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Abstract: Battery state of charge (SOC), state of health (SOH), and state of power (SOP) are deci-
sive factors that influence the energy-management system (EMS) performance of electric vehicles.
However, the accurate estimation of SOC, SOH, and SOP remains a challenge due to the high non-
linearity of the battery dynamic characteristics and the strong coupling among the states. In this
paper, different methods of single-state and two-state joint estimation are classified and discussed,
including SOC/SOH and SOC/SOP joint estimation methods, and their advantages and limitations
are analyzed. On this basis, key issues of joint multi-state estimation are discussed, and suggestions
for future work are made.

Keywords: electric vehicle; Lithium-ion battery; core state; joint estimation; fusion technology

1. Introduction

A battery-management system (BMS) is a product or technology that manages and
controls a power battery in some way [1]. Its main task is to provide the status information
required for energy management and vehicle control, which ensure the safety and reliability
of the power battery system [2,3]. The basis of energy management and control is to
accurately and efficiently monitor the state information of the power battery, including the
state of charge (SOC), state of health (SOH), and state of power (SOP) of the battery, etc. [4].
The locations of SOC, SOH, and SOP in the BMS are shown in the Figure 1.

Figure 1. BMS architecture diagram.

Obviously, SOC, SOH, and SOP estimation is the key function in BMS, and much work
has been completed in this field of research. Many traditional methods of SOC estimation
have been developed, such as the ampere–hour counting method, open circuit voltage
method, and alternating current (AC) impedance method. These methods establish the
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correspondence between the external parameters of power battery (voltage, resistance)
and the SOC to achieve the estimation of the power battery SOC with the disadvantage of
being time-consuming and unable to be implemented online [5–8]. Model-based methods
use an equivalent circuit to model battery dynamic characteristics and achieve the SOC
estimation during the iterative operation of filtering methods, such as the Kalman filter
(KF). Their disadvantages focus on the high dependence on the accuracy of the model
parameters, which are very sensitive to aging, temperature, and SOC of the battery [4].
Their advantages are ease of engineering application and ease of understanding [9,10]. Data-
driven methods estimate states with neural network model, which are trained by big data.
Their advantages lie in high precision, and the disadvantages include the high uncertainty
and neglect of the chemical characteristics of the battery affected by the temperature [11–14].
Similarly, the SOH-estimation method includes model-based and data-driven methods, the
strengths and shortcomings of which are similar to the SOC-estimation method. As the
resistance and capacity are affected by SOC, the value of SOH is affected by SOC [15,16].
The multi-constraint dynamic method is a common method of SOP estimation, which
integrates multiple constraint variables (terminal voltage, current, SOC, etc.) to predict
power-battery SOP in real time, and these variables change in real time with the battery
SOH. As a result, the SOP estimation will not be credible if the influence of battery SOH and
SOC is not considered [14,17–19]. The battery SOC, SOH, and SOP do not exist separately
but are coupled with each other, for example, temperature will affect SOC, SOH, and SOP
at the same time, and the three will, in turn, cause temperature fluctuations [17]. The SOC
estimation needs to consider the influence of SOH on parameters, such as the resistance
and capacity used for SOC estimation. The capacity and internal resistance parameters
used for SOH are limited by the accuracy of the SOC estimation, and the multi-constrained
current estimates used for SOP are obtained under the constraints of SOC- and SOH-related
parameters [20]. These show that it is unreasonable to estimate any one of the three states
separately without considering the other two state values; furthermore, the development
of joint estimation methods for the coupled states is essential to achieve a higher estimation
accuracy for each component [21]. Retrieved relevant reviews about state estimation on the
web of science. It is shown in Table 1.

Table 1. Reviews about state estimation on the web of Science.

State References

Single-state [6,11,15,16]

Dual-state [17,19,20]

The reviews in the Table 1 describe the development process of the methods of single-
state estimation or dual-state estimation. However, single-state estimation is not compared
with dual-state estimation, and the advantages of dual-state estimation are not highlighted.
This paper will compare single-state estimation and dual-state estimation and more intu-
itively explain the advantages of joint estimation.

The advantage of the joint estimation method is that it can improve estimation accuracy
and reduce the calculation cost, thus improving the power and safety and reducing costs of
the electric vehicle. The use of joint estimation is conducive to promoting the popularity
of electric vehicles, in line with the national demand for the development of electric
vehicles [1,22,23]. This paper mainly summarizes the joint estimation methods of SOC/SOH
and SOC/SOP and proposes the inadequacy of existing research and future prospects.

The structure of this paper is as follows. Section 2 provides a brief description of
three common methods for state estimation of SOC, SOH, and SOP, and analyzes the
limitations of existing single-state estimation methods: modeling, parameter identification,
and experimental validation, which, under the set specific operating conditions, ignores the
influence caused by the coupling relationship and thus cannot circumvent the errors [24].
Section 3 analyzes and summarizes the joint SOC/SOH-estimation method and the joint
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SOC/SOP-estimation method in recent years. The main logic is to use multiple algorithms
to develop parameter and SOC estimation models and interact with each other; further-
more, it develops a SOP estimation model based on the interacted SOC/SOH estimation
models. The accuracy of this was significantly improved by joint estimation. Section 4
summarizes the development status and bottlenecks of multi-state joint estimation technol-
ogy by comparing methods, technical points, difficulties, advantages, and disadvantages,
and the future development direction of joint estimation is proposed according to our
own understanding to promote the development and promotion of electric vehicles. The
structure of this paper is shown in Figure 2.

Figure 2. The structure of this paper.

