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Abstract: For plug-in hybrid electric vehicle (PHEV), using a hybrid energy storage system (HESS)
instead of a single battery system can prolong the battery life and reduce the vehicle cost. To develop
a PHEV with HESS, it is a key link to obtain the optimal size of the power supply and energy
system that can meet the load requirements of a driving cycle. Since little effort has been dedicated
to simultaneously performing the component sizing of PHEV and HESS, this paper proposes an
approach based on the particle swarm optimization (PSO) algorithm to simultaneously determine
the sizes of the engine, motor, battery and supercapacitor (SC) in a PHEV with HESS. The drivetrain
cost is minimized in a different all-electric range (AER)—and depends on the battery type—while
ensuring the driving performance requirements. In addition, the effects of the power system and
drive cycle on the component sizes were analyzed and compared. The simulation results show that
the cost of the PHEV drivetrain with the Ni-MH battery/SC HESS is reduced by up to 12.21% when
compared to the drivetrain with the Li-ion battery/SC HESS. The drivetrain cost is reduced by 8.79%
when compared to analysis-based optimization. The type of power supply system and drive cycle
can significantly affect the optimization results.

Keywords: plug-in hybrid electric vehicle; hybrid energy storage system; particle swarm optimization;
component sizing; all electric range; cost

1. Introduction

Nowadays, plug-in hybrid electric vehicles (PHEVs) are attracting increasing attention
from the automotive industry [1]. Compared with traditional hybrid electric vehicles,
PHEVs are equipped with larger capacity batteries that can be charged from the power
grid, which greatly reduce the energy consumption cost and carbon dioxide emissions [2].
However, PHEVs often encounter significant instantaneous power demand during the
driving process, which leads to batteries being frequently charged and discharged, thus
accelerating their aging [3–5]. A supercapacitor has a higher power density and can with-
stand high current, thus the hybrid energy storage system (HESS) composed of batteries
and supercapacitors greatly reduces the peak power of the battery and prolongs the battery
life. In addition, it also has the advantages of high energy utilization and high safety [6,7].
Therefore, to meet the requirements of PHEV for the high energy and high power density
of on-board energy storage system, using a hybrid energy storage system as energy source
is an economic and safe solution.

To develop a PHEV with HESS, it is a key link to obtain the optimal size of power
supply and energy system that can meet the load requirements of the driving cycle [8].
In the literature, most studies have focused on sizing the components of PHEV with a
single battery system, which can be classified into analysis-based and optimization-based
methodologies. Yang used the parameter analysis model of vehicle energy consumption
and a rapid dynamic programming to analyze the component size [9]. Tran obtained the
component sizing of PHEV through analysis according to the requirements of dynamic
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performance [10]. Guo combined a multi-island genetic algorithm and a dynamic program-
ming algorithm to determine the optimum speed ratio for the redesigned driveline [11].
Madanipour used the genetic algorithm to optimize the size of the engine, motor and bat-
tery, which take the minimum weighted fuel consumption and weighted exhaust emission
as the optimization objective and the driving performance requirements as the constraint.
The results show that the fuel consumption is reduced by 27% on average compared with
that before optimization [12]. Vahid proposed a multi-objective optimization algorithm for
the component sizing optimization of a PHEV, wherein the objective function was defined
to minimize the drivetrain cost and exhaust emissions. The final result shows that the
operating cost is reduced by up to 10%, and the exhaust emissions is reduced by up to
17% [13]. Wu proposed a convex optimization to minimize the energy cost and power
sources cost. The results show that the optimal battery rated power is 54 kw and the energy
capacity is 29 kwh [14]. Nikolce proposed a novel convex modeling approach to optimize
the battery size and energy management strategy of a PHEV at the same time. The final
result shows that the operating cost is reduced by up to 8.46% when comparing with results
obtained by dynamic program [15]. Mitra proposed a convex optimization to minimize a
weighted sum of the component and operational costs. The results show that the cost of a
PHEV50 is 14% higher than the best design [16].

