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Abstract: Environment perception is the foundation of the intelligent driving system and is a pre-
requisite for achieving path planning and vehicle control. Among them, obstacle detection is the
key to environment perception. In order to solve the problems of difficult-to-distinguish adjacent
obstacles and easy-to-split distant obstacles in the traditional obstacle detection algorithm, this study
firstly designed a 3D point cloud data filtering algorithm, completed the point cloud data removal of
vehicle body points and noise points, and designed the point cloud down-sampling method. Then
a ground segmentation method based on the Ray Ground Filter algorithm was designed to solve
the under-segmentation problem in ground segmentation, while ensuring real time. Furthermore,
an improved DBSCAN (Density-Based Spatial Clustering of Application with Noise) clustering
algorithm was proposed, and the L-shaped fitting method was used to complete the 3D bounding
box fitting of the point cloud, thus solving the problems that it is difficult to distinguish adjacent
obstacles at close distances caused by the fixed parameter thresholds and it is easy for obstacles at
long distances to split into multiple obstacles; thus, the real-time performance of the algorithm was
improved. Finally, a real vehicle test was conducted, and the test results show that the proposed
obstacle detection algorithm in this paper has improved the accuracy by 6.1% and the real-time
performance by 13.2% compared with the traditional algorithm.

Keywords: intelligent vehicle; obstacle detection; 3D point cloud data; clustering algorithm

1. Introduction

Intelligent vehicles, as the future direction of the automobile field, separate drivers
from complex driving operations through advanced technological means [1]. Relying on
intelligent vehicles to autonomously perceive the surrounding environment and control the
vehicle movement to make up for the lack of driver control of the vehicle plays an important
role in reducing the occurrence of traffic accidents, solving traffic congestion problems, and
reducing pollution to the environment [2,3]. The intelligent vehicle is a comprehensive
intelligent system consisting of four parts: environment perception, positioning, path
planning, and control [4]. The environment perception system acquires the surrounding
environment information through the perception sensors carried by the intelligent vehicle,
which provides a reliable basis for the subsequent positioning and path planning of the
intelligent vehicle [5,6].

To achieve omnidirectional, redundant perception of the surrounding environment,
most intelligent vehicles are equipped with laser radar, cameras, millimeter wave radar
and ultrasonic radar, and other sensors [7]. The cameras have a rich understanding of
the environment but are sensitive to light and more difficult to perceive at night or in
bad weather, thus limiting their application in driving scenes [8]. Millimeter-wave radar
generally operates at a frequency of 77 GHz. The relative velocity of the target can be
obtained directly through the phase difference, and the radar can work all day long, but the
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resolution is low, and the detection effect of small targets is poor [8]. The ultrasonic radar
detection distance is only about 5 m, and the signal is greatly affected by the environment [9].
Three-dimensional laser radar is widely used in the environment perception of intelligent
vehicles because of its wide field of vision, high resolution of distance and angle, strong
anti-jamming ability, independent of illumination, and abundant information obtained
about the surrounding environment [10].

