiveness of
the strategy.

In actual road driving, the energy management strategy under different working
conditions is easily affected by random factors, and it is difficult to achieve a real-time
optimal energy management strategy. To solve this problem, this paper first predicts the
driving conditions, determines the correction factor of the demand torque distribution
based on the prediction results, and corrects the actual demand torque of the vehicle.
Finally, the energy management strategy based on TD3 is designed to complete the design
and development of an energy management strategy based on condition prediction.

2. Vehicle Power System Construction

As shown in Figure 1, the research object of this paper is the P2 configuration parallel
hybrid commercial vehicle produced by a company. The main difference between the P2
configuration and other configurations is that a clutch controls the front and rear sides of
the motor, so both the motor and the engine can drive the car independently.
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Figure 1. The research object of this study.

Figure 2 shows the structure of the vehicle power system, and its main components are
shown successively as follows: diesel engine, motor, power battery pack, clutch, five-speed
transmission vehicle controller VCU, etc. The main parameters are shown in Table 1.
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Table 1. Basic parameters of the vehicle and key components.

Category Basic Parameter Numerical Value

Vehicle parameters Quality of preparation/(kg) 2670
Rolling damping coefficient 0.0132
Wind resistance coefficient 0.55

Wheelbase (mm) 3360
Rolling radius (mm) 369

Engine Rated power/(kW) 120
Calibrated speed/(r/min) 4200
Maximum torque/(N·m) 320

Motor Rated power/(kW) 25
Peak power/(kW) 50

Maximum torque/(N·m) 120
Power cell Rated capacity/(Ah) 15

Rated voltage/(V) 330
Main reducer Transmission ratio 4.33

The experimental modeling method is adopted to model the engine. This paper focuses
on the energy management of hybrid commercial vehicles, so the engine model is simplified
without considering the instantaneous corresponding characteristics of the system.

The corresponding data, such as torque and speed, were obtained through bench exper-
iments, and the fuel consumption experimental model was obtained using the interpolation
Formula (1). The fuel consumption figure is shown in Figure 3.{

ge = fe(ωe, Te)

m f =
∫ t

0 fe(ωe, Te)dt
(1)

World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 4 of 14 
 

Table 1. Basic parameters of the vehicle and key components. 

Category Basic Parameter Numerical Value 
Vehicle parameters Quality of preparation /(kg) 2670 

 Rolling damping coefficient 0.0132 
 Wind resistance coefficient 0.55 
 Wheelbase (mm) 3360 
 Rolling radius (mm) 369 

Engine Rated power /(kW) 120 
 Calibrated speed /(r/min) 4200 
 Maximum torque /(N·m) 320 

Motor Rated power /(kW) 25 
 Peak power /(kW) 50 
 Maximum torque /(N·m) 120 

Power cell Rated capacity /(Ah) 15 
 Rated voltage /(V) 330 

Main reducer Transmission ratio 4.33 

The experimental modeling method is adopted to model the engine. This paper fo-
cuses on the energy management of hybrid commercial vehicles, so the engine model is 
simplified without considering the instantaneous corresponding characteristics of the sys-
tem. 

The corresponding data, such as torque and speed, were obtained through bench ex-
periments, and the fuel consumption experimental model was obtained using the inter-
polation Formula (1). The fuel consumption figure is shown in Figure 3. 𝑔 = 𝑓 (𝜔 , 𝑇 )𝑚 = 𝑓 (𝜔 , 𝑇 )𝑑𝑡 (1)

 
Figure 3. Engine fuel consumption MAP. 

This paper still adopts the method of experimental modeling, does not consider the 
internal operation mechanism, and only believes the input and output relationship in 
building the motor model. By testing the driving motor at different speeds and torque 
points on the experimental bench, parameters such as speed, torque, and current at the 
shaft end of the driving motor were recorded, and the motor efficiency (ratio of motor 
output power to input power) MAP was established, as shown in Figure 4. 

Figure 3. Engine fuel consumption MAP.

