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Abstract: Hybrid electric vehicles (HEV) play an important role in sustainable transportation sys-

tems. The component size of HEV plays a vital role in the fuel efficiency of vehicles. This paper 

presents a divided rectangle (DIRECT) method for component sizing of vehicles to ensure better 

fuel efficiency and satisfying drivability. A state–space model was used to represent the design 

problem. A constraint multi-input multi-output optimization problem was solved by our DIRECT 

optimization algorithm. Efficacy of the algorithm was tested with standard drive cycles, including 

drive cycles for Indian urban and highway conditions representing various driving scenarios in the 

country. The simulation results illustrated the effectiveness of the proposed algorithm.  
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1. Introduction 

Environmental and energy scenario constraints compel us to look for other alterna-

tives to conventional fuel [1]. The automobile is an integral part of social structure and 

contributes mainly to global warming by emitting a large amount of greenhouse gases 

(GHG) [2]. Emission from automobiles mainly contain carbon dioxide (CO2), carbon mon-

oxide (CO), nitrogen oxide (NOx), and particulate matter (PM). The exhaust emissions 

during normal running are far lower than during cold start conditions [3,4]. A lower use 

of gasoline would limit the emission of health hazardous gasses and make the world a 

better place. Hybrid electric vehicles (HEV) and pure electric vehicles (EV) are possible 

alternatives for conventional transportation [5]. The long-term solution would be EV, but 

due to social acceptance and the high initial cost of EV there is a market for HEV, which 

may work as a transitional phase between pure ICE and pure EV industry. Hybrid electric 

vehicles provide an opportunity to minimize fuel-use by combining an electric motor 

(EM) with a conventional internal combustion engine (ICE) [6]. 

The literature on energy management of hybrid electric vehicles has a broad spec-

trum. The complex nature of HEV provides plenty of opportunities for energy manage-

ment. An energy management system is an algorithm which implements various schemes 

to increase fuel economy and minimize losses. Rule-based energy management strategies 

are effective for real-time supervisory control. The rules are usually defined based on user 

experience, mathematical models, or intuition. The basis of a parallel HEV power train 

model and the corresponding control laws were developed in [7]. For managing torque 

distribution, control algorithms were formed as multi-objective non-linear optimization 

problems; the objective function was then linearized and solved with a charge-sustaining 

control strategy [8]. The Makov speed interval forecast with a co-evolutionary algorithm 

was utilized for determination of optimal energy distribution. It dealt with the worst 
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driving conditions in min–max mode [9]. The decision-making capability of a fuzzy inter-

face system makes it suitable for designing and implementing the basic rules for effective 

energy management. The nonlinearity and intelligence of fuzzy control make it a power-

ful tool for energy management of HEV. Fuzzy control is simple, easy to implement, adap-

tive, and robust in nature. A fuzzy logic-based EMS for an electric–heat hybrid engine 

power train was developed in [10]. The strategy implemented control of the amount of 

energy flow between components to satisfy the drive condition, optimize energy effi-

ciency, and minimize pollutants [11]. Fuzzy logic was utilized in suggesting the appropri-

ate size of the components in HEV. Reference power profiles and datasheets were used as 

inputs for the sizing methodology [12]. The control parameter of an FLC was adjusted 

using a genetic algorithm in [13]. The proposed scheme considered constraints and targets 

within a multi-objective optimization function. 

Developments in artificial intelligence techniques and the various learning-based 

techniques make them attractive for energy management of HEV. Deep reinforced learn-

ing (DRL) frameworks provide better flexibility for energy management. They can achieve 

nearly optimal fuel efficiency with a locally trained strategy. Prior knowledge of the route 

is not necessary to make the method more generalized for a real-world scenario [14]. DRL 

enables an EMS to learn from the drive cycle; hence it is suitable for online applications of 

energy management [15]. The model-free approach improves DLR for HEV applications 

[16]. The fast Q learning approach accelerates the convergence process, thereby decreasing 

the computational burden. Cloud computation further decreases the computational bur-

den [17]. A DRL algorithm used with an equivalent consumption minimization strategy 