As for the HESS, the component sizes are usually decided by optimization under a
certain power source. Bai used a dynamic programming algorithm to minimize the fuel
economy and battery life degradation rate. These results show that the battery aging rate is
reduced by 48.9% [17]. Song used a two-dimensional PMP to determine that size of the
components and an EMS design for the HESS in a PHEV, wherein the optimization objective
was that of the operating cost, including the fuel cost and the electricity cost. The simulation
results show that the operation cost is reduced by 28.6% compared with the traditional
hybrid system without a supercapacitor [18]. Hong used a two-dimensional PMP to achieve
the optimal sizing of the powertrain by minimizing the energy consumption and system
degradation in a PHEV [19]. Zhang used a genetic algorithm (GA) to minimize the HESS
initial cost, setting the vehicle power performance requirements as the constraints. The
results show that the cost is lower than the analysis-based optimization [20]. Omar used a
PSO to achieve the optimal sizing of the powertrain by minimizing the cost, volume and
mass of the fuel cell and the supercapacitor in a fuel cell hybrid electric vehicle (FCHV) [21].

As the literature review reveals, little attempt has been dedicated to simultaneously
perform the component sizing of PHEV and HESS. Therefore, this paper proposes an
approach based on the PSO algorithm to simultaneously determine the sizes of the engine,
motor, battery and supercapacitor in a PHEV with HESS. The objective function is defined
to minimize the drivetrain cost including the initial cost and replacement cost, while
setting the driving performance requirements as the constraints. Considering different
customer requirements, component sizing is carried out for two types of batteries and
three different all-electric ranges (AERs). In addition, the effects of the power system and
drive cycle on component sizes are analyzed and compared. By performing the PSO for
different optimization variable candidates, the optimal sizes of the engine, motor, battery
and supercapacitor are globally found. The advanced vehicle simulator (ADVISOR) and
MATLAB are used to investigate the effectiveness of the proposed approach. Simulation
results show that the drivetrain cost of the Ni-MH battery/SC HESS battery is reduced by
more than 10% when compared to the Li-ion battery/SC HESS; and the PSO is effective in
reducing the drivetrain cost compared with analysis-based optimization. It is effective to
reduce the drivetrain cost by adding the SC to PHEV. The driving cycle aggressiveness can
significantly affect the optimization results.

The paper is organized as follows. In Section 2, the configuration and dynamic model
of the PHEV with HESS is illustrated. Section 3 proposes an efficient component sizing
optimization methodology. The optimization results are shown in Section IV. Finally,
Section V gives the conclusion.
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2. Modeling and Control Strategy
2.1. Vehicle Configuration

This paper used a parallel PHEV with a HESS, and the battery and the supercapacitor
are connected in parallel, whilst the DC/DC converter and inverter provide power for
the motor [22,23]. Internal combustion (IC) engine and motor may provide power to the
vehicle wheels. The structure is shown in Figure 1 and the vehicle parameters are shown in
Table 1.

Figure 1. Topology of a parallel PHEV with an HESS.

Table 1. Base vehicle parameters.

Parameter Value

Glider mass (kg) 1150
Rolling resistance coefficient 0.009
Air drag coefficient 0.3
Frontal area (m2) 2.17
Engine power (kW) 41
Motor power (kW) 58
Li-ion battery capacity (Ah/module) 30
Li-ion battery voltage (V/module) 12
Ni-MH battery capacity (Ah/module) 28
Ni-MH battery capacity (Ah/module) 6
Supercapacitors capacity (F/module) 3000
Supercapacitors voltage (V/module) 2.5

2.2. Model

ADVISOR is an advanced vehicle simulation software developed by NREL, a renew-
able energy laboratory in the United States. In this paper, the model of HESS and the
control strategy are established in Simulink and added to the advisor model to obtain a
PHEV’s model with HESS [24].

