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Abstract: In the study of autonomous obstacle avoidance of intelligent vehicles, the traditional
artificial potential field method has the problem that the vehicle may fall into the local minima and
lead to obstacle avoidance failure. Therefore, this paper improves the traditional potential field
function. Based on the vehicle dynamics model, a strategy of jumping out of local minima based
on smaller steering angles is proposed. By finding a smaller steering angle and setting a suitable
jump out step length, the intelligent vehicle is enabled to jump out of the local minima. Simulation
experiments by MATLAB show that the improved method can jump out of the local minima. By
comparing the planned trajectories of the traditional method and the improved method in static
and dynamic obstacles situations, the trajectory planned by the improved method is smooth and the
curvature is smaller. The planned trajectory is tracked by the Carsim platform, and the test results
show that the improved method reduces the front steering wheel angle while the intelligent vehicle
satisfies the vehicle dynamics constraints during active obstacle avoidance, which verifies the stability
and rationality of the improved method.

Keywords: artificial potential field; local minima; path planning; intelligent vehicle

1. Introduction

Intelligent vehicles are advanced cars that integrate technologies such as computer
science, sensors, and data processing. It has received extensive attention and research in
academia and has been applied to some extent. Currently, most of the intelligent vehicles
use advanced sensing technology to obtain vehicle location, speed, and other data through
data fusion technology to achieve the extraction and analysis of characteristic data infor-
mation between “human-vehicle-road”, and finally making the vehicle environmentally
aware, enabling autonomous decision-making and motion planning capabilities [1].

Path planning, as an important technology for intelligent vehicles to achieve au-
tonomous driving, frequently refers to motions of a vehicle in a 2D or 3D world that
contains obstacles [2]. The path planning technology of intelligent vehicles is to analyze
and process the data collected by vehicle sensors and plan the vehicle trajectory inde-
pendently without a human driver through a certain algorithm. This technology can not
only plan the appropriate trajectory, but also reduce the traffic accidents caused by road
environment changes and driver’s operation errors, which is important to build a safe,
efficient, and convenient driving environment.

According to the degree of grasp of environmental information, path planning can
be divided into global path planning based on a priori complete information and local
path planning based on sensor information [3,4]. The path planning techniques applied
in automated driving scenarios can be roughly divided into four categories: graph search
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based planners, sampling based planners, interpolating curve planners, and numerical
optimization approaches [5]. Here are common path planning algorithms used in early
applications for intelligent vehicles: (1) Grid method [6,7]: The grid method was earlier
applied to the path planning of robots. It divides the robot’s workspace into a grid, and the
size of the grid cells is determined by the smallest rectangular space in which the robot can
move freely, and the path is planned by calculating the shortest distance between the grids.
(2) Dijkstra algorithm: Dijkstra’s algorithm was proposed by the Dutch computer scientist
Dijkstra in 1959 [8]. It is a classic graph searching algorithm; however, it has disadvantages
such as high data computation and low efficiency. (3) A* algorithm [9,10]: It is an extension
of Dijkstra’s graph search algorithm. Its most important design aspect is the determination
of the cost function, which defines the weights of the nodes [5]. (4) RRT (rapidly exploring
random trees) algorithm [11,12]: RRT algorithm is a random sampling planning algorithm.
It permits fast planning in semi-structured spaces by performing random searches in the
navigation area [13].

The classical graph searching algorithms and sampling-based algorithm mentioned
above have shortcomings and drawbacks. Vega-Brown et al. [14] proposed some asymp-
totically optimal algorithms for motion planning problems, the ideas in these algorithms
can likely be combined with the ideas in many other sampling-based motion planning and
graph search algorithms. Other scholars have also proposed some novel path planning
algorithms based on advanced sensors and natural sciences: Nakrani et al. [15] designed a
fuzzy-based obstacle avoidance navigation controller, which obtains information from an
ultrasonic sensor array. Chen Y. et al. [16] proposed padding mean neural dynamic model
(PMNDM), planning paths by transmitting nerve impulses in a topologically organized
network. Jafari M. et al. [17] proposed a novel biologically inspired approach based on a
computational model of emotional learning in mammalian limbic system, and it is applied
for the first time in a synthetic UAV (Unmanned Aerial Vehicles) path planning scenario.