Obstacle detection is the most important component of the perception system. At
this stage, there are two main detection methods: one is vision-based obstacle detection
method, which is susceptible to rain, snow, fog, and other bad weather, and sensitive to
light [11]; and the other is an obstacle detection method that is based on 3D radar point
cloud data and has strong adaptability to the detection environment [12]. Currently,
the commonly used detection algorithms in the field of 3D laser radar target detection
include single-frame-based algorithms, multi-sensor fusion, continuous multi-frame-
based algorithms, and deep learning algorithms. In general, the above algorithms
can be divided into two categories: One is the data statistics class algorithm that can
guarantee the algorithm real time; this kind of algorithm is good in real-time, but in
the presence of near obstacles, it finds them difficult to distinguish, and it has the
problem of splitting long-range obstacles [13]. The other category is the self-learning
algorithm with high processing accuracy. In recent years, many scholars have carried
out many studies by using this kind of method. Qi proposed a PointNet deep learning
network, which directly processes the original point cloud data and segments and
identifies obstacles in the three-dimensional space. This method is simple and efficient,
but it does not consider the local characteristics and uneven density of point cloud
data convolution [14]. Subsequently, PointNet + + and other improved methods were
introduced. Yan proposed an improved sparse convolution network based on the
problems of slow reasoning speed and poor orientation estimation of 3D convolution
network divided by voxels and introduced a new orientation angle loss function and
data amplification method [15]. This method is fast and has a good detection effect
for large targets. With the continuous development of the deep learning network, an
end-to-end neural network has been formed [16] and has been applied in multiple-
target detection. However, this method relies heavily on the input point cloud data.
Different laser radar wiring harnesses and brands lead to different angular resolutions,
making it difficult to adapt to the same network. At the same time, the training of
neural network needs a long time, and this brings great pressure to the subsequent
decision control module. Self-learning class algorithms have certain advantages in
detection performance, but there are more problems in real time which are difficult
for real-vehicle applications [17], so how to balance algorithm real time and detection
performance has become a research hot spot for related detection algorithms.

To this end, in order to ensure the real time of the algorithm and to solve the problems
that the adjacent obstacles are difficult to distinguish and the distant obstacles are easy to
split in the traditional obstacle detection algorithm, the first part of this study designed
a 3D point cloud data filtering algorithm. Based on this, the second part introduced the
design process of ground segmentation algorithm. The third part completed the design
of the point cloud clustering algorithm based on improved DBSCAN. The real vehicle
validation was presented in the fourth part.

2. D Point Cloud Data Filtering Algorithm Design
2.1. Vehicle Body Point Removal

In order to obtain a larger detection range of radar, the radar detector is generally
mounted on the roof of the vehicle through a bracket. According to the vertical angle
range of the laser beam emission, there will be some laser points falling on the body of
the vehicle that cannot express the characteristics of the surrounding environment and
may be mistaken as obstacle point clouds, thus affecting the normal driving of the vehicle;
therefore, the vehicle body points need to be removed. Only the measurement points falling
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within the vehicle body range need to be filtered out according to the length and width of
the vehicle and the installation position of the radar; that is, all the measurement points
satisfying the following equation need to be filtered out.

− L
2
− d ≤ x ≤ L

2
+ d (1)

− W
2

≤ y ≤ W
2

(2)

− H ≤ z ≤ 0 (3)

where L and W are, respectively, the length and width of the vehicle; H is the radar
mounting height; d is the difference distance from the radar center to the center of
the vehicle length; x denotes the x-axis coordinate value; and y denotes the y-axis
coordinate value.

2.2. Noise Point Removal

The radar is rigidly connected to the vehicle body. Due to the vehicle’s own vibration,
the uneven road surface, the interference of radar device characteristics, flying insects,
suspended fallen leaves, dust, bad weather, etc., some isolated noise points and outlier
points far away from the vehicle are generated in the detected point cloud data. The
measurement data of these noise points are useless, and if they are mistaken for obstacles,
they will lead to false alarms of the system and affect the normal driving of the vehicle and
bring an unnecessary computational burden to the system and reduce the real time of data
processing. Therefore, noise points need to be removed before carrying out subsequent
point cloud data processing in order to ensure the effective reliability of the data. According
to the characteristics of the noise points, in this study, we chose to use statistical filters to
remove the noise points.

The filtering process of the statistical filter is given in Figure 1. First, the distance
from each point to its nearest neighbor is calculated and the average is obtained. Then,
assuming that the obtained results follow a Gaussian distribution, the distance threshold
is computed by calculating its mean and standard deviation through the Gaussian
function. Finally, the average distance and distance threshold of all points are traversed,
and the relationship between them is compared to determine whether the point is a
noisy point.

Take a frame of point cloud data as an example and apply the statistical filter to
filter out the noise points. A frame of the original point cloud is shown in Figure 2a.
There are many discrete noise points in the original point cloud data, and they are
mostly distributed in the outer part of the scanning range of the radar. After using the
noise-point-removal algorithm designed in this study, an optimized point cloud image
shown in Figure 2b is obtained. The results show that the designed algorithm based on a
statistical filter can effectively remove the discrete noise points in the distance.