This paper still adopts the method of experimental modeling, does not consider the
internal operation mechanism, and only believes the input and output relationship in
building the motor model. By testing the driving motor at different speeds and torque
points on the experimental bench, parameters such as speed, torque, and current at the
shaft end of the driving motor were recorded, and the motor efficiency (ratio of motor
output power to input power) MAP was established, as shown in Figure 4.
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3. Introduction to Deep Reinforcement Learning

Deep learning originated from the research of artificial neural networks (ANNs).
The mathematical model of ANNs is made of layers of neurons. ANNs are distributed
parallel information processing algorithms that are used to simulate the behavior of animal
neurons. Depending on the system’s complexity, ANNs realize the purpose of processing
information by adjusting the interconnection between large internal nodes. The so-called
deep learning is the neural network composed of multilayer neurons to approximate
the function of machine learning. The structure of deep understanding is a multilayer
perceptron with multiple hidden layers. By combining low-level features to form more
abstract high-level representations of attribute categories or segments, deep learning can
discover the distributed characteristics of data [21].

The goal of reinforcement learning is to find the optimal strategy through trial-and-
error learning between the agent and the environment to maximize the expectation of
cumulative returns.

A reinforcement learning problem involves a decision-maker, the agent, operating
in an environment modeled by states ∈S. The agent can take specific actions at ∈A as a
function of the current state. After choosing an action at time t, the agent receives a scalar
reward ∈R and finds itself in a new state that depends on the current state. The chosen
action reinforcement learning problem consists of a decision-maker, the agent, operating
in an environment modeled by states ∈S. The agent can take specific actions at ∈ A as
a function of the current state. After choosing an action at time t, the agent receives a
scalar reward ∈R and finds itself in a new state that depends on the current and chosen
actions [22].

At each time step, the agent follows a strategy, called the policy πt, which is a mapping
from states to the probability of selecting each possible action: π(s, a) denotes the probability
that a = at if s = st.

The objective of reinforcement learning is to use the interactions of the agent with its
environment to derive (or approximate) an optimal policy to maximize the total amount of
reward received by the agent over the long run [23].

DRL combines the two disciplines of deep learning and reinforcement learning and
uses the perceptual advantages of deep learning and the decision-making advantages of
reinforcement learning to solve complex control problems belonging to MDP.

DRL combines deep learning and reinforcement learning to form a deep Q-learning
network. Deep learning provides learning mechanisms, and reinforcement learning pro-
vides learning objectives for deep learning, making deep reinforcement learning capable of
solving complex control problems [24].
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4. Twin Delayed Deep Deterministic Policy Gradient Algorithm
4.1. Twin Delayed Deep Deterministic Policy Gradient Algorithm

DRL is divided into three main categories: value function-based, policy gradient-
based, and search and supervision-based. The algorithm based on the value function uses
the value table or value function to estimate the optimal value function reasonably to
select the action with the largest value; this method is often applied to discontinuous and
discrete environments, and for the large set and continuous action scene, this method is
prone to problems such as dimensional catastrophe, and the results of the training are poor.
The representative algorithms are Q-learning, DQN. Policy gradient-based algorithms are
trained and learn to maximize the reward value of the objective function of the resulting
policy to obtain the optimal policy; this algorithm has a better optimization effect compared
with the algorithm based on the value function, but it is prone to problems such as local
extremes, and the representative algorithms are DDPG. The algorithms based on searching
and supervising are the algorithms that add artificial supervision when searching for
a strategy to accelerate the learning process and achieve better results. In this paper,
the improved TD3 algorithm is applied to energy management strategy development,
which is improved based on DDPG and combines the advantages of DDQN and DDPG
algorithms [23].

For the DRL algorithm, the twin delayed deep deterministic policy gradient algorithm,
the TD3 algorithm, is an improved off-policy deep reinforcement learning algorithm for
solving continuous control problems. In essence, the TD3 algorithm integrates the idea of
the double Q-learning algorithm into the DDPG algorithm, combines both advantages, and
uses delay strategy update and smooth regularization of the target strategy. In the face of
complex continuous action space, it can implement efficient output action and effectively
solve the overestimation of the Q value.