2. Single-State Estimation
2.1. Definition and Estimation Methods of SOC
2.1.1. Definition of SOC

The state of charge of a lithium-ion battery is defined as the percentage of the residual
capacity Qcurrent in its maximum available capacity Qrate [10], which is shown as follows:

SOC =
Qcurrent

Qrate
× 100% (1)

2.1.2. Estimation Methods of SOC

An accurate estimation of SOC is the core technology used to guarantee the rational
application of electric energy storage and electric vehicles [25]. Insufficient accuracy in SOC
estimation may lead to the overcharging or over-discharging of the battery, thus shortening
the battery life or even causing spontaneous combustion, which is harmful to the driver [19].
Furthermore, the control system will not make full use of the energy in the battery pack,
resulting in a redundancy of power in a part of the battery, reducing the power output and
driving range and increasing the overall vehicle quality and manufacturing cost, which
is unfavorable to the promotion of electric vehicles [26]. A large number of studies have
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been conducted, and various methods have been proposed to achieve different degrees
of improvement in SOC estimation accuracy [27]. A classification of the SOC-estimation
methods is shown in Figure 3, and their advantages and disadvantages are summarized
in Table 2.

Figure 3. SOC-estimation methods classification.

Table 2. Advantages and disadvantages of SOC-estimation methods for Li-ion batteries.

Estimation Methods Types Advantages Disadvantages Estimation Error

Experimental based [23–25]
Ampere-time counting.

Open-circuit voltage.
AC impedance

Simple principle.
Reliable.

Time-consuming.
Cannot be estimated in

real time.
Cumulative error exists

<5%

Model-based
approaches [19,27,28]

Kalman filter.
Particle filter.

Sliding mode observer.

Closed-loop estimation.
Low requirement for
initial SOC values.

Difficult modeling.
Difficult parameter

identification.
<5%

Data-driven approach [21,27]

Neural network class.
Support vector

machine.
Fuzzy logic.

No modeling is
required.

High level of data
dependency.

Time-consuming.
<1.5%

Hybrid methods [28–32]

Data-model parallel
mixture estimation.
Data-model nested

mixture model.

High estimation
accuracy.

Good robustness

Complex calculations.
High energy
consumption.

Slow estimation speed.

<1%

For SOC estimation, the traditional methods are simple and reliable but make it
difficult to accomplish real-time estimations [23–25]. The ampere–time counting method is,
by far, the most extensively used method in the traditional methods. In this method, the
SOC is estimated by measuring the discharging currents of a battery and integrating them
over time. The SOC is calculated by the following equation.

SOC(t)= SOC0(t0)−
η

Cn

∫ t

t0

I(t)dt, (2)

where, SOC(t0) is the initial state of charge, η denotes the coulombic efficiency, Cn represents
rated capacity, and I(t) is the instantaneous discharge current of the battery.

The ECM-model-based SOC evaluation requires the derivation of the circuit models
consisting of various circuit elements arranged in series or parallel combinations, such
that they replicate the dynamics of the battery. Various ECM models have been proposed,
including the Rint model, the RC model, and the Thevenin model [24]. The Thevenin
model is used as typical ECM, which is designed using one RC group, a resistance, and
voltage source, as depicted in Figure 4.

The model-based estimation method solves the problem of traditional methods, i.e.,
that they cannot be estimate in real time, and has the advantages of fast estimation and
a scientifically rigorous design process. However, its accuracy is easily affected by the
modeling accuracy, and its parameters are time-varying in the application process, resulting
in nonnegligible model errors [19,27]. In order to avoid the impact of modeling accuracy,
a data-driven class method without modeling is proposed. The data-driven estimation
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techniques can estimate SOC accurately by measuring battery parameters, including cur-
rent, voltage, and temperature, thus, battery model, added filter used in model-based
approaches can be avoided. Moreover, the network parameters of data-driven methods are
determined by the self-learning algorithm. The process is completely different from model-
based estimation techniques, where human expertise and substantial time are needed for
parameter estimation. The data-driven approaches often require the use of a machine
learning (ML) platform in order to obtain the relationship and rules from the data. The
basic method of the data-driven method is a neural network (NN). The basic structure of a
neural network (NN) consists of a three-layer formation, as shown in Figure 5.

Figure 4. The schematic diagram of Thevenin equivalent circuit of LIB.

Figure 5. The general architecture of the three-layer neural network for SOC estimation.

The input layer takes the vectors of the instantaneous current, voltage, and temperature
values. The output layer is the instantaneous SOC value. By training the NN with the
input–output pairs, it is able to form a non-linear map that accurately models the input–
output relationship without any prior knowledge of the internal structure of the battery.
The relationship between the input layer and the output layer is developed using a suitable
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number of hidden layers, hidden neurons, and activation functions. The SOC in the output
layer can be expressed by:

SOCi= fi

{
∑
k

Wj,kOj + θj,k

}
, (3)

where Wj,k and θj,k denote the weight and bias from the hidden layer to the output layer,
respectively, Oj is the output of the hidden layer, and fi represents the activation function.

The model-based estimation method only relies on the mapping relationship between
system inputs and outputs to develop SOC prediction models. Data-driven methods avoid
the errors caused by time-varying parameters, but the quality of training data has a huge
impact on the accuracy of SOC estimation and has high computational cost and long
computation time [21,27]. A hybrid-driven approach is proposed to combine the rapidity
of model method estimation with the characteristics of the data-driven nonlinear modeling
capability [28]. Hybrid methods are used to improve the accuracy and robustness of SOC
estimation. Usually, two or three algorithms are combined to develop a hybrid method.
In most cases, the optimization method is employed with model-based and data-driven
methods to examine SOC which not only enhances the performance, but also delivers
accurate results [29–32].

The authors in [29] proposed a genetic algorithm (GA) to find the optimal battery
parameters of ECM in order to estimate SOC using a hybrid pulse power characteriza-
tion (HPPC) experiment, as shown in Figure 6. A series of actions, including crossover,
mutation, and selection, is employed to identify the model parameters. The measured
current and battery terminal voltage are assigned as the input and output of the model,
respectively, during the process of parameter identification. The fitness value is determined
by calculating the difference between the measured voltage values and the model output.
The proposed method can estimate the SOC of the LIB pack accurately and prevent the
battery pack from overcharging and over-discharging, with the SOC error being less than
1%. The experiment’s results also confirm the suitability of the proposed algorithm for
online BMS execution.