2.2.1. Battery Model

Figure 2 shows the battery model. Ub is the open circuit voltage (OCV), ib is the current
and Rb represents inner resistance. SOCb represents the remaining capacitor of the battery
in the current state: {

SOCb = SOCb,0 − 1
Qb

∫
ib(t)dt

SOCb,min ≤ SOCb ≤ SOCb,max
(1)

Figure 2. Battery model.
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2.2.2. Supercapacitor Model

Figure 3 shows the supercapacitor model. Cuc and Ruc represent the supercapacitor
capacity and inner resistance, respectively. Uuc is the supercapacitor OCV, Iuc is the current
and Puc is the supercapacitor output power.{

uuc =
1

cuc
iuc

uuc,min ≤ uuc ≤ uuc,max
(2)

Puc =
(

iuciuc − i2ucRuc

)
nuc (3)

iuc =
uuc −

√
u2

uc − 4PucRuc/nuc

2Ruc
(4)

Figure 3. Supercapacitor model.

2.3. Hybrid Drive Control Strategy

This paper use the charge depleting (CD) charge sustaining (CS) control strategy to
determine the energy distribution of the engine and motor. As shown in Figure 4a, when
the battery is fully charged, PHEV operates in CD mode until the electric energy drops
below the target value (Sobj), and the vehicle turns to CS mode.

Figure 4b shows the CS mode (flag = 0) if the required torque is lower than the critical
torque of the engine, and the motor drives the vehicle alone. If the required torque is greater
than the maximum torque of the engine, the vehicle is driven by the engine and motor.
At a given torque and speed, if the engine efficiency is low, the full torque is provided by
the motor.

Figure 4c shows the CS mode (flag = 1): if the required torque is excessively small, the
engine works on its minimum torque curve, and the additional torque drives the motor
to charge the battery. In other cases, the output of the engine is the required torque of the
whole vehicle plus the charging torque.

2.4. Hybrid Energy Storage System Control Strategy

This paper uses a logic threshold control strategy to determine the battery and super-
capacitor’s energy distribution, as shown in the flow chart in Figure 5, where Preq is the
power demand of the motor on the HESS; Pbat is the demand power of the battery; Pcap is
the demand power of the supercapacitor; and F1(s) is the filter function. The control rules
are as follows.

In driving mode, when the SOC of the supercapacitor (SOC2) is lower than the lower
limit (SOC2min), only the battery supplies power; when the SOC of the supercapacitor is in
a normal state and the required power of the motor is less than the threshold value (Pp), the
battery provides power for the vehicle, and when the required power of the motor exceeds
Pp, the remaining power is supplied by the supercapacitor.

In braking mode, when the SOC2 does not reach the maximum (SOC2max) and the
braking power does not reach the threshold value (Pn), the supercapacitor is charged, and
when the braking power exceeds Pn, the battery and supercapacitor are charged at the
same time; when the SOC2 reaches its maximum, the battery recovers energy alone.
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Figure 4. Hybrid drive control strategy. (a) CDCS strategy; (b) CS mode (flag = 0); and (c) CS mode
(flag = 1).

Figure 5. HESS control strategy.

3. PHEV Component Sizing Optimization

In this paper, the torque scaling factors of the engine (SIC), the torque scaling factors of
the motor (SEM), the battery modules number (NB) and the capacity scaling factor (SBC),



World Electr. Veh. J. 2022, 13, 110 6 of 14

supercapacitor modules number (NUC) and the capacity scaling factor (SUC) are varied
during optimization. The boundary values were estimated from the theoretical analysis.
The parameters are shown in Table 2.

Table 2. Upper and lower bounds of optimization variables for two types of battery.

Optimization Variable Lower Bound Upper Bound

SIC 0.8 1.8
SEM 0.6 1.5
NB
NUC

25
65

65
120

SBC (AER40 km) 0.7 1.4
(AER60 km) 1.0 2.0
(AER80 km) 1.4 2.7
SBC (AER40 km) 0.8 1.8
(AER60 km) 1.1 2.1
(AER60 km) 1.4 2.5
SUC (AER40 km) 0.3 1.1
(AER60 km) 0.4 1.2
(AER60 km) 0.5 1.3

In order to ensure the driving performance requirements, in reference to the perfor-
mance of the prototype vehicle and the national standard GB/T 19752-2005, the conditions
that the whole vehicle should meet are shown in Table 3.

Table 3. Vehicle performance constraints.