2.3. Point Cloud Down-Sampling

The operating frequency of radar is generally set to 10 Hz, returning hundreds of
thousands of laser points per second. Such a large amount of data can consume a large
amount of computing resources and reduce the real-time data processing. Therefore,
under the premise of ensuring enough useful information, the point cloud is down-
sampled to speed up the operation of the algorithm. In this paper, the point cloud
down-sampling method uses the voxel grid filter (VGF). The core idea of this method
is to create a 3D voxel grid for the point cloud data, set the size of the grid, calculate
the number of points within each voxel, and output the center point or the barycenter
point of each voxel if the specified number is reached. The retention of information
points depends on the size of the voxel division. The smaller the voxel edge length,
the more point clouds left, which also affects the computer processing speed. The



World Electr. Veh. J. 2022, 13, 130 4 of 14

larger the voxel edge length, the fewer point clouds left, but this may filter out useful
data, resulting in incomplete representation of the surrounding environment; thus, a
reasonable voxel edge length needs to be chosen for the design. As shown in Figure 3a,
a frame of the original point cloud map is collected with a very large number of point
clouds. Figure 3b,c gives the effect after filtering with voxel grid filters of different voxel
edge lengths. The results show that, when the voxel edge length is set to 0.2 m, the
number of point clouds is significantly reduced, but it can still represent the obstacle
contour information completely and improve the execution speed of the algorithm.
When the voxel edge length is set to 0.3 m, the number of point clouds is further reduced,
and the information of some useful points is filtered out, thus resulting in incomplete
representation of obstacle contour information, which affects the subsequent detection
processing. Therefore, in this study, when using the voxel grid filter to filter the point
cloud, the selected voxel edge length was set to 0.2 m.
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3. Design of Ground Segmentation Algorithm for 3D Point Cloud Data

In this study, the Ray Ground Filter algorithm was adopted to segment the Ground
point cloud. The core of the algorithm is to process the point cloud in the form of Ray.
Firstly, the point cloud is cut according to the height, and the high areas are ignored, and
the points close to the car body are filtered out. Then the three-dimensional point cloud
coordinates are transferred to the two-dimensional space plane, and the horizontal range of
360 degrees is differentiated. The radar used by the sample vehicle in this experiment has a
horizontal angular resolution of 0.16 degrees and can be equally divided into 2250 parts,
each of which is connected to the center of the radar to form a ray. The longitudinal section
of the radar is shown in Figure 4. Thirty-two laser emitters are distributed up and down
in the vertical field of view of the radar. They emit the laser beam shown in the picture.
Thirty-two laser beams are projected onto the ground at the same horizontal angle to form
a ray.
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In order to process laser beams in the same angle, point cloud data need to be converted
from a rectangular coordinate system to polar coordinate system.

r =
√

x2 + y2 (4)

θ = arctan
y
x
× 180

π
(5)

where r represents the horizontal distance from the point to the radar center, and q is the
included angle between the point and the front of the vehicle.

The segmentation principle of the Ray Ground Filter algorithm is that the height
values of ground points and non-ground points scanned by the points before and after the
same ray are obviously different. The height difference between the points to be judged
and the two points before and after the ray and the height values of the points to be judged
are used for ground segmentation. The main steps are as follows:

Step 1: Firstly, sort the points on the same ray according to the distance, calculate the
horizontal distance between the points and the radar, preset the slope threshold (SL, SG) of
two adjacent points of the same ray and the whole ground, and set it as 8◦and 5◦.

Step 2: Calculate the local and global height thresholds (HL and HG) according to SL,
SG, and the horizontal distance from the point to the radar, and then calculate the height
difference between the current point and the previous point and the height threshold, so
as to judge whether the current point is a ground point. When ∆z ≤ HL, if the previous
point is an off-ground point, further judgment needs to be made according to HG. If the
height of the point is greater than HG, it is an off-ground point; otherwise, it is a ground
point. If the previous point is the ground point, then this point is the ground point. When
∆z > HL, the height of the point is less than HG, so it is a ground point; otherwise, it is a
non-ground point.