Figure 6. Battery model parameters determination using GA.
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The SOC-estimation method mentioned above is performed under certain constraints,
such as specific temperature conditions, estimating SOC at the cell level, or ignoring the
physical and chemical characteristics of the battery. Battery charging and discharging
not only changes the SOC, but also causes battery aging, which in turn affects the SOC
by affecting the battery capacity. SOP estimation is performed under the SOC constraint,
and the heat generated in the cell causes a change in the battery temperature, resulting in
parameter variation during SOC estimation. Considering the relationships among SOC
and SOH and SOP, ignoring the influence of SOH and SOP, to estimate SOC alone will have
inherent defects and limit the estimation accuracy; the development of a joint estimation
method for SOC, SOH and SOP is highly necessary.

2.2. Definition and Estimation Methods of SOH
2.2.1. Definition of SOH

With the increase of battery charging and discharging times and the accumulation of
sheltering time, the battery health status gradually deteriorates, its power and capacity
show varying degrees of attenuation, the battery capacity decreases, and the internal
resistance increases. Thus, the capacity and internal resistance are commonly used to
define SOH.

1. SOH is one of the important parameters of lithium-ion batteries, which is calibrated
according to the change of battery capacity, as follows.

SOH =
Qm
Qr

× 100%, (4)

where Qr is the rated capacity, and Qm is the current maximum available capacity of the
battery, which is measured under rated conditions.

2. SOH is defined according to the internal resistance of the battery, as follows.

SOH =
Re−R
Re−Rn

× 100%, (5)

where R is the internal resistance under the current state, Re is the internal resistance of the
battery when it reaches the end of life, and Rn is the internal resistance of the new battery.

2.2.2. Estimation Methods of SOH

Inaccurate estimation of battery SOH can affect battery life, safety, and reliability [31].
By monitoring the battery SOH in real time to correct the SOC, the operation of the
BMS facilitates, and thus improves, the driving safety of electric vehicles, reducing the
maintenance and use costs of electric vehicles [32]. Scholars have completed a lot of research
on improving the accuracy of SOH estimation; a classification of the methods used for SOH
estimation is shown in Figure 7, and their advantages and disadvantages are summarized
in Table 3.

Figure 7. SOH-estimation methods classification.
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Table 3. Advantages and disadvantages of SOH-estimation methods for Li-ion batteries.

Estimation Methods Types Advantages Disadvantages Estimation Error

Traditional estimation
methods [31–34]

Capacity measurement.
Resistance

measurement.
Differential analysis.

Simple principle. Small
calculation volume.

Accurate.
Reliable.

Time consuming.
Cannot be estimated in

real time.
Cumulative
error exists.

<5%

Methods for filtering
classe [32–36]

Kalman filter.
Particle filter.

Least squares.

Can be estimated in
real time.

High precision.
Good robustness.

Difficult modeling.
Difficult parameter

identification.
Large

calculation volume.

<5%

Data Driven [35–41]

Support vector
machine.

Convolutional
neural network.

Real-time estimation.
Highly adaptive.
High accuracy.

High reliance on data
accuracy.

Time-consuming
offline training.

<1%

The traditional estimation method is simple and efficient. Its disadvantage is that
it requires a high experimental environment, and, using this method, it is difficult to
accomplish real-time estimation [32]. The adaptive filtering method is suitable for online
real-time estimation, which is superior to the laboratory method, but the accuracy of
this method relies on the model accuracy and the type of filtering [34]. The data-driven
class estimation method does not have to consider model accuracy and filter type, which
conquers the shortcomings of the filtering method estimation, but the accuracy of the
data-driven class method is highly dependent on high-quality data [41].

The SOH estimation method is also performed under certain constraints, such as
defined temperature conditions and cell types [42]. The temperature of the battery is
affected by the discharge rate, and the discharge rate is influenced by the SOC and SOP.
Therefore, the SOH is affected by the battery SOC and SOP, and the accuracy of SOH
estimation alone is limited, and for these reasons the joint estimation of multiple states
is necessary.

2.3. Definition and Estimation Methods of SOP

The state of power refers to the maximum power that can be continuously used to
charge or discharge. Insufficient SOP estimation may lead to a hindered power output
of the vehicle, an interrupted power output, and a fluctuating torque, which affects the
driving experience [3]. The accurate estimation of SOP during acceleration, regenerative
braking, and gradient climbing can ensure the safety of the battery, improve the safety and
driving experience of electric vehicles, meet the user’s demand on vehicle performance,
enhance the audience of electric vehicles, and contribute to the promotion and popularity
of electric vehicles [14]. The existing SOP estimation techniques are classified in Figure 8
and their advantages and disadvantages are summarized in Table 4.

Figure 8. SOP-estimation methods classification.
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Table 4. Advantages and disadvantages of SOP-estimation methods for Li-ion batteries.

Estimation Methods Types Advantages Disadvantages Estimation Error

Interpolation method [14] HPPC. Estimation method
is simple.

Requires extensive
testing.

No consideration of
polarization and

aging phenomena.

About 3%

Model estimation
methods [42,43]

Voltage constraint.
SOC constraint.
Multi-constraint

dynamic method.

Simple.
Efficient.

Single-state estimation
methods have large

errors, leading to
threats to the safety of

the battery.

<5%

Data Driven [44,45]

BP neural networks.
Adaptive fuzzy neural.

Support
vector machines.

Good self-learning
ability.

High accuracy.
Good robustness.

Requires extensive
experiments.

Computationally
complex and

time-consuming to
train offline.