Constraints Description

Acceleration 0–97 km/h (0–60 mph) ≤ 12 s
time 64–97 km/h (40–60 mph) ≤ 5.3 s

0–137 km/h (0–85 mph) ≤ 23.4 s
0–48.3 km/h (0–30 mph) ≤ 5 s
in motor alone

Gradeability >30% (15 km/h)
Maximum speed ≥170 km/h

The objective function is defined to minimize the drivetrain cost, including the cost
of the engine, motor and HESS. The cost of HESS is composed of the initial cost and the
battery replacement cost. Because the cycle life of the supercapacitor group is very long, it
does not need to be replaced during the warranty period, and thus only the replacement
cost of battery group is calculated [25]:

Ctotal = CE + CM + Cbat_init + Cuc_init + Cbat_rep (5)

where CE is the engine cost, CM is the motor cost, Cbat_init is the initial cost of the battery,
Cuc_init is the cost of the ultracapacitor, and Cbat_rep is the replacement cost of the battery,
which can be expressed as follows [26,27]:

CE = 77.34PE + 2735 (6)

CM = 140.34PM + 2739 (7)

Cbat_init = cbatCbatUbat (8)

Cuc−init = cuc

0.5Cuc

(
V2

uc−max − V2
uc−min

)
Nuc

1000
(9)

Cbat_rep = nrcbatCbatUbat (10)
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where PE is the engine peak power in kW, PM is the motor peak power in kW, Cbat is the
battery cost, Cuc is the cost of supercapacitors, and nr is the number of batteries’ replacement
times [28].

According to the test methods in the national standard GB/T 31484—2015, the re-
placement condition of batteries is that the actual capacity is reduced to 80% of the rated
capacity. According to the Standard for Compulsory Scrapping of Motor Vehicles, when
the cumulative mileage of the vehicle reaches 600,000 km, the vehicle will be scrapped. The
number of batteries’ replacement times within the life span of the vehicle is thus as follows:

nr =
600000Aday

Lday Ali f e
(11)

where Aday is the daily average ampere–hour circulation of the battery pack in Ah, including
the cycling and charging conditions [29]; Alife is the cycling life of the battery in Ah [30,31];
and Lday is the average daily mileage in km.

In summary, the optimization mode is:

x = [SIC, SEM, NB, SBC, NUC, SUC]
miny = F(x)
F(x) = Ctotal

subjuct to ai ≤ xi ≤ bi, i = 1, 2 · · · , n
hj(x) ≤ 0 = 1, 2, . . . , p

gk(x) ≤ 0k = 1, 2, · · · , l

(12)

where a and b are the lower and upper bounds of the optimization variable, hj (x) and
gk (x) are p-dimensional equality constraints and one-dimensional inequality constraints,
respectively. hj (x) and gk (x) determine the feasible range of decision variables jointly.

PSO Solution

Firstly, the algorithm assigns velocities and initial random positions’ velocities to all
particles in the space, the best particle of the personal (pbest), and the best particle of
the swarm (gbest) to advance the position of each particle in turn [32]. The equation is
described as follows:

vi+1 = ωvi + c1r1( pbesti − xi) + c2r2(gbesti − xi ) (13)

xi+1 = vi+1 + xi (14)

where c1 is the cognitive parameter, c2 is the social parameter, c1 = 0.5, c2 = 2.0. r1 and r2 are
random numbers, the range is [0, 1] and it is uniformly distributed. ω is the inertia weight,
ω = 0.8. Equation (13) provides the i-th particle’s new velocity. The new position of the i-th
particle is determined by Equation (14) at each iteration. The particle will be iteratively
updated using these formulas until an optimal solution is obtained or the number of
iterations is reached. The optimization flow is shown in Figure 6:

Step 1: Initialize the vehicle model and swarm, and the swarm must be in the opti-
mization interval.

Step 2: Assign the individual values in the population to model in turn for simulation,
obtaining the vehicle performance and judging whether the constraint condition is met, if
not, eliminating the individual value; but if so, outputting the total cost, as well as updating
the pbest, gbest and the speed and position of each particle.

Step 3: Judging whether the end of condition is met, if not, carrying out iterative
optimization, calculating the speed and position of each particle of a new population, and
repeating Step 2; if so, outputting an optimal optimization result.