In real driving scenarios, when the drivers or sensors detect obstacles, they will slow
down or steer to avoid the obstacles. This shows that the obstacle avoidance behavior of the
vehicle depends on whether the location of the obstacles will influence the driving safety of
the vehicle. Although the vehicle does not contact the obstacles during obstacle avoidance,
the vehicle’s motion is altered. This indicates that there is at least one virtual force acting
on the vehicle, and this virtual force belongs to a field force [18]. This means that there is a
potential field that changes the motion of the vehicle during the obstacle avoidance process.
Therefore, we can explain the phenomenon of vehicle obstacle avoidance process in terms
of fields and field forces.

The artificial potential field (APF) method has received much attention and research
for its simplicity of calculation and high real-time performance. The APF method was first
proposed by Khatib [19] in 1986 and it is commonly used for local path planning. The
principle of APF method is to transform the real environment into a virtual potential field,
which is the attractive field generated by the target and the repulsive field generated by the
obstacle, and the vector superposition of the attractive field and repulsive field forms the
combined potential field. Ultimately, the intelligent vehicle plans its path under the action
of the combined potential field.

However, the traditional APF method has many drawbacks, the most typical of which
is the problem of local minima and unable to reach target. To address the problem of
local minima, scholars at home and abroad have proposed several improved methods.
Choe, T.S. et al. [20] proposed the concept of steering potential fields, using overlapping
integrated force fields to avoid obstacles and follow the planned path. Huang, Y. et al. [21]
generate a diamond-shaped grid on a local map, add a voltage source between the starting
point and the target, assign the resistance value of each edge on the grid by the APF method,
and plan the local path by calculating the current maximum. Fan, S. [22] optimized the
gravity model by setting tracking target points and optimized the potential field function
by adjusting factors to eliminate local minima. Li, E. [23] proposed the SOPC-APF method
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that introduces the idea of collision prediction and makes decisions before the robot enters
the trap area or the minimum point problem.

APF method can also be combined with other intelligent algorithms. Bounini, F. et al. [24]
find the actual path in the potential field according to a potential gradient descent algorithm
and add a repulsive potential field to the current state with a local minimum. Cummings,
M.L. [25] studied the path planning problem by combining the ant colony algorithm with
the APF algorithm. Luo, D. et al. [26]. proposed to use the grid method to establish the
planning space and use the ant colony algorithm as the global path search strategy to search
for the optimal path. In addition, due to the early application of the APF method to robot
kinematics, the restrictive constraints of the intelligent vehicle must be considered when it
is referenced as a local path planning algorithm for intelligent vehicles.

To address the above problems, this paper first improves the potential field functions.
Second, the road boundary potential field is added to constrain the motion region and
limit the lateral motion of the intelligent vehicle. Finally, combining with the vehicle
dynamics model, a strategy for jumping out of local minima based on smaller steering
angles is proposed when the intelligent vehicle falls into local minima. The intelligent
vehicle will search for potential jump-out points in the direction of smaller steering angles
within the maximum steering angle range of the intelligent vehicle. The improved APF
method is verified and analyzed by MATLAB and Carsim platform, and the improved APF
method can successfully jump out of the local minima, at the same time, comparing the
trajectory curvature before and after the improvement in the same obstacle environment.
The trajectories planned by the improved APF method has smaller curvature and are easier
to be tracked under the same Carsim tracking model. This paper provides a new idea for
intelligent vehicle path planning based on potential field theory.

2. APF Method
2.1. Traditional APF Method

The principle of APF is to assume that the vehicle is in a virtual space; the attractive
potential field generated by the target and the repulsive potential field generated by the
obstacles. Attractive field has low potential energy and both start point and repulsive
field have high potential energy. The superposition of these two potential fields forms an
undulating space as shown in Figure 1 [27].
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In attractive field, the magnitude varies with the distance between the vehicle position
and the target. The potential field function in this paper is referenced to Zhu, W. [28] and
the attractive potential field is defined as:

Uatt(X) =
1
2

Kaρ2(P, Pg
)

(1)

where Uatt(X) is the attractive potential field, Ka is the attractive field coefficient, ρ
(