<2.5%

In SOP estimation, the interpolation method is simple and easy but not suitable for
the continuous SOP estimation [45]. To conquer the weakness of the interpolation method,
the model estimation method is proposed. Multi-parameter constraints are introduced in
the estimation to achieve the prediction of sustained peak power, but the single constraint
estimation error is large, and there is a local optimal solution in the multi-constraint
estimation, so a data-driven approach is proposed to estimate the SOP. The data-driven
estimation method effectively overcomes the local optimal solution problem, with the
disadvantage that it requires a large amount of experimental data and is computationally
intensive [44]. SOP estimation often uses SOC as a constraint and is influenced by capacity
and internal resistance variation caused by battery aging [44]. From the above analysis,
it is clear that the single estimation of SOP is not reasonable, and the joint estimation in
multiple states is inevitable.

3. Dual-State Estimation

The above analysis shows that the core states of the battery are coupled with each
other. If any one of the three states is estimated separately without considering the other
two states, the estimation accuracy will be limited; therefore, the joint estimation of the
coupled states is necessary. From the summary analysis of the battery state estimation
methods, it can be seen that battery SOC estimation is the basis for joint-state estimation.
The accuracy of SOP and SOH estimation can be guaranteed only if the SOC estimation
is accurate. For this reason, SOC/SOH and the SOC/SOP joint estimations are frequently
performed when developing dual-state estimations [45–48]. Joint estimation enables each
component to reach a higher estimation accuracy, thus achieving lower manufacturing cost,
improved safety and power of electric vehicles, and wider promotion and popularization
of electric vehicles [48].

Due to the different definitions, the joint estimation of SOC, SOH, and SOP could not be
performed by the experimental method [49,50]. The data-driven methods build prediction
models by constructing the mapping relationship between system inputs (current, voltage
and temperature) and outputs, thus realizing joint SOC/SOH and SOC/SOP estimations
based on data-driven methods [14]. Based on the fusion of the above two joint estimation
methods, the joint estimation method for the numerical–modular hybrid class can be
obtained. The methods for joint estimation are classified into three types: model-based,
data-driven, and number-model fusion [51], which are shown in Figure 9.
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Figure 9. The classification of dual-state estimation methods.

3.1. SOC/SOH Joint Estimation

SOH is mainly influenced by SOC, temperature, discharge multiplier, cumulative
battery life, number of charge/discharge cycles, and cumulative throughput of charge [5].
SOC is mainly influenced by temperature, battery health status, discharge multiplier, etc.
The interactive relationship between SOH and SOC of the battery is shown in Figure 10.

Figure 10. The interactive relationship between SOC and SOH.

The joint SOC/SOH-estimation methods are summarized in Figure 11.

Figure 11. The joint SOC/SOH-estimation method.
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3.1.1. Model-Based Estimation

Most of the relevant studies on joint model-based estimation use the equivalent circuit
model (ECM), and, on top of that, various filtering algorithms are applied to estimate the
battery state and aging parameters, respectively, which are coupled with each other as
inputs. Since SOC and SOH have different time scales, two coupling ideas are derived from
this: simultaneous estimation and joint multi-scale [19]. The joint estimation process at the
same time scale is shown in Figure 12.

Figure 12. Joint estimation process at the same time scale.

Chunyang Zhao [49] has proposed the dual extended Kalman filter (DEKF) based on
the ECM and selected ohmic internal resistance and capacity as one of the states. When
SOC is used as a state for prediction, ohmic internal resistance and battery capacity are
brought into EKF1 as known parameters for state prediction. When the ohmic internal
resistance and capacity are the most-stated quantities for prediction, SOC is brought into
EKF2 as a known parameter for state prediction to achieve iterative joint estimation, which
improves the estimation accuracy. To solve the problem of the biased estimation of DEKF
under strong nonlinear conditions, Prashant Shrivastava [9] proposed the dual unscented
Kalman filter (DUKF), in which the ohmic internal resistance is considered as a state along
with the capacity, and the two paths are alternated so as to achieve the joint estimation
of SOC and SOH. To solve the uncertainty problem of noise during the driving of electric
vehicles, Prashant Shrivastava [9] proposed the dual adaptive unscented Kalman filter
(DAUKF) to realize the joint estimation of SOC and SOH on the basis of AUKF. AUKF1
and AUKF2 are chosen to calculate SOC and ohmic internal resistance, respectively, and
the iterative calculation is continuously updated to realize joint estimation. Rui Zhu [51]
has proposed the Multi-New Information Adaptive Untraceable Kalman Filter algorithm
based on AUKF with the addition of multi-new information recognition theory. The battery
capacity is used as a known parameter to achieve the real-time estimation of the SOC of the
battery, and the SOC is used as a known quantity to estimate the capacity and SOH using
a variable forgetting factor recursive least square algorithm. Hongyan Zuo [52] proposed to
use a fractional-order model that can describe the battery performance more accurately. The
SOC is estimated using the fractional order model-based extended Kalman filter (EKF), and
the battery’s internal resistance is estimated using the AUKF. The synergistic estimation
of SOC and SOH is achieved by iteratively updating the internal resistance and SOC [53].
Hongyan Zuo used the multi-innovation adaptive unscented Kalman filter (MIAUKF) to
estimate the SOC. Additionally, they used variable-forgetting factor recursive least squares
(VFFRLS) to estimate the battery SOH. Then, the MIAUKF and VFFRLS were combined
to realize the joint estimation of SOC and SOH. XinGao used the fraction order extended
Kalman filter (FOEKF) to estimate SOC. The SOH was estimated by AUKF, and the internal
resistance and SOC were iteratively updated to achieve accurate estimations of SOC and
SOH. The above joint estimation is a simultaneous estimation, and the algorithm selection,
model types, advantages, and disadvantages are summarized in Table 5. The estimation
process for different time scales is shown in Figure 13.
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Table 5. Joint SOC/SOH estimation at the same time scale.