(ECMS) manages highly complex state–space actions and trades off between real-time ap-

plications and learning methodologies [18]. Artificial neural networks (ANN) are other 

powerful tools used in the energy management application of HEV. ANN provide multi-

mode energy management options, which provide the driving pattern required for differ-

ent driving scenarios [19]. An ANN was used for determining equivalent functions uti-

lized in equivalent consumption minimization strategies and had the capabilities to be 

trained by real-world data [20]. Equivalent consumption minimization strategy (ECMS) 

uses an equivalent factor that represents total fuel consumption in terms of actual ICE 

consumption and equivalent motor consumption. Thus, both electrical and mechanical 

energy may be represented by a single mathematical term, and management becomes eas-

ier. For developing ECMS, the knowledge of future predictions is not necessary and few 

control parameters are sufficient [21]. A direct search algorithm can minimize a real-val-

ued function as in the case of HEV. In this method, knowledge of the gradient of the ob-

jective function is not essential. It can be utilized for solving non-differentiable, noncon-

tinuous objective functions. This algorithm was effectively utilized for the optimization of 

design and control of HEV [22]. The method is capable of determining global optima of 

fuel efficiency as an objective function in experimental driving scenarios [23]. Fast re-

sponses and high power densities relieve stress on the battery during fast fluctuations. A 

supercapacitor regenerates energy during braking using adaptive low-pass filter tech-

niques [24]. Dynamic programming (DP) solves the optimization problem by breaking it 

into small sub-problems and then solving those sub-problems. It is a recursive optimiza-

tion method. DP determines the optimal torque and gear ratio for a specified drive cycle. 

Motor rating is determined by the gear ratio and optimal torque [25–27]. A genetic algo-

rithm (GA) is capable of simultaneous optimization of the components and the energy 

management strategy. Optimization problems have to form an electrical assist control 

scheme. The complete set of control variables and sizes has to be encoded in chromosomes 

[28]. A non-dominating shorting GA was used for simultaneous optimization of the 

power train and EMS, which were not converted into multi-objective functions but used 

as a single objective function [29]. Particle swarm optimization (PSO) can be used in con-

tinuous non-linear functions and is a robust, inexpensive, and fast algorithm [30]. The PSO 

algorithm was used for solving a fuel efficiency optimization problem expressed as ECMS 

in [31]. A predictive control method is used for the prediction of future outputs on the 
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basis of past data of the system. It may also anticipate future inputs. The method focuses 

on function rather than structure of the model; it produces a mathematical presentation, 

viz., a transfer function, state equation, or impulse response suitable for its application. 

The key elements include the predictive model, range of optimization, and feedback cor-

rection [32]. A predictive control strategy is capable of application in real-time [33]. The 

butterfly optimization algorithm (BOA) was used for solving optimization problems 

based on dynamic-source behavior and power requirements during driving. A multi-ob-

jective problem determines the manufacturing cost, running expenses, and associated 

weight. A decentralized feedback control system for providing optimal velocity trajectory 

is proposed in [34]. The scheme also provides an effective torque distribution scheme. 

Here we provide an algorithm for obtaining best design values for obtaining better 

fuel economy. The remainder of the paper is as follows: Section 2 provides mathematical 

modeling of various components for better understanding of dynamic behavior of vehi-

cles during operation. Section 3 covers the optimization problem formulation using a 

state–space model. Section 4 gives the details of DIRECT optimization techniques. The 

results and related discussion are covered in Section 5. Finally, Section 6 concludes the 

findings of the paper. 

2. Modeling of Hybrid Electric Vehicles 

The architecture of HEV is broadly classified on the basis of sequence of energy flow 

between the components. The basic classifications of HEV are serial and parallel. The se-

rial architecture suffers the drawbacks of double energy conversion processes and associ-

ated losses, additional weight of generators, and traction-motor-sizing requirements. The 

parallel architecture, shown in Figure 1, uses both the IC engine and the motor to propel 

the drive, and thus provides opportunity to switch the IC engine on and off for controlling 

the fuel economy [35,36]. 

 

Figure 1. Architecture of parallel HEV. 

The two inputs of driving force make the modeling of HEV and their components 

more complex than that of conventional vehicles. Mathematical modeling includes com-

prehensive, practical, updated, and easy to implement schemes. This section focuses on 

modeling schemes of HEV and their sub-systems. 