P, Pg
)

is a vector whose magnitude is the Euclidean distance between the vehicle position P and
the target position Pg, the direction is the vehicle position toward the target position.
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The attractive force is the negative gradient of the attractive potential field which can
be calculated from the following equation:

Fatt(X) = −∇Uatt(X) = Kaρ
(

P, Pg
)

(2)

Repulsive fields are virtual potential fields generated by obstacles. Each obstacle has
its own range of influence. When the vehicle is not within the influence range of an obstacle,
the potential energy magnitude of the vehicle is zero; when the vehicle enters the influence
range of the obstacle, the potential energy of the vehicle varies with the distance between
the vehicle position and the obstacles. The repulsive potential field is defined as:

Urep(X) =

{
1
2 Kr(

1
ρ(P,Pobs)

− 1
ρ0
)

2
0 <ρ(P, Pobs) ≤ ρ0

0 ρ(P, Pobs) > ρ0
(3)

where Urep(X) is the repulsive potential field, Kr is the repulsive field coefficient, ρ(P, Pobs)
is a vector whose magnitude is the Euclidean distance between the vehicle position P and
the obstacle position Pobs, the direction is from the obstacle to the vehicle, ρ0 is the radius of
the obstacle’s influence range.

The repulsive force is the negative gradient of the repulsive potential field which can
be calculated from the following equation:

Frep(X) = −∇Urep(X) =

{
Kr

(
1

ρ(P,Pobs)
− 1

ρ0

)
1

ρ2(P,Pobs)
0 <ρ(P, Pobs) ≤ ρ0

0 ρ(P, Pobs) > ρ0
(4)

Vehicle is often affected by the repulsive field of multiple obstacles while moving
toward the target. Therefore, the combined force field is a superposition of an attractive
field and multiple repulsive fields.

The combined force potential field function can be expressed as:

Utotal(X) = Uatt(X) +
n

∑
i=1

Urep(X) (5)

In the above equation, Utotal(X) is the combined potential field and n is the number
of obstacles.

The combined force is the negative gradient of the force potential field and can be
expressed as:

Ftotal(X) = −∇Utotal(X) = Fatt(X) + Frep(X) (6)

Ultimately, as shown in Figure 2, the combined forces control the motion of the vehicle.
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2.2. Shortcomings of Traditional APF Method

1. Because the attractive force is proportional to the distance between vehicle and target,
an excessive attractive force will cause the vehicle to hit a nearby obstacle when the
vehicle is far from the target.

2. The attractive force generated by the target is zero when the vehicle reaches the target.
Assuming there is an obstacle near the target, the vehicle will still be repelled away
from the target by the repulsive force generated by the obstacle at this time, which
causes the vehicle to oscillate near the target and cannot reach it;

3. In practical urban driving scenarios, vehicles must move on a defined road and cannot
move outside the road boundaries. Therefore, adding a road boundary potential field
to limit the lateral motion of the vehicle is necessary;

4. Assume that the vehicle is at a point where the combined force on the vehicle is zero.
The vehicle will fall into a local minima if the vehicle does not reach the target. It is
the most common fault of the traditional APF method.

3. Vehicle Dynamics Model

The vehicle dynamics model is very essential for designing feasible trajectory. The
planned trajectory should be limited within the vehicle dynamics constraints [29], and
the two-degree-of-freedom vehicle dynamics model established in this paper is shown in
Figure 3. In this figure: Fy f and Fyr represent the lateral force of the front wheel and the
rear wheel; Vx and Vy are the longitudinal speed and the lateral speed, respectively; ϕ is
the yaw angle; β is the lateral deflection angle of the center of mass; α f and αr, denote the
slip angle of the front and rear axle, respectively; l f is the distance from the center of mass
to the front axle; lr is the distance from the center of mass to the rear axle; δ represents the
front tire angle.
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Based on the balance of forces in the y-axis direction, the vehicle dynamics equilibrium
equation can be expressed as:

Fy f cosδ + Fyr = may (7)

The relationship between lateral force of the front wheel and the rear wheel, lateral
deflection angle and lateral deflection stiffness can be expressed as:{