Algorithms Model Advantages Disadvantages Estimation Error

DEKF [53–55] Thevenin model

High estimation
accuracy.

Faster convergence.
Good robustness.

The effect of ambient
temperature on the

battery is not
considered. Individual
differences in batteries

are not taken into
account. Calculated

losses exist.

<2%

DUKF [9,56,57] 2RC model

Smaller error.
Higher precision.

Reflects actual
battery characteristics.

The effect of ambient
temperature on the

battery is not
considered, and the

individual differences
of the battery are not
taken into account.

<2%

DAUKF [56,58] 2RC model

Fast calculation speed.
High estimation

accuracy.
Good convergence.

Not applicable to
battery packs.

Calculated losses exist.
<2%

MIAUKF + VFFRLS [59–61] 2RC model High accuracy
and robustness.

The effect of
temperature on the

estimation accuracy is
not considered. There

is a computational loss.

<2%

FOEKF + AUKF [58,61,62] 2RC
fractional-order model

High precision. High
self-adaptability. Fast
convergence speed.

Highly influenced by
temperature. Not

applicable with battery
packs. High

calculation volume.

<1%

Figure 13. Joint estimation process at different time scales.

Yuan Zou [63] proposed to establish multi-time scale state space equations, construct
multi-dimensional spatial interpolation surfaces of SOC/SOH and battery model parame-
ters, and realize the joint estimation of SOC and SOH based on a unified particle filter (UPF).
Updating the capacity parameters and model parameters in the SOC estimation based on
the current SOH estimates improves the long-term estimation performance of the SOC.
Online joint estimation is achieved using the online health indicator (HI) as the measure-
ment value, instead of the battery capacity in the SOH estimation. He Yao [54] introduces
macroscale and microscale criteria L and k. A time update and measurement update are
performed when the microscale criteria accumulate to the macroscale criteria L [64–66]. The
macroscopic time scale uses the EKF algorithm for parameter (capacity) estimation, which
leads to the SOH value. At the microscopic time scale, the Adaptive square root extended
Kalman filter (ASREKF) algorithm is used for charge-state SOC estimation [67,68]. Ehprem
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Chemali [67] proposed to increase the parameter identification scale in SOC estimation and
use the recursive least squares method with a forgetting factor to estimate the cell parame-
ters to obtain the ohmic internal resistance and the SOH, while updating the parameters to
estimate the SOC. Ruxiu Zhao [68] proposed to use EKF1 for microscopic SOC estimation
and EKF2 for macroscopic-rated capacity estimation, thus realizing the joint estimation of
the two states. ShaoDong Cui [69] proposed a multi-timescale EKF using two observers
at once at the macroscopic scale to estimate SOH and at the microscopic scale to estimate
SOC. The advantages and disadvantages of the above SOC/SOH joint estimation methods
at multiple time scales are summarized in Table 6.

Table 6. Joint multi-timescale SOC/SOH-estimation methods.

Algorithms Model Scales Disadvantages Estimation Error

UPF + UPF [63,64] 1RC model

SOH estimation scale is
one charge/discharge
cycle, SOC estimation

interval is 0.1 s.

Higher precision. Lower
computational volume.

Low hardware
requirements.

<1.5%

ASREKF + EKF [64,65] Thevenin model

SOH estimation scale is
one charge/discharge
cycle, SOC estimation

interval is 1 s.

High accuracy and low
calculation volume. <1.5%

FFRLS + DEKF [68–70] 2RC model
SOH estimation scale is
2.5 s, SOC estimation

interval is 1 s.

High stability and accuracy,
saving calculation cost. <1.5%

The joint estimation of multiple time scales reduces the computational cost while
ensuring the estimation accuracy, with the disadvantage that the effects of ambient tem-
perature and the number of cycles are not considered. The joint model-based SOC/SOH
estimation relies on the accuracy of the model, when the battery is not modeled accurately,
the estimation accuracy cannot be guaranteed. A complex model is better able to describe
the internal dynamic of the battery, which not only improves the estimation accuracy, but
also results in a higher computational burden [71]. How to balance the relationship between
model and estimation accuracy and computational speed is a difficult problem that has not
yet been solved for joint estimation based on models.

3.1.2. Data-Driven Estimation

In order to avoid the effects of the insufficient accuracy of the ECM, a data-driven
joint estimation method is proposed. In the data-driven method, the mapping relationship
between inputs (voltage, current, temperature, or internal resistance) and SOC and SOH
is constructed by date-driven model [2]. Taking the SOH estimation value into account
in the SOC estimation can eliminate the negative impact of the aging factor of a Li-ion
battery [17,22,72–74]. The flow of the data-driven approach is shown in Figure 14. Table 7
summarizes the use of a data-driven method for joint estimation methods in recent years.

Figure 14. The process of data-driven approach.
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Table 7. Joint data-driven SOC/SOH-based estimation method.

Algorithms Data Set Advantages Disadvantages Estimation Error

Double Recurrent Neural
Netwok [17,72,73]

NASA Lithium Battery
Random Use Dataset

Independence of
battery model.
No decoupling

required.

Need to keep
updating data. <1%

LSTM [74] Oxford Aging Dataset

Accuracy is higher than
wavelet neural network
and BP neural network,

and the long-term
dependency problem

is solved.

No validation of
effectiveness on
battery packs.

<1%

SWPSO-DRNN [22,75,76] Customized data sets

Higher training effect
than gradient descent

algorithm. High
generalization ability

and robustness.

Not applicable to
battery packs. <1%

GRN-RNN + CNN [77–79]

NASA Lithium Battery
Random Use Dataset
and Oxford Battery

Aging Dataset

Avoid long-term
dependence on new

information, fast
computation, high

accuracy, and
good robustness.

No validation of
effectiveness on
battery packs.

<1%

Mogrifier LSTM-CNN [79] NASA dataset and
Oxford aging dataset

Solve the problem of
large local errors of

LSTM method, good
adaptability and
high robustness.