2.1. ICE Modeling 

An ICE converts chemical energy to electrical energy through the burning of fossil 

fuels, thereby creating a high amount of temperature and pressure. It operates in four 

operating modes, viz., cranking, idle, ICE OFF, and ICE ON modes. 
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2.1.1. Cranking 

The EM drives the ICE in this mode through a negative torque produced. A starter 

transfers the torque to start the IC engine. The cranking torque is 

engdW

crank eng access cctdt
J +  + =  (1) 

and 

( )
t

0

1

eng crank access cct
eng

J
  −  − =  , 

(2) 

where τaccess and τcct are lumped torque of mechanical accessories and closed throttle 

torque. The closed throttle torque (τcct) of ICE is 

2

(T)d (t) (T)sgn( ) (T) (T)1 2 3 4cct
max_eng max_eng

    
 =   +  + +   

       

. (3) 

α1, α1, α3, and α4 are coefficients for static friction, Coulomb friction, viscous friction, 

and air compression torque; δ is the Dirac delta function; T is the temperature; ω is the 

angular speed, and ωmax_eng is the maximum allowed speed. 

2.1.2. ICE off 

In this mode, the negative torque is provided by the brakes. The driver shaft clutch 

is to be engaged for running the vehicle. The function of ICE is modeled as 

ref access cct
 =  +   (4) 

and 

* f ( (t))
ref

 =  +  . 
(5) 

The required speed is maintained by the governor mechanism: 

Pacc
eng _ off access cct

eng
 =  +  +


 (6) 

and 

eng shaft =  . 
(7) 

2.1.3. Idle 

In this mode, the ICE clutches are disengaged and the governor maintains the ICE 

speed. The function is described as 

ref access cct
 =  +  , (8) 

* f ( (t))
ref

 =  +  , (9) 

(t) idle_desired idle_actual =  − , (10) 

and 

Paccess
access

ICE

 =


. 
(11) 
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2.1.4. ICE on 

The clutches are engaged and the propulsion power is provided by the engine and is 

described as 

Paccess
access

ICE

 =


. (12) 

The closed throttle torque is given by 

2

(T)d (t) (T)sgn( ) (T) (T)1 2 3 4cct
max_eng max_eng

    
 =   +  + +   

       

. (13) 

The torque required for acceleration is 

d
Ja ICE dt


 = . (14) 

The torque generated by the ICE is 

ICE access acctdemand =  +  +  +    (15) 

with a maximum torque constraint of 

ICE ICEMax( )   . (16) 

2.2. Motor Modeling 

In propulsion mode, the motor drives the mechanical load; while in regenerative 

mode, the SOC of the battery is regained through charging. 

2.2.1. Propulsion Mode 

In this mode of operation, the motor provides the full or a part of the demanded 

torque, depending on the EMS strategy. The torque compensates for the inertia and over-

comes the losses. The output torque of the motor is 

d
Jmotor motordemand spin_loss dt


 =  +  +  (17) 

with a constraint of maximum torque as 

Max( )motor motor   . (18) 

The torque lost in spinning is 

(t) sgn( )1 2 3spin _loss =   + +  . (19) 

The electrical power required is 

PmechanicalPelectrical
motor

=


. (20) 

The motor-demands for voltage and current are 

V Vmotor bus
=  (21) 

and 

electricalP
Imotor Vbus

= , 
(22) 
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where Jmotor is motor inertia, τdemand is demanded torque, τspin_loss is frictional loss in motor 

movement, Pmechanical is the output mechanical power, Pelectrical is the input electrical power, 

ηmotor is motor efficiency, Vmotor and Imotor are voltage and current in the motor, and Vbus is 

the voltage of the DC bus [37]. 

2.2.2. Regenerative Mode 

In this mode of operation, the motor behaves as a generator and supplies energy back 

to the source. The machine provides negative torque through the braking operation. The 

braking torque is modeled as 

d
Jmotorregeneration demand spin_loss dt


 =  −  +  (23) 

with a maximum torque constraint of 

Max( )regeneration regeneration   . (24) 

The electrical power generated is 

P Pelectrical regeneration mechanical=  . (25) 

The motor-desired voltage and current are 

V Vmotor bus=  (26) 

and 

PelectricalIregeneration Vbus

= . 
(27) 

2.2.3. Spinning Mode 

In this mode, the motor is not connected to a mechanical load, it simply moves freely 

without any mechanical attachment to it. The motor does not drive the load and compen-

sates for spinning loss only, given by 

(t) sgn( )motor 1 2 3spin _loss=  =   + +  . (28) 

2.3. Battery Modeling 

The battery provides the electrical power required by the EM for driving the vehicle. 