Step 3: Update the information of the current point. After judging the current point,
traverse all ray points in order to separate ground points from non-ground points.

As shown in Figure 5, ground segmentation effects under different algorithms are
given. Figure 5a shows a frame of original point cloud scanned by radar. Figure 5b is
the effect diagram after ground segmentation using the RANSAC algorithm, where red
represents the ground point cloud and blue represents obstacle point cloud. In order to
ensure the real-time performance of the algorithm, the number of iterations set by the
algorithm is small, resulting in the under-segmentation of the ground point cloud in the
orange box in the figure, which is mistakenly detected as the obstacle point cloud. Figure 5c
shows the ground segmentation effect after applying the design method in this paper. The
results show that the ground point cloud is completely segmented, and the method also
meets the real-time requirements.
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4. Design Based on Improved DBSCAN Point Cloud Clustering Algorithm
4.1. Design of Region Growing Algorithm

In order to facilitate the processing of the clustering algorithm, the point cloud data
within the range of 40 m before and after the intelligent vehicle were rasterized in this study.
As shown in Figure 6, a grid of 400 × 400 size was created based on the vehicle coordinate
system, and each grid was divided into 20 cm × 20 cm size. The grid map can represent the
plane of the vehicle in the form of grid. Then the point cloud data were made to correspond
to the grid to determine whether the grid area was occupied. Finally, the point cloud data
in the occupied grid were clustered to determine the scope of the obstacle in the grid map
and the relative orientation of the vehicle. The grid division is smaller, and the higher
the expression accuracy of the map is, the larger the calculation amount is. In this study,
considering the perception accuracy and the calculation speed of the clustering algorithm,
the grid map of 400 × 400 was established based on the vehicle coordinate system. Each
grid was divided into 20 cm × 20 cm, and the point cloud data in the 40 m area around
the vehicle were processed. The algorithm needs to record the number of point clouds in
each grid, the maximum and minimum height difference of point clouds, and the traversal
identification value.
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Region growth is a continuous region segmentation algorithm in computer vision.
The basic idea is to collect pixels with similar quality and form a region. On the premise of
ensuring good edge information, the algorithm can cluster the point cloud data, extract the
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connected regions with the same characteristics, and complete the clustering of obstacles.
The specific steps are as follows:

(1) Select the seed spot. According to Equation (6), the height difference in each grid is
calculated, and the obstacle grid whose height difference is larger than the height difference
threshold is selected as the seed grid. In this paper, the height difference threshold is 0.3 m.

∆h = Gh − Gl (6)

where ∆h is the height difference, and Gh and Gl are the maximum and minimum height of
points in the grid, respectively.

(2) Conduct 8-neighborhood expansion with seed points. Since the maximum height
value of the same obstacle in adjacent grids is close, the grids satisfying Formula (7) in the
8-neighborhood search are added to the obstacle list; the grids that have not been visited in
the list are regarded as a new seed grid. Moreover, the searches are continuing in order to
determine whether the unvisited grid is the same obstacle. When all grids in the list are
visited, the clustering of a single obstacle is completed.

Gi_h − Gj_h ≤ Tch (7)

where Gi_h and Gj_h are the maximum heights of the inner points of adjacent grids i and
j, respectively.

(3) All obstacles can be clustered by sequentially visiting all the remaining unvisited rasters.

4.2. Design of Improved DBSCAN Fusion Region Growing Algorithm

The region growing algorithm’s clustering speed is fast, but the accuracy is low. The
improved DBSCAN algorithm can solve the splitting problem of distant obstacles and
separate nearby obstacles, but it takes a long time. Therefore, this paper fuses the two
detection algorithms to obtain a clustering algorithm with high real-time performance and
accuracy. The specific steps of the algorithm are as follows:

(1) Determine the seed grid. According to Equations (6), (8) and (9), the maximum
height difference, center of gravity, and variance in each grid are calculated, respectively.
It was determined that the grid with variance greater than the threshold value contained
different obstacles, and the grid with height difference greater than the threshold value was
selected as the seed grid.