The TD3 algorithm adopts two critic networks to evaluate the output action-value
function and then selects the minimum values of both to update the target Q value, as
shown in Equation (2):

y = rt+1 + γ·Q(st+1, at+1). (2)

For network update mode, the TD3 algorithm also adopts soft update mode to update
target network parameters, as shown in Formula (3):

ω∗ ← τω + (1− τ)ω∗

θ∗1 ← τθ1 + (1− τ)θ∗1

θ∗2 ← τθ2 + (1− τ)θ∗2 .

(3)

When training the algorithm, by increasing the ways to improve the algorithm of
random noise and robustness, ~clip(N(0, σ), −c,c), c > 0, and

∼
a t+1 = µ∗(st+1) = µ

(
st+1

∣∣ω∗t+1
)
+ ε. (4)

The loss function of the TD3 algorithm is defined as the error square of the above, as
shown in Equation (5):

L(θi) = E
[
(yt −Q(st, at|θi))

2
]
. (5)

In the algorithm design, to avoid the correlation between samples, the experience
pool playback method is adopted to store the experience data in the experience pool.
When selecting samples for network training, the sample is randomly selected to break the
correlation between samples and ensure the efficiency of network updating.

The key technology in DRL is the deep neural network to fit the Q value function,
whose structure consists of an input, hidden, and output layer. The input layer is composed
of states and actions. The selection of hidden layers and neurons in this layer is obtained
via trial and error. After many tests, it is concluded that the number of hidden layers is
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3, and the number of neurons in each layer is 30, 120, and 120. The relay function is used
to activate between hidden layers. As shown in (6), the activation from the hidden layer
to the output layer adopts the Tanh function, as shown in (7), and the output layer is the
value function.

h(t) =
{

t, t > 0
0, t < 0

(6)

tanh(x) =
ex − e−x

ex + e−x (7)

4.2. Key Parameter Selection

In the construction of an energy management strategy for hybrid commercial vehicles
based on a deep reinforcement learning algorithm, the vehicle controller is regarded as
an agent, the power system and driving conditions as the environment, and the ultimate
purpose of the controller is to find the optimal control strategy.

In hybrid commercial vehicles based on deep reinforcement learning algorithms,
the vehicle controller is regarded as an agent, the power system and driving conditions
as the environment, and the ultimate purpose of the controller is to find the optimal
control strategy.

The key parameters such as system state, action space, and reward signal are set
as follows.

State variables: For energy management of PHEVs, the system state reflects the
vehicle’s characteristics while on the road. In this paper, the normalized acceleration (a),
state of charge (SOC), demand torque (Tereq), and vehicle speed (V) are taken as the state
variables of the algorithm. The formula can express its state space:

S(t) = [a(t), SOC(t), Tet(t), V(t)]. (8)

Action variable: The engine output torque Teice is taken as the action variable of
the algorithm:

U(t) = Teice(t). (9)

Reward function: The reward function of the strategy affects the algorithm’s conver-
gence. In this paper, the SOC value will be taken as the constraint condition, and vehicle
pollutant emission, fuel consumption, and power consumption will be considered as the
feedback reward function of the algorithm. See the following formula for details:

R(t) = αR1(t) + β((SOC(t)− SOCreq(t))2) (10)

R1(t) =



1/
(

C f uel + CO + HC + NOX

)
C f uel + CO + HC + NOX 6= 0∩ 0.3 ≤ SOC ≤ 0.8

1/
(

C f uel + CO + HC + NOX + λ
)