The equivalent circuit of the battery is represented in Figure 2. 

+ -

Iterminal

Voc

Rohm

VRohm

Vdyanamic

Cdyn

Rdyn

Vterminal

 

Figure 2. Battery model. 
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The terminal voltage is given by 

V V V Vocterminal ohm dynamic= + + . (29) 

The open circuit voltage is 

f (SOC, T)Voc = . (30) 

The ohmic resistance voltage is 

V IR (SOC,T)ohm ohm= . (31) 

The dynamic voltage is 

Vdyn
IRdyn R (SOC,T)dyn

=  (32) 

and 

dyn
(SOC, T)

dt

dVdyn
I CCdyn = . 

(33) 

The total current (I) is 

I I IRdyn Cdyn+= . (34) 

The dynamic voltage in a differential equation form is 

I
dV dVdyn dyn

dt R (SOC,T) C (SOC,T)dyn dyn

+ = . (35) 

The overall differential equation for the battery system is 

R RdV V VdI dyn ohmterminal terminal ocR Iohmdt R C dt R C R Cdyn dyn dyn dyn dyn dyn

+
+ = + + . (36) 

The SOC may be determined by 

i

t

i battery

AHr t

1
SOC(t) SOC(t ) I(t) (SOC, T, s i gn[I(t)]dt

Cap .3600
= +  . (37) 

The initial SOC is 

i i
SOC(t ) SOC=  (38) 

where Vterminal is the terminal voltage, Voc is the open circuit voltage of the battery, I is the 

current, Rohm, Rdyn, and Cdyn are the battery parameters, ηbattery is the Coulomb efficiency, 

and CapAHr is the capacity in amp hours. 

3. Problem Formulation 

The various modes of energy management are mainly decided on the basis of de-

manded torque, thus the continuous variable transmission (CVT) position, and torque of 

ICE and EM are selected as control variables. State of charge, SOC, has a direct impact on 

energy management schemes of HEV, thus SOC is chosen as one of the state variables. 

The other state variables are interlocking CVT (ICVT), ICE torque, ICE speed, and battery 

SOC. The optimization problem is formed by a vehicle model in a state-–space model. The 

vehicle model is formulated as 
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control vector: 

u CVT1

u(t) u2 ICEs

u3 EMs

   
   

= =    
   

   

, (39) 

state vector: 

Ix CVT1

x ICE2
x(t)

x SOC3 bat

x4 ICE

  
  
  

= =   
  

      

, (40) 

state equation: X(t) f (u(t), x(t))= , (41) 

and 

constraint: X(t) f (u(t), x(t), (t), (t))2 2=   , 
(42) 

where CVT is the continuous variable transmission. Since τem << τice it is written as τem = 

τems in place of an additional state–space equation. The boundary conditions, time range, 

state bounds, inequality conditions, and objective function are essential for the problem 

formulation: 

time range: t t t0 final  , (43) 

state bounds: 

u(t)iCVTmn iCVTmx

i x(t)CVTmn CVTmx

T u(t) TEMmn EMmx

   

  

 

, (44) 

boundary conditions: x (t ) SOC ,x (t ) SOCs s3 0 3 f= = , (45) 

 

and 

inequality constraint: 

2
x (t) i 5
1 CVTmx 2

x (t) T ( )
2 ICEmx 1

(t).x (t)
2 1 1mx

 − 

 

  

. 