Fy f = C f α f
Fyr = Crαr

(8)

where C f and Cr are the front wheel lateral deflection stiffness and the rear wheel lateral
deflection stiffness, respectively. According to the coordinate system, the lateral deflection
angle of the front and rear wheels of the vehicle can be expressed as:
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 α f =
.
ϕl f +Vy

Vx
− δ

αr =
Vy−

.
ϕlr

Vx

(9)

Assuming the front tire angle δ at a small angle, we can regard cosδ ≈ 1. According to
the Equations (8) and (9), Equation (7) can be transformed as:

m
( ..
y + Vx

.
ϕ
)
= C f

( .
ϕl f +

.
y

Vx
− δ

)
+ Cr

( .
y− .

ϕlr
Vx

)
(10)

Note that the velocity and acceleration in the y-axis direction can be expressed as:{
Vy =

.
y

ay =
..
y + Vx

.
ϕ

(11)

Finally, the vehicle dynamics model based on the front tire angle δ can be expressed as:

..
y =

C f + Cr

mVx

.
y +

( l f C f − lrCr

mVx
−Vx

)
.
ϕ−

C f

m
δ (12)

4. Improved APF Method

Based on the previous analysis of the traditional APF method, the details of the
improved APF method are as follows:

4.1. Potential Field Functions

To avoid the problem of excessive initial attractive force of the vehicle at the starting
point, the attractive field function could be modified. The improved attractive potential
field function can be expressed as:

Uatt(X) =

{
εKaρ

(
P, Pg

)
ρ
(

P, Pg
)
≥ d0

1
2 Kaρ2(P, Pg

)
ρ
(

P, Pg
)
< d0

(13)

The corresponding attractive force can be expressed as:

Fatt(X) =

 −εKa
ρ(P,Pg)
|P−Pg| ρ

(
P, Pg

)
≥ d0

−Kaρ
(

P, Pg
)

ρ
(

P, Pg
)
< d0

(14)

where d0 is the threshold value for the distance between the vehicle and the target; ε is the
attractive field modulation factor. The most significant difference after the improvement is
that when the distance between the vehicle and the target is greater than d0, the gravitational
force is considered constant.

To address the problem of vehicle oscillation near the target, an adjustment factor
ρn(P, Pg

)
is added to the repulsive field function. The improved repulsive field function

can be expressed as:

Urep(X) =

{
1
2 Kr(

1
ρ(P,Pobs)

− 1
ρ0
)

2
ρn(P, Pg

)
0 <ρ(P, Pobs) ≤ ρ0

0 ρ(P, Pobs) > ρ0
(15)

The corresponding repulsive force can be expressed as:

Frep(X) =

{
⇀

no,vFrep1 +
⇀

nv,gFrep2 ρ(P, Pobs) ≤ ρ0
0 ρ(P, Pobs) > ρ0

(16)
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where the direction of repulsive force Frep1 is from the obstacle toward the vehicle, and the
direction of repulsive force Frep2 is from the vehicle toward the target. The magnitude of
Frep1 and Frep2 is determined by the following equation: Frep1 = Kr

(
1

ρ(P,Pobs)
− 1

ρ0

)
ρn(P,Pg)
ρ2(P,Pobs)

Frep2 = n
2 Kr(

1
ρ(P,Pobs)

− 1
ρ0
)

2
ρn−1(P, Pg

) (17)

where n is an arbitrary non-zero constant, taken as n = 2 in this paper.
The road boundary potential field is mainly used to restrict the driving area of intelli-

gent vehicles, which is essentially a type of repulsive force. In this paper, taking a two-lane
road as an example, the two green zones represent the area where the intelligent vehicle
should be in motion as shown in the Figure 4. The road boundary potential field function
is expressed by segmentation function, which can make vehicles move steadily within the
road boundary. The road boundary potential field function can be expressed as:

Uroad(P) =



1
3 Kroad

(
Py +

D
2

)3
− D + W

2 ≤ Py < −D
2

− λ
3 Kroad

(
Py +

D
2

)3
− D

2 ≤ Py < 0

λ
3 Kroad

(
Py − D

2

)3
0 < Py ≤ D

2

− 1
3 Kroad

(
Py − D

2

)3 D
2 < Py ≤ D− W

2

(18)
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The corresponding road boundary repulsive force can be expressed as:

Froad(P) = −∇Uroad(P) =



Kroad

(
Py + D

2

)
2 − D + W

2 ≤ Py < −D
2

−λKroad

(
Py +

D
2

)
2 − D

2 ≤ Py < 0

λKroad

(
Py − D

2

)
2 0 < Py ≤ D

2

−Kroad

(
Py − D

2

)
2 D

2 < Py ≤ D− W
2

(19)

where W is the vehicle width, D is the lane width, Kroad is the road boundary potential field
coefficient, λ is the modulation factor, and Py is the vertical coordinate of the vehicle center
of mass position in the road coordinate system XOY. The direction of repulsion of the
road boundary potential field is perpendicular to the road boundary. When the intelligent
vehicle can avoid the obstacle without changing lanes, the intelligent vehicle is restricted to
remain in the current lane, unless the longitudinal repulsive force on the vehicle is greater
than the maximum repulsive force of the road boundary without changing lanes to reduce
the driving risk of changing lanes.
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By superposition of the above three potential fields, the equilibrium equation for the
vehicle subjected to the potential field can be obtained:

Utotal = Uatt + Urep + Uroad (20)

The equilibrium equation for the forces on the vehicle can be expressed as:

Ftotal = Fatt + Frep + Froad (21)

4.2. Strategies for Jump out of Local Minima Based on Smaller Steering Angles

The intelligent vehicle will stall or oscillate when it falls into local minima. To solve
this problem, this paper proposed a strategy, that is searching for potential jump out points
within the steering angle range as shown in Figure 5. The specific steps are as follows:
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When the vehicle has not reached the target, the vehicle satisfies the equation:∣∣P− Pg
∣∣ ≥ step length (22)

The local minima are defined as:

|Pi+2 − Pi| ≤ 0.1 ∗ step length || Fsum = 0 (23)

where i is the serial number of step. When the intelligent vehicle falls into the local minima,
the coordinates of the intelligent vehicle at that moment are noted as A(x0, y0), the direction
of vehicle motion at that moment is taken as the reference line. Initializing the number of
angle changes n = 1, and picking the angles on both sides of the reference line direction,
the angles θth are determined by Equations (24) and (25):

nth = ±



1
1024

1
256

1
64
1

16
1
4
1


[

1 · · · n
]

(24)

θth =
nth
|nth|

∗
√
|320 ∗ nth| (25)
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The magnitude of the front tire angle δ of a vehicle can be expressed as:

δ = 2π ∗ θth
360

+ arctan
Fsumy

Fsumx
+ π ∗ (Fsumx < 0) (26)

At the same time, according to Equation (27) to obtain the former step length S f .

S f =


0.5 ∗ step length ∆U

(
XAi − XAi−2

)
≤ 0.8

step length 0.8 <∆U
(
XAi − XAi−2

)
< 1.2

1.5 ∗ step length ∆U
(
XAi − XAi−2

)
≥ 1.2

(27)

where ∆U
(
XAi − XAi−2

)
is the potential field magnitude difference between the point A

and the position twice the length steps before the point A. Based on the front tire angle δ
and the former step length S f , the vehicle gets two potential jump-out points, sit marked
as B(x1, y1) and C(x2, y2).

Calculate the value of the potential field when the vehicle is at positions A, B, and
C respectively and write U(x0), U(x1), and U(x2). Comparing the magnitude of U(x0),
U(x1) and U(x2):

If the potential field value satisfies both U(x0) < U(x1) and U(x0) < U(x2), it means
that the potential field value at point A is the lowest. Neither point B nor point C can be the
suitable jump-out point. Then increase the number of angle changes once and perform the
above step operation again. Meanwhile, the steering angle of the intelligent vehicle should
satisfy its dynamics constraints in the actual driving scenario. The maximum steering angle
of the vehicle does not exceed 40◦ and n should be no more than 5. If n is greater than
5, then the vehicle is set back two times the virtual step length to obtain a critical local
minima, and performed again from the beginning.