No validation of
effectiveness on
battery packs.

<1%

The data-driven joint estimation obtains the SOC and SOH variation characteristics by
machine learning without relying on the accurate model or decoupling [17].

Shuo Li [17] selected the historical operating data of the battery voltage, current,
surface temperature, SOC, and SOH as feature quantities and applies long short-term
memory (LSTM) to predict the voltage and surface temperature in subsequent cycles.
Based on the predicted voltage and temperature, the LSTM deep learning network is used
to jointly predict the trends of SOC and SOH [74]. Hicham Chaoui [73] proposed to build
a double-recurrent neural network (DRNN) with a dynamic mapping capability based
on a nonlinear autoregressive exogenous (NARX) structure for battery SOC and SOH
estimation, introduced the self-adaptive weight particle swarm optimization (SWPSO)
algorithm to train the DRNN on the basis of appropriately selected training data and test
data, and compared it with the gradient descent training method. The results show that
SWPSO-DRNN can effectively compensate for the influence of temperature and aging
and improve estimation accuracy. Marcantonin Catelani [44] applied a recurrent neural
network with a gated recurrent unit for SOC estimation and a convolutional neural network
for SOH estimation. Based on the voltage, current, and temperature acquired from BMS,
the convolutional neural network (CNN) is capable of SOH estimation. Jinpeng Tian [37]
proposed that both SOC and SOH estimation are based on RNN estimation, the gated
recurrent unit and recurrent neural network (GRU-RNN) used in the joint estimation
method for SOC estimation is able to use historical information far from the current state,
avoiding the long-term dependency problem in RNN, and has a stronger data-feature-
extraction capability and higher accuracy. The CNN used for SOH estimation has the
advantages of fewer parameters, lower computational burden, and a smaller memory
footprint [76,77]. The Mogrifier LSTM neural network has a stronger nonlinear mapping
capability than the original LSTM neural network, a higher accuracy of SOC estimation,
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and different estimation scales for SOC and SOH estimation, which can greatly reduce the
computational effort of the joint estimation model [78].

The data-driven method has a higher estimation accuracy compared with the model
method, but the collection of training data is time-consuming, and the quality of training
data directly affects the estimation accuracy. To solve the above problem, the method of
data-model fusion is proposed for joint estimation, which reduces the computational effort
of using a data-driven approach alone, while obtaining a higher accuracy than that of
estimations using models alone.

3.1.3. Fusion Estimation Algorithm Based on Data-Driven Approach and Model

The complex electrochemical mechanisms and highly nonlinear coupling of the pa-
rameters of the battery have led to a number of unresolved or further developed problems
in lithium-ion modeling and battery-state estimation: scarcity of coupled modeling studies
of temperature, electrical, and attenuation behavior [14,31,34]. Generally, model-based
joint estimation is highly dependent on model accuracy, while data-driven estimation
is computationally expensive, relying on training data. To conquer the defects of both
methods, a joint estimation method based on data-driven and model-fusion approaches
is introduced.

Consider the mutual-influence relationship between SOC and SOH: SOH determines
the capacity in the SOC equation on large time scales, while, on small time scales, SOC
affects the rate of change of SOH. Considering the interaction between SOC and SOH, the
coupling relationship is decoupled, two estimation algorithms are used to update SOC
and SOH separately, and the two estimators update each other’s states and parameters
internally. The remaining battery power can be obtained directly from the relationship
with current and voltage, and the model is easy to build and robust [64], so a model-based
approach is considered to estimate the SOC. The battery-aging model is difficult to establish
and needs to explore the pattern from a large amount of data, which can be solved more
easily and quickly by adopting a data-based approach.

Yuan Zou [63] has proposed a fusion method to construct a coupled thermal–electrical-
aging cell model for SOC/SOH joint estimation. In the estimation model, UKF is introduced
to estimate SOC, LSTM-RNN to estimate SOH, and the UKF-NN method with dual time
scales is designed to estimate SOC and SOH jointly. Figure 15 illustrates the flowchart of
the online implementation of this joint estimator.

Figure 15. Flow chart for joint estimation of dual time scale.

Arpita Mondal [78] proposed a joint battery multi-timescale state-estimation method
based on the data-driven method (DDM) and ECM. The SOC is estimated at the microscopic
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scale and with microscopic cell parameters, while the SOH is estimated at the macroscopic
scale [79]. The overall flow chart is shown in Figure 16.

Figure 16. Block diagram of joint SOC/SOH estimation.

Step 1: For the cycle period before the prediction’s starting point (SP), establish the
Thevenin model, use the LS algorithm to identify the resistance–capacity parameters,
extract the internal resistance as heart failure (HF), and establish the LSSVM battery-aging
model.

Step 2: For the Nth cycle (N > SP), identify the internal resistance value under the
current cycle as HF and input it into the LSSVM aging model for SOH estimation.

Step 3: Select the system state variables as SOC and polarization capacitance; the
input variable is current, and the output variable is terminal voltage. Identify the value of
resistance and capacitance, and update it in each cycle, followed by recursive operations
using the UKF algorithm to achieve SOC estimation.

The number-model fusion method integrates the advantages of model-based methods
and data-driven methods [80,81], thus reducing the dependence of estimation accuracy
on model accuracy and the computational cost. The above advantages make the number-
model method fusion an effective method for battery joint estimation.

3.2. SOC/SOP Joint Estimation

SOC and SOP are the key pieces of information for the vehicle control strategy, which
assists the EMS to realize power distribution [82–85]. The relationship between SOC and
SOP is shown in Figure 17. SOC is a constraint for SOP estimation, and SOP indirectly
affects SOC estimation by influencing the discharge C-rate and cell resistance. Since SOC is
the constraint quantity for estimating SOP, most scholars use ECM to estimate SOC and
then perform the joint estimation of SOC and SOP.