C f uel + CO + HC + NOX 6= 0∩ SOC < 0.3 or SOC > 0.8

2/
(

minCfuel+minCO+HC+NOX ) C f uel + CO + HC + NOX = 0∩ 0.3 ≤ SOC

−1/λ C f uel + CO + HC + NOX = 0∩ SOC < 0.3,

(11)

where R(t) is the state x at time t; under the action, x is transferred to the next state to
obtain the reward value. R1 represents the reward reporting function on the instantaneous
fuel consumption of the engine and pollutant emission; it represents the instantaneous
fuel consumption of the engine; CO, HC, and NOx represent the emission of automobile
pollutants. Because of the difference in dimensionality between them, the normalization
method is used to deal with them before summation. λ is the penalty term, which is equal
to the sum of the maximum emission and the maximum instantaneous fuel consumption
of the engine; β is the penalty factor of SOC change; SOCreq(t) is the reference SOC at
a certain time; and α is the fuel consumption coefficient. When SOC > SOCreq, the fuel
consumption coefficient is small, with PHEV provided mainly through the motor power;
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when SOC > SOCreq, the penalty factor is set to a larger value to increase the torque
distributed by the engine. According to the defined reward function, the reward obtained
decreases with the increase in emissions and fuel consumption.

Based on the above introduction of some principles of deep reinforcement learning
architecture and the setting of some parameters, the optimal-state action-value function is
defined as follows:

Q∗(s, a) = maxπE[Rt + γQ∗(st+1, at+1)st = s, at = a]. (12)

As the driving condition prediction results affect the vehicle demand torque, an energy
management strategy based on driving condition prediction is proposed by combining the
driving condition prediction algorithm with the energy management strategy. According
to the acceleration probability distribution in Figure 5, the correction factor is determined
to correct the required torque of the vehicle. The figure shows that the two curves are
more consistent, and the distribution of vehicle acceleration is mostly between −1.5 m/s2

and −1.5 m/s2. Then, we calculate the correlation coefficient, average error, and standard
deviation of its predicted demand torque, as well as the actual demand torque to set the
correction coefficient: when the acceleration a < −1.5 m/s2, the correction coefficient is 0.8;
when −1.5 m/s2 < a < 1.5 m/s2, the correction coefficient is 1; and when a > 1.5 m/s2, the
correction coefficient is 1.2.
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Figure 6 shows the framework of energy management of deep reinforcement learning
based on condition prediction. When the vehicle is running, the BP neural network
algorithm is first used to predict the driving conditions, and the vehicle demand torque is
corrected according to the predicted value. The corrected vehicle demand torque, speed,
battery SOC, and acceleration are state inputs. After the training of the target network and
strategy network, the engine output torque with action value is output. We update the
status value according to the output action and store the status, action, and reward value in
the experience pool.
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5. Simulation Verification
5.1. Subsection Validity Verification

To verify the effectiveness and adaptability of the proposed strategy, this section
applies the constructed vehicle model and simulation environment to train the strategy.
For the design of the simulation model, the initial SOC value of the strategy is 0.8, and the
final SOC value is 0.3 (Table 2).

Table 2. Algorithm parameters.

Parameter Name Value (m)

Minimum sample set n 64
Discount factor 0.9

Renewal coefficient 0.001
Sample number of experience pool 118,000

The actor estimates the network learning rate 0.001
Delayed updated 3

Estimate the network learning rate of Critic 0.001

To verify the effectiveness of the proposed strategy, a driving condition is selected as
the simulation condition of the strategy, and the energy management strategy based on
rule control is selected as the evaluation benchmark strategy based on the DRL strategy.
The strategy is determined according to the optimal interval of engine operation and the
upper and lower limits of SOC. The three strategies are simulated under the same working
conditions. The deep reinforcement learning algorithm takes the TD3 algorithm as an
example. The simulation results of the three strategies are shown in Figure 7.

As shown in Figure 7a, the TD3 energy management strategy considering condition
prediction is continuous in the state space and can realize continuous control of throttle
opening. In driving condition 1, the strategy based on DRL can make the vehicle run
smoothly. When the vehicle starts to run, the engine and the motor work together. The
motor’s output torque is greater than the engine’s output torque. With the increase in
the speed, the demand for torque increases gradually. It can be seen from the distribu-
tion diagram of engine operating points that the improved strategic operating points are
distributed in a reasonable range and work in the high-efficiency zone.
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Figure 7. Simulation result.