If it does not satisfy U(x0) < U(x1) or U(x0) < U(x2), it means that point B and
point C have at least one point with a lower potential field value than point A. Then
comparing the magnitude of U(x1) and U(x2), the vehicle moves to point C if potential
field value satisfied U(x1) > U(x2) and moves to point B if potential field value satisfied
U(x2) > U(x1).

When determining the potential jump-out points, attention should be paid to whether
the line between the current position of the intelligent vehicle and the potential jump-out
point will collide with the obstacle. If a collision occurs, the potential jump-out point should
be discarded and searched again. The planned trajectory and front tire angle should satisfy
Equation (12). The flowchart of the strategy is shown in Figure 6.
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5. Simulation and Analysis
5.1. Simulation Environment Construction

To verify the feasibility of the improved APF method in local path planning of intelli-
gent vehicles, simulations are carried out on the MATLAB 2021a platform. The traditional
and improved APF methods are compared to deal with the problem of local minima; the
planning trajectories of the traditional and improved APF methods are compared in the
static obstacles environment and the dynamic obstacles environment. The effectiveness of
the improved method is evaluated by the curvature of the trajectory. The main parameters
of the simulation experiments are shown in Table 1.

Table 1. Simulation parameters setting table.

Parameter Name and Symbol Representation Value/Unit

Attractive field action coefficient Ka 15
Repulsive field action coefficient Kr 10

Road boundary potential field coefficient Kroad 20
Radius of the influence range of the obstacle ρ0 5 m

Vehicle length L 4.7 m
Vehicle width W 1.8 m

Lane width D 3.5 m
Step length 0.1 m

5.2. Analysis of Simulation Results
5.2.1. Simulation Analysis of Local Minima Problems

Set the starting position of the main vehicle as (0 m, 0 m) and the target position as
(50 m, 0 m). The obstacle coordinates are (25 m, 0 m) in the single obstacle case and (25 m,
3.5 m) (25 m,−3.5 m) in the multiple obstacles case. The simulation results of the traditional
APF method are shown in Figure 7.
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Figure 7. Local minima formed by traditional APF method. (a) Single obstacle; (b) multiple obstacles.

From Figure 7, it can be seen that the vehicles all fall into local minima, and the
coordinates of the local minima are (19 m, 0 m) and (19.8 m, 0 m). The results of path
planning are failures because they fail to achieve their targets. The simulation results of the
improved APF method are shown in Figure 8.

From Figure 8, it can be seen that the vehicle jump out of the local minima by using
the improved APF method, the planned trajectory is continuous and smooth. As can be
seen from Figure 9, the absolute values of the curvature of the trajectories planned by
the improved APF method are all less than 0.4 m−1, which satisfies the requirements of
path planning. It also indicates that the strategy of jump out of the local minima based on
smaller steering angle is effective.
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Figure 8. Trajectory planned by the improved APF method. (a) Single obstacle; (b) multiple obstacles.
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Figure 9. Curvature of the trajectory planned by the improved APF method; (a) trajectory curvature
for single obstacle case; (b) trajectory curvature for multiple obstacles case.

5.2.2. Simulation of Path Planning in Static Obstacles Situations

Taking two lanes in both directions as an example, in the initial state, the position of
the subject vehicle is (0 m, −1.75 m) and the target position is (100 m, 1.75 m). Assuming
that the subject vehicle moves at a constant speed of 10 m/s, the initial positions of static
obstacle vehicle 1 and static obstacle vehicle 2 are (15 m, 1.75 m) and (50 m, −2.5 m),
respectively, the location relationships are shown in Figure 10.
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Figure 10. Static obstacles driving environment.

The simulation results of trajectory planned by the traditional and improved APF
methods are shown in Section 5.2.2 and Figure 12.
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Figure 11. Trajectory planned by the traditional APF method in static obstacles driving environment.

Although the traditional APF method also successfully planned the trajectory, it can
be seen that the improved APF method planned a smoother trajectory than the traditional
APF method by comparing Section 5.2.2 and Figure 12, which is also confirmed by the
curvature comparison in Figure 13.
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Figure 12. Trajectory planned by the improved APF method in static obstacles driving environment.
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Figure 13. Comparison of curvature of planned trajectories in static obstacles driving environment;
(a) curvature of planned trajectory by traditional APF; (b) curvature of planned trajectory by im-
proved APF.