Theoretically, the more RC networks that are connected in series in the multi-order
model, the higher the accuracy of the battery model. However, in practical application,
the terminal voltage response of the RC network with a second order or above is not
much different and is close to the terminal voltage response of an actual battery. The
increase of the order will greatly increase the number of calculations completed by the
processor, which is obviously not worth comparing with the slight improvement of the
accuracy. Therefore, in actual use, in order to give consideration to model accuracy and
calculation complexity, the 2RC equivalent circuit model is generally used to estimate SOP.
Chunyang Zhao [49] proposed a detailed method for estimating peak power based on ECM.
Improved first-order ECM is proposed, the recursive extended least squares (RELS) method
is introduced for parameter identification, and SOP is estimated based on voltage and
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current constraints in SOC/SOP joint estimation. As the model’s accuracy is not sufficient,
and the constraints for SOP estimation are incomplete, joint SOC/SOP estimation with
multi-parameter constraints for the second-order ECM was performed. The constraints
for battery SOP mainly include voltage, current, SOC, and temperature, and most studies
select voltage, current, and SOC constraints or temperature, voltage, current, and SOC
constraints [86–88]. The SOP-estimation methods based on the second-order equivalent
model under voltage, current, and SOC constraints are summarized in Table 8.

Figure 17. The relationship between SOC and SOP.

Table 8. SOP-estimation methods based on 2RC model with multiple constraints.

Model Estimation
Method of SOC Constraints Advantages Disadvantages Estimation Error

2RC model EKF Voltage,
current, SOC

The estimation
accuracy is higher
and more robust
than that without

considering
SOC constraints.

No consideration
of temperature and

aging effects.
<5%

2RC model H infinity filter Voltage,
current, SOC

Better robustness
and adaptability

than EKF.

No consideration
of temperature and

aging effects.
<2.5%

2RC model UKF Voltage,
current, SOC

High estimation
accuracy and

good robustness.

No consideration
of temperature and

aging effects
<2%

2RC fractional-
order model

Fractional-order
adaptive extended

Kalman filter
(FO-AEKF)

Voltage,
current, SOC

Better robustness
and adaptability

than EKF.

No consideration
of temperature and

aging effects.
<3%

2RC fractional-
order model

Square-root
unscented Kalman

filter (SRUKF)

Voltage,
current, SOC

High estimation
accuracy and

good robustness.

No consideration
of temperature and

aging effects.
<2%

The accuracy of SOP estimation is improved when second-order ECM is applied
or when voltage, current, and SOC are used as constraints. However, the variation of
temperature or parameters (internal resistance, capacity) are often ignored, which has
significant influence on the accuracy of the SOP estimation. For example, the rising of
temperature will accelerate the occurrence of side reactions inside the lithium battery [47,89];
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the decrease in temperature will cause the deposition of active lithium on the electrode
surface, and all these cause changes in the usable capacity, internal resistance, and other
characteristic parameters of lithium batteries [8–10]. As a result, it is essential to include
temperature as a SOP constraint to achieve more accurate SOP estimation.

Among existing SOP-estimation methods, the common type of method of considering
temperature is building the relationship between temperature and battery parameters
to estimate SOC through parameter variation and then selecting SOC as a constraint to
achieve the temperature-to-SOP estimation constraint [90–92]. The second type of method
is to obtain the maximum thermal efficiency under the temperature constraint and then
adjust the current constraint to achieve the temperature constraint on SOP [38,93,94]. The
first type of method is represented by Yuanwang Deng [40], whose estimation process is
shown in Figure 18.

Figure 18. The estimation process of the first type of method.

Step 1: Measure the relationship between the capacity and internal resistance of Li-
ion battery at different temperatures and use the Arrhenius equation to fit a curve to the
relationship between them. The capacity temperature compensation coefficient and internal
resistance temperature compensation coefficient are obtained.

Step 2: Bring the two compensation coefficients into the state and observation equa-
tions that characterize the SOC estimation process.

Step 3: Discretize the state equation with compensation coefficients and the observa-
tion equation, and obtain the current SOC value of the battery using the EKF algorithm.

Step 4: Calculate the peak current under SOC, voltage, and current constraints.
Step 5: Calculate the peak power under multiple constraints by the peak current.
The above steps achieve the temperature constraint on peak power, improve the

temperature adaptation of peak power estimation, and increase the constraint to obtain
a higher estimation accuracy with stronger robustness and safety of battery use.

The second type of method is represented by Marcantonin Catelani [44]. The imple-
mentation flow is shown in Figure 19.

Step 1: Establish the thermal model structure of the battery and calculate the expression
of the heat generation rate according to the law of energy conservation. Calculate the rela-
tionships between the birth heat rate and current, cell temperature, ambient temperature,
thermal resistance, thermal capacity, and thermal time constant.

Step 2: The temperature rise curves of the constant current discharge phase at different
temperatures are used. Use a genetic algorithm to obtain the values of thermal resistance
and thermal capacity at different ambient temperatures.

Step 3: Calculate the maximum heat-generation rate of the battery under this constraint
using the maximum battery temperature as a constraint.
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Step 4: Substitute the maximum heat-generation rate into the heat-generation rate
expression to obtain the current under the temperature constraint.

Step 5: Estimate the battery SOC using the extended Kalman filtering method.
Step 6: Use the dichotomous method to find the peak current under the joint constraint

of SOC, terminal voltage, temperature, and cell current.
Step 7: Calculate the peak power of charging and discharging Li-ion batteries under

multiple constraints. The engineering uses the temperature rise rate of the battery as one of
the constraints to estimate the SOP with high accuracy and robustness, which improves the
safety of the battery.

Figure 19. The estimation process of the second type.