Ci =
1
n

n

∑
j=1

pj (8)

σi =
1
n

n

∑
j=1

√
(Cix − pjx)

2 + (Ciy − pjy)
2 (9)

where Ci is the center of gravity of the grid, pj represents the data points in the grid, and σi
is the variance.

(2) Conduct 8-neighborhood expansion clustering. As shown in Figure 7, the
8-neighborhood searches are carried out counterclockwise, with point A of the seed grid
as the center. After visiting the surrounding grids, the next grid point, B, is used as a new
seed grid, and the 8-neighborhood searches continue until all grids have been visited and
a single obstacle is detected. Repeat the above steps for the remaining unvisited grids to
complete the detection of all obstacles.

(3) Execute the improved DBSCAN algorithm. After the second step of clustering,
if the obstacle contains the marked grids of multiple obstacles and the volume satisfies
Formula (10), the DBSCAN algorithm that adaptively determines the clustering parameters
is executed on the obstacles to solve the problem. The distant obstacles are divided into
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multiple obstacles, and the nearby obstacles are difficult to distinguish; thus, the accuracy
of clustering is improved subsequently.{

obg_n ≥ Tg_n
obm_n ≥ Tm_n

(10)
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where obg_n is the number of grids contained after obstacle clustering; obm_n is the
number of grids containing multiple obstacles after clustering; and Tg_n and Tm_n are
the grid number threshold and multi-barrier grid number threshold required by obstacle
clustering, respectively. This article takes 16 and 5 for the two values.

The steps of the DBSCAN algorithm for adaptively determining the cluster parameters
are as follows:

(1) The K-means algorithm is first performed on the dataset. This method is not used
to obtain the final clustering result, but to group the data through several simple iterations
without increasing the computational burden of the system. The DBSCAN algorithm needs
to calculate the distance between each point in the data set and all other points to determine
whether it is a core point; this process will consume a lot of computation. In this method,
each group is calculated separately after grouping, and the considered range is smaller,
which can greatly reduce the time spent judging whether it is a core point.

(2) The point cloud data obtained by radar is near dense and far sparse. In order to
complete the clustering better, the neighborhood radius, Eps, should be adjusted so that it
can better cluster targets at different distances. Since the horizontal angular resolution of
radar is constant, when the laser beam sweeps to the same obstacle, the distance value of
two adjacent points should be very close. According to Formula (11), the neighborhood
radius can be automatically adjusted according to the distance:

Eps =
λπ∆αDi

180◦ (11)

where ∆α is the horizontal angular resolution of the 32-line radar, which is 0.16◦; Di is the
horizontal distance from the i-th point to the origin of the radar and l is the neighborhood
radius coefficient. According to the experiment, this paper takes 1.3.

(3) After executing the DBSCAN algorithm for each group of data, consider whether
the data on the boundary of adjacent groups belong to the same class. Check the distance
between groups: if the distance is greater than the specified distance threshold, it is
impossible to merge the boundary data of the two groups, and there is no need to check the
cluster merge within the group; and if the distance between groups is less than the distance
threshold, the possibility of clustering combination within the group is analyzed. If the
distance between clusters is less than the distance threshold, the possibility of clustering
combination can be combined; otherwise, the possibility is zero. Merge clustering is
performed by re-executing the DBSCAN algorithm.
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4.3. Bounding Box Fitting

After the clustering is completed, the candidate objects to be tracked are obtained, and
the size of the clustering is calculated by Formula (12). In order to describe the location,
size, and orientation of obstacles and enhance visual features, the point cloud data of
the obstacles is surrounded by a 3D bounding box, so that it has uniform dimensional
information and heading. The bounding box is also called the minimum circumscribed
3D box, which is used to determine minimum bounding space for discrete data points.
Considering that there are many people and vehicles in the road environment, and there
are relatively few objects with complex shapes, and considering the real-time processing
of laser point cloud data, cuboids that are easy to create are selected as boundary boxes.
Usually, the Minimum Area Rectangle (MAR) method is applied to each clustered object to
obtain a 2D box, which is combined with height information to form a 3D bounding box.