As shown in Figure 7b, the engine working point of the TD3-based energy management
strategy is similar to the TD3 strategy, considering working condition prediction to some
extent. However, compared with the unimproved TD3 strategy, the engine working
point of the improved TD3 strategy is more located in the high-efficiency zone with low
fuel consumption.

As shown in Figure 7c, the rule-based control strategy has an engine working area of
50 N·m–240 N·m, compared with the TD3 strategy, which has a more extensive operating
range of 150 N·m–200 N·m. The improved TD3 strategy has lower fuel consumption and
continuous control.

As can be seen from Figure 8, the strategy of TD3, considering working condition
prediction, has a higher and fuller utilization rate of the motor. When the vehicle starts at
the early stage, the driving motor starts to work and gives play to its characteristics of low
speed and large torque to avoid the engine working in the inefficient zone. During braking,
the braking energy is recovered. The final SOC value of the three strategies fluctuates
around 0.3. As can be seen from the simulation results, the fuel consumption of the TD3
energy management strategy considering working condition prediction is reduced by 3.18%
and 7.63% compared with the TD3 energy management strategy and rule control strategy.
The simulation results are shown in Table 3.

Table 3. Comparison of simulation results.

Control Strategy Equivalent Fuel Consumption
(L/100 km) Final SOC

Consider the TD3 of the condition prediction 6.411 0.33
TD3 6.622 0.32

Rule-based control 6.941 0.31
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5.2. Adaptability Verification

In this paper, we utilize MATLAB, Python, PyCharm, and other software to conduct
joint simulations. The deep reinforcement learning considering driving condition prediction
is verified by comparing the other two driving conditions and the adaptability of the energy
management strategy. The simulation model still adopts the above training model. The
simulation results are shown in Figures 9 and 10, and the comparative data of SOC and
fuel consumption are shown in Tables 4 and 5.
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Table 4. Comparison of simulation results.

Control Strategy Equivalent Fuel Consumption
(L/100 km) Final SOC

Consider the TD3 of the condition prediction 6.327 0.35
TD3 6.512 0.34

Rule-based control 6.884 0.34
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Table 5. Comparison of simulation results.

Control Strategy Equivalent Fuel Consumption
(L/100 km) Final SOC

Consider the TD3 of the condition prediction 6.388 0.32
TD3 6.575 0.32

Rule-based control 6.924 0.33

As can be seen from Figures 9 and 10, the proposed strategy can adapt to three different
driving conditions and show good fuel economy. The final SOC value of the battery can
be stable at around 0.3. Compared with the results, when the final SOC value is roughly
the same, compared with the rule control strategy, the TD3 strategy considering driving
condition prediction reduces the fuel consumption under different driving conditions by
8.32% and 7.74%, respectively. Compared with the TD3 strategy, the introduction of driving
condition prediction reduces fuel consumption by 3.08% and 2.84%, respectively.

6. Conclusions

Based on condition prediction results and the deep reinforcement learning algorithm,
this paper proposes an energy management strategy: deep reinforcement learning consid-
ering condition prediction. The BP neural network algorithm is used to predict the speed
information in the next 5 s, and the obtained correction factor corrects the required torque
of the vehicle. The simulation results show that under different training conditions, the pro-
posed strategy can make full use of the characteristics of the drive motor, make the engine
work in the optimal range, and make the condition adaptability strong. The introduction of
condition prediction effectively reduces the fuel consumption of the energy management
strategy with deep reinforcement learning and has a more vital self-learning ability.



World Electr. Veh. J. 2023, 14, 294 13 of 14

Author Contributions: Conceptualization, J.X., J.M., T.W. and J.G.; methodology, J.X., J.M., T.W. and
J.G.; software, J.X. and J.M.; validation, T.W. and J.G.; data curation, J.X. and J.M.; writing—original
draft preparation, J.M.; writing—review and editing, J.X. and J.M.; visualization, J.X.; supervision,
J.G. and T.W.; project administration, J.X.; funding acquisition, J.G. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by Central Plains Technological Innovation leading talents, grant
number [224200510014], and The APC was funded by [224200510014].