The number of the population of PSO is set to 20, and the number of iterations is set to
20. In order to simulate the constraint of AER, the motor drives the vehicle alone. The initial
SOC of the battery is set to 0.9, and the minimum SOC is set to 0.2. The Urban Dynamometer
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Driving Schedule (UDDS) is selected as the target driving cycle, and 40 km, 60 km and
80 km are selected as the different AERs. During the simulation, if the incremental trajectory
exceeds the specified value (3.2 km/h), the AER constraint is not satisfied.

Figure 6. Flow chart of optimization.

4. Optimization Results

Table 4 summarizes the best parameters obtained based on the UDDS driving cycle
and the two types of batteries. The final component sizes can be determined by these
parameters. In addition, the vehicle mass is the sum of the base vehicle mass and the mass
of the optimized components, including the motor, engine, battery and supercapacitor.
This is shown in Table 5.

Table 4. Optimum PHEV specifications for two types of battery.

Battery
Type AER (km) SIC SEM NB SBC NUC SUC

Li-ion 40 0.9976 0.7310 32.6252 0.9207 115.7019 0.5414
Ni-MH 40 1.0975 0.8068 49.1521 1.3856 108.5634 0.6382
Li-ion 60 1.0463 0.8621 29.7014 1.5304 110.2505 0.6495
Ni-MH 60 1.1926 0.9155 49.0465 2.0753 108.0355 0.6995
Li-ion 80 1.1293 0.9052 35.0756 1.8425 102.3658 0.7492
Ni-MH 80 1.3121 0.9810 60.8873 2.3406 108.6984 0.8256
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Table 5. Optimal specifications for two types of battery based on the UDDS.

Battery
Type AER (km) Mass

(kg)
Engine
Power
(kW)

Motor
Power
(kW)

Battery
Capacity
(Ah)

Battery
Energy
(kWh)

Supercapacitor
Energy
(Wh)

Drivetrain
Cost
(CNY)

Li-ion 40 1609 40.9 42.4 27.6 10.94 351 118,013
Ni-MH 40 1701 45.0 46.8 38.8 11.44 386 101,525
Li-ion 60 1680 42.9 50.0 45.9 16.53 401 141,862
Ni-MH 60 1804 48.9 53.1 58.1 17.08 415 126,163
Li-ion 80 1752 46.3 52.5 55.3 23.21 432 177,401
Ni-MH 80 1935 53.8 56.9 65.5 23.94 499 156,829

As shown in Figure 7, different AERs and different battery types can significantly
affect the optimal design variables. As the AER increases, so does the battery power and
vehicle mass. Meanwhile, the engine and motor need to provide more energy to drive the
vehicle and meet the driving performance requirements, their sizes also increase. Thus,
the drivetrain cost is increased. In addition, for the same AER, because a Li-ion battery
has greater energy density, its total mass is lower than that of the Ni-MH battery, and thus
the battery energy, engine, and motor parameters are lower. However, the high cost of
an Li-ion battery caused a higher drivetrain cost. The cost of an PHEV drivetrain with an
Ni-MH battery/SC HESS is reduced by up to 12.21% when compared to a drivetrain with
Li-ion battery/SC HESS.

Figure 7. Drivetrain cost and vehicle mass for different AER and battery.

In order to evaluate the superiority of the PSO, the results using the Li-ion battery/SC
are compared with the results of an optimization method based on theoretical analysis. The
method has the following characteristics. Firstly, obtain the maximum power and economic
power of the engine according to the speed performance constraint. Secondly, the maximum
required power of the vehicle is obtained according to the acceleration and gradeability
performance constraint. The motor power is equal to the maximum required power of the
vehicle minus the engine economic power. Lastly, the battery and supercapacitor energy
are obtained according to the AER and motor-only acceleration performance constraint.
The PHEVs designed by the Li-ion battery optimization method and based on theoretical
analysis are shown in Table 6. Figure 8 compares the powertrain costs obtained from the
two described methods. As shown in this Figure, the drivetrain cost by this method is
reduced by 8.79%.