(46) 

The time range is determined by the drive cycle [38–40]. The state bounds and control 

variables are properties of the drive-type category. The optimal problem is to minimize 

the vehicle fuel consumption for the defined drive cycle. The physical constraints of the 

ICE, EM, and battery are to be taken into consideration. The objective function would be 

t

0

Min C(u) f (x(t), u(t)t)dt g(x(t ')dt ')= +
 
 
  

 , (47) 

where 0 and t are the initial and final times of the drive cycle, respectively. X(t) and u(t) 

are the state and control variable, respectively, f(x(t), u(t)) is the instantaneous fuel con-

sumption, and g(x(t’)) is the function for the operating parameters of vehicle. The state 

has two values: 

x (t) : The _ battery _ SC1
x(t)

x (t) : The _ ICE _ State2


= 


. (48) 

X1(t) is the continuous state controlled by 𝑥̇1(t) = f1(u1(t),t). The value of the second 

term X2(t)) is either 0 or 1, depending on the ICE’s on–off condition. The control variable 

has three states for optimization: 
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u : Power _ Split _ Ratio1

u u : Gear _ Scheduling.....2

u : State _ of _ ICE.........3




= 



. (49) 

U1 is the classical control method of HEV and U3 is known from the X2(t) state. The 

fuel consumption is determined by 

1 1

2

f (u (t), t) : if _ Engine _ ON

f ((x(t), u(t), t) 0 :If _ Engine _ OFF..............

f : If _ Engine _ Startup.........

=







 (50) 

and 

KK K K K5 61 2 4g(x(t) K .Mass3Fuel _ Economy Emmision Maximum _Speed Gradeability Zone _ Acceleration
= + + + + + , (51) 

where f1(u1(t),t) is determined by engine map data and f2 is additional fuel consumed dur-

ing the start-up process. 

4. Energy Management System 

When the parallel electric-assist control strategy is used, the motor provides addi-

tional power per the requirements while it maintains the battery SOC. The variables used 

for describing the control strategy are summarized in Table 1. 

Table 1. Variables used in describing the control strategy. 

Variable Description 

cs_hi_soc Highest target battery SOC 

cs_lo_soc Lowest target battery SOC 

cs_electric_launch_spd _hi Vehicle speed below which pure EV mode is switched on 

cs_electric_launch_spd _lo Lowest vehicle speed in pure EV mode 

cs_off_trq_frac 
Minimum torque threshold; when controlled at a lower 

torque, the ICE will switch off if SOC > cs_lo_soc 

cs_min_trq_frac 

Minimum torque threshold; when controlled at a lower 

torque, the ICE operates at the threshold torque and the 

motor works in regenerating mode if the SOC < cs_lo_soc 

cs_charge_trq 
Additional torque required by the ICE for recharging the 

battery when the ICE is ON 

The speed and torque load for the drive condition are fed to the ICE through the 

clutch assembly. The energy management scheme, shown in Figure 3, decides the torque 

distribution in the ICE and motor which together produce the required torque while en-

suring the battery SOC remains in permissible limits. The cost function is defined as de-

picted in Figure 3. 
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 Envelope

Additional Charge 

Torque

 

Figure 3. Energy management scheme. 

When the SOC of the battery is below cs_soc_lo, an additional torque is demanded 

from the ICE, for charging the battery. This additional torque, required for charging the 

battery, is proportional to the difference between battery SOC and the average of 

cs_hi_soc and cs_lo_soc. This prevents the ICE torque from falling below a threshold frac-

tion, cs_min_trq_frac, of the maximum ICE torque for the current speed of the vehicle. 

This is done to prevent the ICE from operating at an inefficient operation point. The ICE 

torque is required only when the ICE is on [41,42]. 

If the speed required is below the electric launch speed, cs_electric_launch_spd, the 

ICE should be turned off. If the battery SOC is above its lower limit, the ICE should be 

turned off. If both the requested speed below the launch speed and the battery SOC are 

above the lower limit, the ICE should be turned off. 

If the torque demanded is below the cutoff torque fraction of the maximum torque, 

cs_off_trq_frac, the ICE should be turned off. If the demanded torque is lower than the 

cutoff and the battery SOC is higher than the lower limit, the ICE should be turned off. 

The emissions model is developed using absolute spark advance (SA) as 

SA optimSA SA=  + . (52) 

The emissions are determined using the following relations [43]: 

  ( )
2

1 2CO co 1 1 co = − + − + 
 

, (53) 

  ( )2

1 2 3 4 int ake 5HC max 0,hc .N hc .( 0.9) hc .SA hc .P hc= + − + + + . (54) 

and 

  ( )2

min 1 2 3 int ake 4NO max [NO] ,no .( 0.9) no .SA no .P no= − + + + , 
(55) 

where  is the air-to-fuel intake ration, N is the speed in rpm, Pintake is the input power, 

and cox, nox, and hcx are adjusting parameters determined in experiments in [44]. 