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, P.; Li, Y.; Wang, Y.; Jiao, X. An intelligent logic rule-based energy management strategy for power-split plug-in hybrid electric

vehicle. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; IEEE: Piscataway, NJ,
USA, 2018; pp. 7668–7672.

2. Pam, A.; Bouscayrol, A.; Fiani, P.; Noth, F. Rule-based energy management strategy for a parallel hybrid electric vehicle deduced
from dynamic programming. In Proceedings of the 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), Belfort, France,
14–17 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6.

3. Mansour, C.J. Trip-based optimization methodology for a rule-based energy management strategy using a global optimization
routine. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2015, 230, 1529–1545. [CrossRef]

4. Mansour, C.; Salloum, N.; Francis, S.; Baroud, W. Adaptive energy management strategy for a hybrid vehicle using energetic
macroscopic representation. In Proceedings of the 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou,
China, 17–20 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–7.

5. Gao, M.; Du, J. Design method of energy management strategy for range-extended electric buses based on convex optimization.
In Proceedings of the 2016 11th International Forum on Strategic Technology (IFOST), Novosibirsk, Russia, 1–3 June 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 286–290.

6. Zhao, K.; Bei, J.; Liu, Y.; Liang, Z. Development of global optimization algorithm for series-parallel PHEV energy management
strategy based on radar pseudospectral knotting method. Energies 2019, 12, 3268. [CrossRef]

7. Wu, J.; Cui, N.-X.; Zhang, C.-H.; Pei, W.-H. PSO algorithm-based optimization of plug-in hybrid electric vehicle energy
management strategy. In Proceedings of the 2010 8th World Congress on Intelligent Control and Automation, Jinan, China, 6–9
July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 3997–4002.

8. Mason, K.; Grijalva, S. A review of reinforcement learning for autonomous building energy management. Comput. Electr. Eng.
2019, 78, 300–312. [CrossRef]

9. Lee, H.; Song, C.; Kim, N.; Cha, S.W. Comparative analysis of energy management strategies for HEV: Dynamic programming
and reinforcement learning. IEEE Access 2020, 8, 67112–67123. [CrossRef]

10. Sun, H.; Fu, Z.; Tao, F.; Zhu, L.; Si, P. Data-driven reinforcement-learning-based hierarchical energy management strategy for fuel
cell/battery/ultracapacitor hybrid electric vehicles. J. Power Sources 2020, 455, 227964. [CrossRef]

11. Wu, Y.; Tan, H.; Peng, J.; Zhang, H.; He, H. Deep reinforcement learning of energy management with continuous control strategy
and traffic information for a series-parallel plug-in hybrid electric bus. Appl. Energy 2019, 247, 454–466. [CrossRef]

12. Lee, H.; Cha, S.W. Reinforcement learning based on equivalent consumption minimization strategy for optimal control of hybrid
electric vehicles. IEEE Access 2020, 9, 860–871. [CrossRef]

13. Aljohani, T.M.; Mohammed, O. A Real-Time Energy Consumption Minimization Framework for Electric Vehicles Routing
Optimization Based on SARSA Reinforcement Learning. Vehicles 2022, 4, 1176–1194. [CrossRef]

14. Li, W.; Cui, H.; Nemeth, T.; Jansen, J.; Ünlübayir, C.; Wei, Z.; Feng, X.; Han, X.; Ouyang, M.; Dai, H.; et al. Cloud-based
health-conscious energy management of hybrid battery systems in electric vehicles with deep reinforcement learning. Appl.
Energy 2021, 293, 116977. [CrossRef]