ln = Yn
max − Yn

min
dn = Xn

max − Xn
min

hn = Zn
max − Zn

min
Vn = ln · dn · hn

(12)

where Xn
max, Xn

min, Yn
max, Yn

min, Zn
max, and Zn

min are the maximum and minimum values of
the XYZ coordinates of the nth cluster, respectively; ln, dn, hn, and Vn are the length, width,
height, and volume of the nth cluster, respectively.

The MAR method is suitable for fitting the boundary of obstacles parallel to the
coordinate axis, but it cannot guarantee that the fitting direction of the partially occluded
obstacle is correct, and when the obstacle is not parallel to the coordinate axis, the generated
3D rectangular frame cannot fit the edge of the obstacle well. Therefore, this paper adopts
the feature-based L-shaped fitting to derive the correct fitting direction. The process of
L-shaped fitting is as follows:

First, select the outliers, a and b, that are farthest from both sides of the obstacle
boundary facing the radar. Then connect points a and b to obtain line segment, Ld (all
points in the obstacle make an orthogonal line to Ld), and use the iterative endpoint fitting
algorithm to find the line segment with the largest distance and the angle close to verticality
as L0. Finally, let the corner point where L0 does not intersect with Ld becomes c and
connect the three points, a, b, and c, to get an L-shaped polyline, as the line segment bc
shown in Figure 8. Since the heading of most vehicles is parallel to the longest side of
the boundary, the heading of the bounding box is the longest line segment. This method
requires enough data points and is mainly designed for obstacles in the shape of a cuboid.
Therefore, compared with smaller obstacles, such as bicycles and pedestrians, it is more
suitable for automobile obstacles and can also deal with the case of occlusion.
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After the heading of the obstacle and the 2D bounding box are determined by the
above L-shaped fitting, the height of the 3D bounding box is determined by the maximum
height difference in the obstacle point cloud. In combination with height, the rectangular
box generated by this method is shown in Figure 9. It is obvious from the figure that 3D
bounding boxes of the vehicles on both sides of the road are well fitted.
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5. Experimental Verification
5.1. Analysis of Point Cloud Preprocessing Experiment

Figure 10a is a frame of raw radar data captured in RVIZ, including vehicles, pedes-
trians, trees, and buildings, where the concentric circles represent the ground points.
Figure 10b is the point cloud image obtained after filtering the original point cloud. The
number of point clouds is obviously reduced, but the useful information of the point cloud
is basically retained, which can reduce the amount of calculation of data processing and
improve the real-time performance of the system. Figure 10c is a frame of obstacle point
cloud image obtained after dividing the ground by using the Ray Ground Filter algorithm.
The number of point clouds is further reduced, and the ground points are completely
removed. After the above point cloud filtering and ground segmentation operations, a
frame of valid point cloud data is obtained, and on this basis, the subsequent point cloud
clustering and target tracking process are more accurate.
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5.2. Analysis of Point Cloud Clustering Experiments

In order to verify the effect of the improved DBSCAN fusion region growth algorithm
designed in this paper, multi-target detection experiments at different distances were
carried out on the experimental vehicle, and a total of 500 frames of point cloud data were
collected. The average speed of the experimental vehicle is in the range of 20–30 km/h.
The clustering result of the point cloud near the obstacle of the smart car is given in
Figure 11. The obstacles acquired by the radar in the test environment are mainly vehicles,
pedestrians, and trees on the roadside. The traditional DBSCAN algorithm fails to detect
the collected point cloud data and fails to cluster the trees on the roadside. In addition,
since the clustering parameters are fixed, the clustering results are inaccurate, and the
adjacent vehicles and pedestrians cannot be distinguished; thus, they are integrated and
regarded as a target. Based on the improved DBSCAN fusion region growing algorithm,
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all obstacle point clouds can be clustered without missing detection. At the same time, the
vehicles and pedestrians are clustered and distinguished, and the outline of obstacles can
be detected more accurately.
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Figure 11. Comparison of point cloud clustering results of obstacles near intelligent vehicles:
(a) traditional DBSCAN algorithm and (b) the improved method proposed.