5. Optimization Process 

To solve the optimization problem, a divided rectangle (DIRECT) optimization tech-

nique is used. Developed by Donald R. Jones, it is a sampling-based technique and is a 

modified version of the Lipschitzian method developed by Jones et al. in 1993 [45,46]. The 

DIRECT algorithm eliminates use of the Lipschitz constant by identifying all possible val-

ues and using a balanced approach for local and global search. The algorithm starts by 

scaling of a design box in an n-dimensional hypercube. The search is initiated by 



World Electr. Veh. J. 2023, 14, 24 11 of 21 
 

evaluation of an objective function at the center of the hypercube. The algorithm divides 

the probable optimal rectangle via sampling of the longest coordinate direction of the rec-

tangle, as shown in Figure 4. Sampling is done in such a manner that a sampled point 

becomes the center of an n-dimensional rectangle. The division is continued until the ter-

mination criterion is achieved. 

2

1

1 3

1 1

4

5

1 1 1

Iteration 1

Iteration 2

Iteration 3

Start

Identification of 

probable optimal 

rectangle

Sampling and 

Devision

 

Figure 4. Hyper-rectangle formation in the DIRECT algorithm. 

The key factor of DIRECT optimization is the determination of hyper-rectangles as 

samples. If all the hyper-rectangles are sampled, the search fails to focus on a local opti-

mum and gets stuck on the global optimum. To avoid it, sampling is done on hyper-rec-

tangles that are probably optimal. In Figure 5a, the plot between the objective function f 

(ci) and the size of a rectangle (di) is given for all hyper-rectangles, i R , shown by dots. 

The vertical axis provides better results for the local search as the lower values of f(ci) are 

close to the actual global minima. The x-axis provides better results for the global search 

as larger di values indicate higher unexplored zones and have more chances of improve-

ment [47,48]. 

Let Γs be the set of all possible hyper-rectangles with size d, s = 1, 2,..., S. Therefore, 

each Γs contains all possible hyper-rectangles (i) with the same dashed boxes as shown in 

Figure 5b, i = 1, 2,...,. Let Φ(Γs) be the hyper-rectangle with the best objective function 

value in Γs, thus 

 i j( s) i : f (c ) f (c ), i, j I  =   . (56) 

Shown in Figure 5c, let € be the set of all best-objective-function hyper-rectangles 

(Φ(Γs)), then 

€ = U (Φ(Γs)). (57) 
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di
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di
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di
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Φ(Γs) 

di

f(cri)

(a) Stage 1 (b) Stage 2 (c) Stage 3 (d) Stage 4

 

Figure 5. Identification of hyper-rectangles. 

The rate-of-change parameter, k, defines the scope of the search between local and 

global optimum. The ‘k’ value changes during the process of optimization for identifying 

a set U of probable optimal-hyper-rectangles. A hyper-rectangle (i) is said to be a probable 

optimal-hyper-rectangle if there exists a value of k > 0 so as 

i i j jf (cr ) kd f (cr ) kd ; j 1,2,....−  − = , (58) 

* *
i if (cr ) kd f (cr ) e f (cr )−  − , (59) 

where cr and f(cr*) are center- and objective-function value of the best hyper-rectangle, 

respectively, and e is a small positive constant. Equation (58) ensures that hyper-rectan-

gles depicted as lower right dots in Figure 5d are probable optimal points, while Equation 

(59) defines the lower bounds (f(cri-kdi)) of every probable optimal-hyper-rectangle below 

the lower limit of the current solution, thereby preventing the search process from becom-

ing too local-optima centric. 

The algorithm determines the set U in each iteration, samples each i ∈ U, and then 

divides each i ∈ U into smaller hyper-rectangles. Each hyper-rectangle becoming smaller 

and the sampling process depending on dimension size, avoids repetition of samples in 

the solution space. The iteration stops at fulfilling the function-evaluation criteria. The 

initial conditions, lower bounds, and upper bounds of design variables are given in Table 

2. 