15. Li, W.; Cui, H.; Nemeth, T.; Jansen, J.; Ünlübayir, C.; Wei, Z.; Zhang, L.; Wang, Z.; Ruan, J.; Dai, H.; et al. Deep reinforcement
learning-based energy management of hybrid battery systems in electric vehicles. J. Energy Storage 2021, 36, 102355. [CrossRef]

16. Yue, S.; Wang, Y.; Xie, Q.; Zhu, D.; Pedram, M.; Chang, N. Model-free learning-based online management of hybrid electrical
energy storage systems in electric vehicles. In Proceedings of the IECON 2014-40th Annual Conference of the IEEE Industrial
Electronics Society, Dallas, TX, USA, 29 October–1 November 2014; IEEE: Piscataway, NJ, USA, 2014.

17. Li, W.; Zheng, C.; Xu, D. Research on Energy Management Strategy of Fuel Cell Hybrid Electric Vehicle Based on Deep
Reinforcement Learning. J. Integr. Technol. 2021, 10, 47–60.

18. Tang, X.; Chen, J.; Liu, T.; Li, J.; Hu, X. Research on Intelligent Following Control and Energy Management Strategy of Hybrid
Electric Vehicle Based on Deep Reinforcement Learning. Chin. J. Mech. Eng. 2021, 57, 237–246.

19. Zhao, C. Study on Integrated Optimization Control Strategy of Fuel Consumption and Emission of PHEVs. Master’s Thesis,
Chongqing Jiaotong University, Chongqing, China, 2022.

https://doi.org/10.1177/0954407015616272
https://doi.org/10.3390/en12173268
https://doi.org/10.1016/j.compeleceng.2019.07.019
https://doi.org/10.1109/ACCESS.2020.2986373
https://doi.org/10.1016/j.jpowsour.2020.227964
https://doi.org/10.1016/j.apenergy.2019.04.021
https://doi.org/10.1109/ACCESS.2020.3047497
https://doi.org/10.3390/vehicles4040062
https://doi.org/10.1016/j.apenergy.2021.116977
https://doi.org/10.1016/j.est.2021.102355


World Electr. Veh. J. 2023, 14, 294 14 of 14

20. Zhang, S.; Wang, K.; Yang, R.; Huang, W. Research on the Energy management strategy of Deep Reinforcement Learning for
hybrid electric Bus. Chin. Intern. Combust. Engine Eng. 2021, 42, 10–16+22.

21. Xu, L.; Wang, J.; Chen, Q. Kalman filtering state of charge estimation for battery management system/based on a stochastic fuzzy
neural network battery model. Energy Convers. Manag. 2012, 53, 33–39. [CrossRef]

22. Tan, F.; Yan, P.; Guan, X. Deep reinforcement learning: From Q-learning to deep Q-learning. In Neural Information Processing,
Proceedings of the 24th International Conference, ICONIP 2017, Guangzhou, China, 14–18 November 2017; Proceedings, Part IV 24;
Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 475–483.

23. Agostinelli, F.; Hocquet, G.; Singh, S.; Baldi, P. From reinforcement learning to deep reinforcement learning: An overview.
In Braverman Readings in Machine Learning. Key Ideas from Inception to Current State, Proceedings of the International Conference
Commemorating the 40th Anniversary of Emmanuil Braverman’s Decease, Boston, MA, USA, 28–30 April 2017; Invited Talks; Springer
International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 298–328.

24. Lyu, L.; Shen, Y.; Zhang, S. The Advance of reinforcement learning and deep reinforcement learning. In Proceedings of the 2022
IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 25–27 February
2022; IEEE: Piscataway, NJ, USA, 2022; pp. 644–648.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.enconman.2011.06.003

	Introduction 
	Vehicle Power System Construction 
	Introduction to Deep Reinforcement Learning 
	Twin Delayed Deep Deterministic Policy Gradient Algorithm 
	Twin Delayed Deep Deterministic Policy Gradient Algorithm 
	Key Parameter Selection 

	Simulation Verification 
	Subsection Validity Verification 
	Adaptability Verification 

	Conclusions 
	References