5.2.3. Simulation of Path Planning in Dynamic Obstacle Situation

Still take two lanes in both directions as an example, in the initial state, the initial
position of the subject vehicle is (0 m, −1.75 m) and the target position is (100 m, 1.75 m).
Assuming that the subject vehicle is moving at a constant speed of 10 m/s, the initial
positions of dynamic obstacle vehicle 1 and dynamic obstacle vehicle 2 are (15 m, 1.75 m)
and (50 m, −2.5 m) respectively, the location relationships are shown in Figure 14.
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Figure 14. Dynamic obstacles driving environment.

Assume that dynamic obstacle vehicle 1 and dynamic obstacle vehicle 2 are at a
uniform speed of 5 m/s and 3 m/s, respectively. The simulation results of trajectory
planned by the traditional and improved APF methods are shown in Figures 15 and 16.
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Figure 15. Trajectory planned by the traditional APF method in dynamic obstacles driving environment.

It can be seen from the figure that the trajectories are successfully planned by the APF
method before and after the improvement. However, as can be seen from Figure 17, the
peak curvature of the trajectory planned by the improved APF method is approximately
half of the curvature of the trajectory planned by the traditional APF method. This means
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that the improved APF method planned the trajectory more smoothly and the vehicle is
easier to maneuver when avoiding obstacles.
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Figure 16. Trajectory planned by the improved APF method in dynamic obstacles driving environment.
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Figure 17. Comparison of curvature of planned trajectories in dynamic obstacles driving environ-
ment. (a) Curvature of planned trajectory by traditional APF; (b) curvature of planned trajectory by
improved APF.

5.3. Simulation of Tracking the Planned Trajectory

In order to further verify the reliability of the path planning of the improved APF
method, we have tracked the planned trajectories in static and dynamic obstacle driving
environments on the Carsim simulation platform and analyzed the simulation results.

In order to exhibit the amount of steering wheel angle variation of the intelligent
vehicle under different speeds, we set two groups of speed commonly used in urban road
environment, 10 m/s and 15 m/s. These two groups of speed will be used as the expected
speed of the subject vehicle to track the trajectory planned in the previous section. Since it
is only necessary to obtain the variation rules of steering wheel angle before and after the
improved APF method, the article only takes the default tracking model in Carsim. In static
obstacle environment, Figure 18 compared the planned trajectory and the actual trajectory
for expected vehicle speed of 10 m/s. The Euclidean errors of the planned trajectory and
the actual trajectory for expected vehicle speed of 10 m/s are shown in Figure 19. The
variation curves of steering wheel angle for expected vehicle speed of 10 m/s in static
obstacles driving environment are shown in Figure 20.

Figure 21 compared the planned trajectory and the actual trajectory for expected
vehicle speed of 15 m/s. The Euclidean errors of the planned trajectory and the actual
trajectory for expected vehicle speed of 15 m/s are shown in Figure 22. The variation curves
of steering wheel angle for expected vehicle speed of 15 m/s in static obstacles driving
environment are shown in Figure 23.
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environment.
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Figure 22. Euclidean errors of trajectories planned for expected vehicle speed of 15 m/s in static
obstacles driving environment.

In dynamic obstacles environment, Figure 24 compared the planned trajectory and
the actual trajectory for expected vehicle speed of 10 m/s. The Euclidean errors of the
planned trajectory and the actual trajectory for expected vehicle speed of 10 m/s are shown
in Figure 25. The variation curves of steering wheel angle for expected vehicle speed of
10 m/s in dynamic obstacles driving environment are shown in Figure 26.
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trajectory for expected vehicle speed of 15 m/s are shown in Figure 28. The variation curves
of steering wheel angle for expected vehicle speed of 15 m/s in dynamic obstacles driving
environment are shown in Figure 29.

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 18 of 21 
 

 
Figure 25. Euclidean errors of trajectories planned for expected vehicle speed of 10 m/s in dynamic 
obstacles driving environment. 

 
Figure 26. Steering wheel angles for expected vehicle speed of 10 m/s in dynamic obstacles driving 
environment. 