Table 2. Design variable parameters. 

Variable Name Initial Condition Lower Bound Upper Bound 

cs_lo_SOC 0.4 0.1 0.5 

cs_hi_SOC 0.8 0.55 1 

cs_charge_trq 15.25 1 80.9 

cs_min_trq_frac 0.4 0.05 1 

cs_off_trq_frac 0.05 0.05 1 

cs_electric_launch_spd_lo 0 0 15 

cs_electric_launch_spd_hi 10 10 30 

Figures 6 and 7 show the design iteration and design variable for achieving the ob-

jective function before and after the optimization. 
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Figure 6. Design iterations. 

 

Figure 7. Design variable before and after optimization. 

The grade and acceleration constraints with tolerance limits used in this study are 

given in Tables 3 and 4, respectively. 

Table 3. Grade constraints. 

Parameter Goal Tolerance 

Speed (mph) 55 0.01 

Grade (%) 6 0.05 
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Table 4. Acceleration constraints. 

Speed Range Goal Tolerance 

0–18 mph 3.5 0.02 

0–30 mph 10 0.02 

0–60 mph 12 0.02 

40–60 mph 5.3 0.02 

0–85 mph 23.4 0.05 

6. Results and Discussion 

The performance of optimized vehicles was checked in advanced vehicle simulator 

(Advisor) run in MATLAB environment. Various standard cycles were used for checking 

the efficacy of the algorithm. The parameters chosen for the test vehicle are summarized 

in Table 5. 

Table 5. Vehicle parameters. 

Parameter Value 

Drive train Parallel 

ICE type SI 

Battery Lead acid (308 V) 

Motor AC_75 

Transmission Manual 

Vehicle mass 1350 kg 

A fuel efficiency comparison after the optimization process for standard drive cycles, 

including two drive cycles in an Indian scenario, is given in Table 6. 

Table 6. Fuel efficiency comparison (MPG). 

Drive Cycle 
Before  

Optimization 

After  

Optimization 

Percent  

Increase 

CYC_UDDS 42.1 75.7 79.8 

CYC_US06 36.6 39.1 6.8 

CYC_FTP 41.9 71.5 70.6 

CYC_INRETS 36.5 44.2 21.1 

CYC_WVYSUB 42.5 56 31.8 

CYC_REP05 39.7 44.9 13.1 

CYC_OCC 31.7 76.3 140.7 

CYC_LA92 36.6 48.6 32.8 

CYC_ARB02 35.8 40.4 12.8 

CYC_India_Hwy 49.2 57 15.9 

CYC_India_Urban 33.8 93.2 175.7 

A comparison of the average fuel consumed (MPG) in test drive cycles is given in 

Figure 8. 
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Figure 8. Fuel efficiency comparison. 

Figure 8 shows the average fuel efficiency, when a vehicle is run with the different 

drive cycles mentioned in Table 6 as input, before and after optimization of the vehicle 

parameters. From Figure 8 it can be seen that the optimization process indicates an aver-

age increase of 51.73% in fuel efficiency providing substantial savings in fuel cost. The 

pollutant emissions during vehicle runs, HC, CO, and NOx were measured during the 

process of testing. The outcomes for pollutant emissions with standard drive cycles [49] 

are summarized in Table 7. 

Table 7. Pollutant emission comparison. 