Table 6. Optimum specifications for Li-ion battery type based on theoretical analysis.

AER Engine
(kW)

Motor Energy
(kW)

Battery Energy
(kWh)

Supercapacitor
Energy (Wh)

Mass
(kg)

Drivetrain
Cost
(CNY)

40 54.2 57.0 11.26 362 1671 123,706
60 54.7 61.8 17.21 429 1742 161,792
80 55.1 64.6 23.62 458 1802 193,958
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Figure 8. Drivetrain cost for Li-ion battery type with different approach.

4.1. Effect of Supercapacitors on Component Sizing

In order to investigate the effect of supercapacitors on component sizing, a Li-ion bat-
tery system is selected for optimization, and the optimized component sizes are compared
in Figure 9. The obtained vehicle mass and drivetrain costs are compared in Figure 10.
In these two figures, P1 represents the hybrid energy storage system and P2 represents
the Li-ion battery system. The parameters of the engine and motor are slightly reduced
compared to an HESS, which is due to the reduction in the total vehicle mass. On the
other hand, because the reduction in the power performance of the Li-ion battery system, it
is difficult to meet the high power demand when the SOC of the battery is low, so more
battery energy is needed. Because the supercapacitor is expensive, the initial cost of an
Li-ion battery system is greatly reduced, but the supercapacitor in the HESS can withstand
the instantaneous high power, and thus the battery current is greatly reduced. As shown
in Figure 11, the maximum discharge current is reduced from 45.25 A to 21.60 A. The
maximum charging current is reduced from −34.12 A to −10.85 A, and the drivetrain cost
is reduced by up to 12.34%, which proves that the supercapacitors can extend the battery
life and reduce the battery replacement cost.

Figure 9. Optimum component sizes for different energy storage systems.

Figure 10. Drivetrain cost and vehicle mass for different energy storage systems.
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Figure 11. Battery current for different energy storage systems.

4.2. Effect of Driving Cycle on Component Sizing

In order to study the effect of a drive cycle on the component sizing, the optimization
problems of the Highway Fuel Economy Test (HWFET), LA92 (Los Angeles 92) and US06
(high speed and high acceleration component of SFTP) driving cycle are solved, respectively.
The optimization results for the Li-ion battery, 60AER and common driving performance
requirements are compared in Figures 12 and 13. The vehicle mass and drivetrain costs are
compared in Figure 14. As shown in these figures, the energy of battery and supercapacitor
obviously increases with the cycle aggressiveness, and thus the parameters of engine and
the motor also increase, and the vehicle mass d and drivetrain cost are higher.

Figure 12. Engine and motor sizes for different driving cycles.

Figure 13. Battery and supercapacitor sizes for different driving cycles.



World Electr. Veh. J. 2022, 13, 110 12 of 14

Figure 14. Drivetrain cost and vehicle mass for different driving cycles.

5. Conclusions

In this paper, a PSO algorithm was used to determine the sizes of the components of
a PHEV with a HESS. The parameters of the engine, motor, battery and supercapacitor
were selected as optimization variables, The drivetrain cost was minimized while ensuring
the driving performance requirements. Three kinds of AER and two types of batteries are
optimized. The optimization results show that:

(1) The drivetrain cost of an HESS with a Ni-MH battery is reduced by up to 12.21% when
compared to a HESS with Li-ion battery. Compared to the results from theoretical
analysis, the drivetrain cost optimized by PSO is reduced by 8.79%.

(2) After adding the supercapacitor to the energy storage system, the parameters of the
engine and motor slightly increased, and the initial cost is higher, but the superca-
pacitor can extend the battery life and thus the drivetrain cost is reduced by 12.34%
compared to an energy storage system without supercapacitors.

(3) In order to study the effect of a drive cycle on component sizing, choose three different
drive cycles to optimize. The simulation results show that the parameters of the
engine, motor, battery and supercapacitor are increased with the cycle aggressiveness,
and the vehicle mass and drivetrain cost are higher.

In order to improve the efficiency of PHEV as much as possible, a reasonable energy
management strategy is needed. Future research will focus on the simultaneous selection
of component sizes and control parameters.
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