4. Key Issues and Future Work

Based on the description above, the two-state joint estimation approach has been well
developed. However, there is still much room for improvement in terms of estimation
accuracy and computational efficiency for online applications. SOC, SOH, and SOP, as
a dynamically coupled system, are subject to many factors in practice. On this basis, the
difficulties to be solved in the joint estimation of SOC, SOH, and SOP are analyzed from
three aspects, and the outlook on the future development of joint estimation is proposed
from three aspects, as shown in Figure 20.

Figure 20. Key issues and future work.
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4.1. Key Issues
4.1.1. Estimation Errors

Battery-state estimation error come mainly from battery modeling, data collection,
estimation algorithms design, etc. The accumulation of these errors may eventually result
in significant estimation errors. First, no model can fully represent the nonlinear behavior
of lithium batteries. For example, hysteresis effects increase the uncertainty of modeling.
Therefore, a more accurate model is needed to represent cell properties by combining
thermal, electrochemical, and series-parallel circuit models. Second, the inaccuracy of
model-parameter identification affects the accuracy of state estimation. Third, data mea-
surement noises from current, voltage, temperature, and other sensors are inevitable. The
accumulation of errors can lead to large errors in the state estimation of the battery, so it is
of high importance to eliminate these errors. By improving the experimental conditions,
measurement errors can be eliminated to some extent. Finally, as mentioned before, the
estimation process also introduces an online application process and measurement noise.
Therefore, improving existing estimation methods is essential for reducing systematic
errors and achieving accurate SOC, SOH, and SOP estimations.

4.1.2. Estimation Robustness

For single-state estimations of SOC, SOH, or SOP, the robustness of the estimation
method can be easily guaranteed, as long as the development process is correct. and the
algorithm parameter is adjusted appropriately. However, when designing the estimation
method for coupled states of the battery, it is difficult to assure the robustness of the
algorithm because different methods are applied to each state, and it is hard to achieve
combined regulation of methods. As a result, coupling errors may appear in the joint
SOC/SOH estimation; when there is a large error in the SOC estimation, a reversal error
could generate in the SOH estimation, thus leading to simultaneous divergence in the
SOC/SOH estimation, while the total error of the joint estimation is inside of the permitted
range. In addition, as the definition and the calculation of SOC/SOH/SOP at the pack
level are totally different, there is a lack of experimental verification of whether the joint
estimation method proposed for the single cell level is robust when applied to the battery
pack SOC/SOH/SOP estimation.

4.1.3. Division of Time Scale

In terms of battery parameters, SOH changes slowly with time, the SOC estimation
iteration time is millisecond level, and continuous SOP iteration time is second level. Using
the same time scale does not yield accurate and reliable estimates and greatly increases
the computational effort of the control system and reduces stability. Incorrect time scale
division can cause the transmission of errors, making SOC, SOH, and SOP disperse at the
same times. For this reason, it is the future direction of joint estimation to reasonably divide
the scale of each state estimation in the joint estimation process.

4.2. Future Work
4.2.1. Joint Estimation of Battery Pack

For lithium batteries, performance may vary greatly for different manufacturers or
batches. Even for the same branch and batch, there may be differences in the dynamic
characteristics among cells, which will gradually increase with time.

As a result, huge differences exist in estimating the SOC/SOH/SOP between the
cell and pack. When developing a joint estimation method for the battery pack, more
complicating factors have to be considered, such as inconsistency in cell capacity, resistance,
temperature, and SOC; and the joint estimation algorithm structure designation against cell-
module-pack states coupling mechanism; and the algorithm optimization for the reduction
of the central processing unit (CPU) computational burden. In the future, an 800 V pack
system will become mainstream, and packs will become more and more complex; the
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research into SOC/SOH/SOP estimation at the pack level will be the key issue affecting
BMS performance.

4.2.2. Joint Estimation under Intelligent Network Connection

SOH measurement in the full life stage of the battery requires a lot of time and
computational cost, for which data-driven SOH estimations can be established on the Cloud
Platform. The SOH and parameters of different vehicles are uploaded to the Cloud Platform
and categorized and stored, and the battery is monitored, predicted, and simulated on the
Cloud Platform. When an electric vehicle is started, the initial parameters are matched by
the cloud for joint estimation based on the state at start-up, and the data are continuously
uploaded during driving engineering. The computing unit exists independently in the
cloud to reduce the computation burden and free up storage space in the vehicle, thus
improving the whole operation performance of the BMS.

4.2.3. Integration Optimization

In the BMS, the calculation modules of SOC, SOH, and SOP are separated from each
other, and multiple modules are required to complete a core-state calculation. This increases
the computational burden of the control system. To this end, a hypothesis is proposed: the
modules of SOC, SOH, and SOP are integrated and synthesized into a single module. In
this way, the memory requirement for computing is reduced, and lag caused by information
transfer between multiple modules is avoided, thus cutting BMS costs.

5. Conclusions

This paper reviews the development trends of SOC, SOH, and SOP estimation tech-
niques for power batteries and summarizes the advantages and disadvantages of estima-
tion methods.

After this it analyzes the coupling relationship among SOC, SOH, and SOP, points out
the defects of single-state estimation, and reviews the development of joint estimation of
SOC/SOH and SOC/SOP. For the problem of joint SOC/SOH estimation, model-based,
data-driven, and number-model fusion estimation methods are summed up. For the
problem of joint SOC/SOP estimation, a joint estimation method based on two types of
constraints is proposed. The methods and joint mechanisms used for the joint estimation
of SOC/SOH and SOC/SOP are described in detail. These methods are discussed and
evaluated, and their advantages and disadvantages are summarized.

Based on the shortcomings of single-state and dual-state estimation methods, this
paper summarized three unresolved issues: estimation errors, estimation robustness, and
the division of time scale. These three unresolved issues will be the focus of future re-
search. This paper raised three outlooks for the future of the industry: joint estimation
of battery pack, joint estimation under an intelligent network connection, and integra-
tion optimization. These three perspectives offer new possibilities for better development
of BMS.
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