Drive Cycle Pollutant 
Before  

Optimization 

After  

Optimization 

Percentage 

Change 

CYC_UDDS 

HC 0.553 0.476 13.9 

CO 2.445 2.537 −3.76 

NOx 0.41 0.358 12.7 

CYC_US06 

HC 0.54 0.505 6.5 

CO 9.07 9.625 −6.1 

NOx 0.476 0.437 8.2 

CYC_FTP 

HC 0.416 0.372 106 

CO 1.978 2.155 −8.9 

NOx 0.347 0.313 9.8 

CYC_INRETS 

HC 0.355 0.324 8.7 

CO 2.304 2.452 −6.4 

NOx 0.316 0.292 7.6 

CYC_WVYSUB 

HC 0.568 0.546 3.9 

CO 2.155 2.311 −7.2 

NOx 0.386 0.392 −1.5 

CYC_REP05 

HC 0.305 0.282 7.5 

CO 4.97 5.234 −5.3 

NOx 0.295 0.265 10.2 

CYC_OCC 

HC 0.67 0.593 11.5 

CO 2.802 2.547 9.1 

NOx 0.428 0.394 7.9 

CYC_LA92 

HC 0.473 0.447 5.5 

CO 3.166 4.461 −40.9 

NOx 0.416 0.397 4.6 

CYC_ARB02 

HC 0.325 0.291 10.4 

CO 5.51 5.317 3.5 

NOx 0.324 0.303 6.5 

CYC_India_Urban HC 0.477 0.399 16.4 
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CO 2.15 1.846 14.1 

NOx 0.377 0.317 15.9 

CYC_India_Hwy 

HC 0.582 0.573 1.5 

CO 2.457 2.416 1.7 

NOx 0.447 0.501 −12.1 

The average values of pollutant emission for different standard drive cycles were 

calculated. Comparative average results of various pollutant emissions are shown in Fig-

ure 9. It can be seen that the optimization process reduces the average HC and NOx emis-

sion by 8.33% and 5.26%, respectively. 

 

Figure 9. Pollutant emission comparison. 

Figures 10 and 11 represent the power consumed by each component of an HEV. An 

analysis of Figures 10 and 11 indicates that the power consumed by the ICE is substan-

tially reduced after the optimization process. The impact of optimization is a better fuel 

efficiency obtained during vehicle runs. 

 

Figure 10. Energy usage (kJ) of HEV before optimization. 
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Figure 11. Energy usage (kJ) of HEV after optimization. 

The SOC and pollutant emissions for unoptimized and optimized vehicles are shown 

in Figures 12 and 13, respectively. The SOC profile indicates a suitable zone of operation 

for longer battery life. The pollutant emissions decrease after implementation of the opti-

mization algorithm. 

 

Figure 12. SOC and emissions before optimization. 
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Figure 13. SOC and emissions after optimization. 

7. Conclusions 

The paper presents a DIRECT optimization algorithm for component sizing of HEV. 

The proposed method was tested for various standard drive cycles including Indian-sce-

nario drive cycles. The proposed algorithm provided an average increase of 51.73% in fuel 

economy; additionally, the emission of the pollutant components HC and NOx were re-

duced by 8.33% and 5.26% on average, respectively. The method reduced the energy con-

sumed by the ICE itself by 64.1%, showing a great overall improvement in fuel economy. 

The algorithm indicated optimal SOC of the battery during the operation. Simulation re-

sults indicate the effectiveness of the proposed optimization algorithm. Future work may 

include the effect of battery chemicals and thermal properties in the analysis. 

Author Contributions: S.S. developed the theoretical formalization, and performed the mathemat-

ical analysis and the analytic calculations. He also developed the project in MATLAB and Simulink 

software. S.K.M. was involved in implementation of the optimization algorithm and in the write-up 

of the paper. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Abbreviations 

Symbol/Abbreviation Meaning 

Τ Torque (Nm) 

τcrank Cranking torque (Nm) 

τaccess Lumped torque of mechanical accessories (Nm) 

τcct Closed throttle torque (Nm) 

Jeng, Jmotor Engine and motor inertia (kg) 

α1, α2, α3, α4 
Coefficients for static friction, Coulomb friction, viscous 

friction, and air compression torque 

ω Angular speed (rad/sec) 
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τref, τdemand Reference and demanded torque (N-m) 

τmotor, τregeneration Motor and regenerative torque (N-m) 

τspin_loss Toque loss in spinning (N-m) 

Pelectrical, Pmechanical Electrical and mechanical power (kW) 

Vbus, Vterminal DC bus and terminal voltage (V) 

I Current (A) 

R  Resistance (Ohm) 

SOC State of charge 

T Temperature (0C) 

C Capacitance (F) 

Dyn Dynamic 

AHr Ampere hour 

ƞ Efficiency 

CVT Continuous variable transmission 

x State variable 

u Control variable 

Γ Set of possible hyper-rectangles 

d Size of rectangle 

Φ(Γs) Hyper-rectangle with best-objective-function value 

€ Set of all best-objective-function hyper-rectangles 

cr Center of objective function 
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