Figure 27 compared the planned trajectory and the actual trajectory for expected ve-
hicle speed of 15 m/s. The Euclidean errors of the planned trajectory and the actual trajec-
tory for expected vehicle speed of 15 m/s are shown in Figure 28. The variation curves of 
steering wheel angle for expected vehicle speed of 15 m/s in dynamic obstacles driving 
environment are shown in Figure 29. 

 
(a) 

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 19 of 21 
 

 
(b) 

Figure 27. Comparison of planned trajectory and actual trajectory for expected vehicle speed of 15 
m/s in dynamic obstacles driving environment. (a) Planned trajectory by traditional APF and actual 
trajectory of vehicle; (b) planned trajectory by improved APF and actual trajectory of vehicle. 

 
Figure 28. Euclidean errors of trajectories planned for expected vehicle speed of 15 m/s in dynamic 
obstacles driving environment. 

 
Figure 29. Steering wheel angles for expected vehicle speed of 15 m/s in dynamic obstacles driving 
environment. 

As can be seen in figure about Euclidean errors of trajectories planned, by using the 
same Carsim tracking model, the tracking Euclidean error of the trajectory planned by the 
improved APF is smaller, which indicates that the trajectory planned by the improved 
APF method is easier to be tracked. Due to the better tracked trajectory obtained, the steer-
ing wheel angle of the vehicle is smaller when tracking the trajectory planned by the im-
proved APF. It indicates that the intelligent vehicle is easier to be maneuvered. 

Figure 27. Comparison of planned trajectory and actual trajectory for expected vehicle speed of
15 m/s in dynamic obstacles driving environment. (a) Planned trajectory by traditional APF and
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As can be seen in figure about Euclidean errors of trajectories planned, by using the
same Carsim tracking model, the tracking Euclidean error of the trajectory planned by the
improved APF is smaller, which indicates that the trajectory planned by the improved APF
method is easier to be tracked. Due to the better tracked trajectory obtained, the steering
wheel angle of the vehicle is smaller when tracking the trajectory planned by the improved
APF. It indicates that the intelligent vehicle is easier to be maneuvered.
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6. Conclusions

(1) This paper introduces the principle of the traditional APF method and its advantages
and shortcomings, solving the problem of excessive initial attractive force and intelli-
gent vehicle cannot reach the target by improving the potential field functions. At the
same time, establishing the road boundary potential field combined with the actual
application scenario.

(2) A strategy of jump out of local minima based on smaller steering angles has been
proposed, solving the problem of local minima that the traditional APF method tends
to fall into by finding smaller steering angles and determining the appropriate jump
out step length in the steering angle range of the vehicle.

(3) The improved APF method can not only jump out local minima but also plan smooth
trajectories by simulation in Matlab. By comparing the magnitude of curvature and
tracking the planned trajectories in Carsim platform, the reduction of Euclidean error
and steering wheel angle proved that the trajectories planned by the improved APF
method are easier to be tracked.

However, there are two drawbacks in the research of this paper:

1. The driving environment designed in this paper is urban road and the general vehicle
speed limit range is 30–60 km/h in the city. 10 m/s (36 km/h) and 15 m/s (54 km/h)
are the common speeds in the speed limit range, so they are used as the simulation
speed in this paper. Furthermore, obstacle avoidance of high-speed vehicles is a
complex motion planning involving braking and steering. If the speed of the vehicle is
too high, the actual trajectory will have a large deviation from the planned trajectory
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due to the inertia of the vehicle, which may directly cause the vehicle to have a lateral
collision with the obstacle and lead to the failure of the path planning. In this paper,
under the assumption of uniform vehicle motion, the vehicle trajectory planning
under high-speed motion is not considered.

2. The APF model in this paper does not consider the differences of obstacle avoidance
trajectories of different vehicle types in the actual road environment, and only consid-
ers the obstacle avoidance scenarios of flat and straight roads, which is a relatively
single scene.

In view of the above deficiencies, the subsequent research will keep improve the APF
model and enhance the adaptability of the model. Hence, future work should be devoted to
establishing the APF model under high-speed motion. In addition, an avenue for our future
work would be to research the interaction between the subject vehicle and the obstacle
vehicle with different parameters in the obstacle avoidance process.
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