The clustering result of the point cloud near the obstacle of the smart car is given
in Figure 12. There are obstacles such as large trucks, ordinary vehicles, and roadside
vegetation in the test environment. As the clustering parameters of the traditional DB-
SCAN algorithm remain unchanged, a truck is split into two different obstacles during the
clustering process. The improved clustering method can well cluster the distant sparse
obstacle point cloud and completely detect the truck. To sum up, the improved method in
this paper can solve the problems that adjacent obstacles are difficult to distinguish and
distant obstacles are split; it also has qualified detection results for obstacles at different
distances, this improving the driving safety of smart cars.
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In order to further verify the accuracy and real-time performance of the method,
the collected 500 frames of point cloud data were preprocessed, and on this basis, the
traditional DBSCAN algorithm and the improved method were used for clustering. In
order to evaluate the clustering effect, the number of accurately detected obstacles and the
total number of obstacles in the data collected in each frame were recorded manually, and
the ratio of the two was used as the positive detection rate. Finally, the average value of the
positive detection rate of 500 frames was used as the clustering evaluation standard. The
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test results show that the improved clustering method enables the adaptive determination
of clustering parameters with the detection distance, making it better than the traditional
DBSCAN algorithm; it reduces the false detection and missed detection of obstacles and
increases the average positive detection rate by 6.1%. In addition, due to the fusion of the
region growing algorithm, the data processing time is shortened by 13.2%.

6. Conclusions and Future Work

In order to solve the problem that the adjacent obstacles are difficult to distinguish and
the distant obstacles are easy to split in the traditional obstacle detection algorithm, obtain
more accurate surrounding environment information, and improve the driving safety
of intelligent vehicles, this study improved the traditional obstacle detection algorithm.
Through real vehicle experiments, the effectiveness and real-time performance of the
improved algorithm were verified. By designing the point cloud data removal of the body
points and noise points of the smart car and optimizing the point cloud down-sampling
method, the amount of point cloud data of the smart car can be reduced, and the real-time
performance of the system can be improved. Based on the Ray Ground Filter algorithm,
we can solve the problem of under-segmentation in ground segmentation. The traditional
DBSCAN clustering algorithm has the problem that the clustering parameters remain
unchanged. By optimizing the design of the DBSCAN clustering algorithm, firstly, the
clustering parameters can be determined adaptively according to the detection distance to
solve the problems that adjacent obstacles are difficult to distinguish and distant obstacles
are easy to split, and the accuracy of obstacle detection is improved by 6.1%. Secondly, it can
integrate the region growing clustering algorithm to improve the real-time performance
of obstacle detection and reduce the algorithm running time by 13.2%. The improved
method proposed in this paper can solve the problem that adjacent obstacles are difficult
to distinguish and distant obstacles are split. The method proposed in this paper can
more accurately distinguish the edge of obstacles in the process of gathering, complete
the edge detection and segmentation of adjacent obstacles in dynamic scenes, improve the
detection accuracy of adjacent obstacles, and produce good detection results for obstacles
with different distances. In addition, the improved clustering algorithm not only reduces
the clustering time but also effectively identifies the large obstacles, thus solving the
classification problem of large obstacles in the clustering recognition process of traditional
algorithms; it also effectively improves the recognition performance and radar recognition
accuracy of the algorithm.

In the study of multi-target tracking in this paper, the influence of mutual occlusion on
data association during the movement of dynamic obstacles is not considered. The move-
ment occlusion of dynamic obstacles has a certain influence on the stability of algorithm
detection in dynamic scenes. Therefore, the future plan is to conduct in-depth research on
the occlusion of obstacle tracking.
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