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Abstract: In view of the poor robustness and low accuracy in lane line identification based on digital
image processing, this paper proposes a Markov random field intelligent algorithm based on machine
learning to identify lane lines. The complete lane line identification steps are as follows: First, high-
quality traffic scenario images are created by means of image preprocessing, which includes image
graying, grayscale transformation, and the extraction of regions of interest (ROIs). Then, the images
are modeled according to Markov random field theory, and model reasoning is performed based on
the binary graph cut method. In the reasoning process, to achieve accurate lane line segmentation,
i.e., the optimal solution of the model, the energy potential function is introduced to optimize the
binary graph cut method. Finally, the lane line pixel label is marked according to the segmentation
result. The experiments showed that the algorithm could accurately segment the lane line pixels after
only 10 iterations, indicating that the identification method has good performance in both reasoning
speed and identification accuracy, which takes account of both accuracy and real-time processing,
and can meet the requirements of lane recognition for lightweight automatic driving systems.

Keywords: Markov random field; lane line identification; energy potential function; model reasoning;
graph cut method

1. Introduction

The key to realizing automatic driving technology is to correctly identify and detect
various complex lane lines in traffic scenarios, using perception technology to transmit
the processed correct lane line information to the control system of the intelligent vehicle,
thus making correct path planning and behavior decisions to realize vehicle automatic
driving. At the same time, the accurate semantic segmentation and detection of lane lines
can provide an information basis for advanced driving assistance systems (ADASs), such
as automatic cruise driving, lane keeping, lane changing, and overtaking, which can further
improve active safety during driving [1,2].

At present, under good road conditions (structured roads with clear lane lines, no
obvious illumination changes, and no obstacle occlusion), the lane line detection algorithm
can achieve good results and meet the functional requirements of ADASs. However, actual
traffic scenarios are complex and changeable, and there are various interferences such
as illumination changes, the occlusion of other vehicles, unclear lane lines, etc., which
may lead to false detection, missed detection, and even the failure of lane line detection
algorithms, which greatly limits the application scenarios of ADASs and affects driving
safety and user experience. Therefore, how to adapt to various complex road conditions
in actual traffic scenarios and take into account the accuracy and real-time processing is
the key problem facing lane line detection tasks, and it is also an important goal of the
continuous optimization and upgrading of ADASs.

For lane line recognition, the Sobel operator and Canny operator are two widely used
edge detection algorithms. Reference [3] used the Otsu algorithm [4] to extract the region
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of interest (ROI) from a gray image, detected the image ROI based on the Sobel operator,
and then extracted the lane line through threshold segmentation and piecewise fitting.
Reference [5] combined the Sobel operator with non-local maximum suppression (NLMS)
to select numerous candidate lane lines in the image ROI, and then screened the candidate
lane lines according to the combination of lane line structure features and color features to
complete the extraction of lane lines.

Reference [6] detected the ROI extracted from the original image based on the Canny
operator and the paired features of lane lines, and then extracted the lane lines through
denoising and threshold segmentation. Reference [7] first used the Canny operator to detect
the edge of the image, then combined Hough transform with the maximum likelihood
method, determined the control points of the Catmull ROM spline based on the perspective
principle, and finally completed lane line extraction.

The common feature of these algorithms is that the mechanism is transparent, the
process is controllable, and the speed is fast, although the pattern of feature extraction
is single. Although they can achieve good recognition effects in one or a few scenarios,
they are very vulnerable to changes in the road environment, and the robustness of the
algorithms is poor, and cannot meet the needs of lane line recognition in complex and
changeable real scenarios.

In recent years, the rapid development of computer hardware has greatly promoted
the development of deep learning theory and technology, making deep learning more and
more widely used in many fields, especially in lane recognition applications. Deep learning
has become the mainstream development direction for future research.

Reference [8] proposed a lane line identification method based on a support vector
machine (SVM), using a spline curve to fit lane lines according to the screening results
of lane lines by the SVM; however, this method relies on massive samples for training.
Reference [9] used digital image processing to determine the starting and ending positions
of the lane line by calculating the gradient change size and direction of the lane line edge,
and made corrections based on the density function to finally determine the optimal lane
line. However, this algorithm only worked well on flat roads. Reference [10] investigated
preprocessing in lane line identification using a Gaussian filter to denoise, as well as
edge enhancement to enrich lane line details to obtain accurate boundaries; however, the
algorithm has low accuracy in scenarios of lane line damage. Reference [11] proposed a lane
line identification algorithm based on multi-resolution and multi-scale Hough transform,
which obtained the lane line by setting the threshold of the geometric characteristics of the
lane line; however, the algorithm demanded many experiments in the threshold setting.
Reference [12] estimated the directional changes of subsequent lane lines through the edge
distribution function, but the effect was not ideal for dotted lines and bends.

The algorithm proposed in [13] needed segmentation before clustering to obtain the
results. In addition to the speed and accuracy of neural network feature extraction, it also
depended on the real-time processing and accuracy of clustering algorithms. The method
proposed in [14] included two relatively independent neural networks which needed to
be pre-trained, spliced, and adjusted slightly. The training process was complex and the
convergence speed was slow. References [15,16] took a continuous lane line as a whole and
used the Yolo V3 network for target detection on the image transformed with an inverse
perspective to complete the lane line recognition, which made the prediction result of the
algorithm deviate when the road slope value changed or the vehicle was bumpy.

When it comes to the impact of structured roads and scenarios with high dynamic light
changes, all the above algorithms have low accuracy and poor robustness. The aforemen-
tioned machine-learning-based algorithms require large training sets, and the collection
of such data is expensive [8,14]. Based on methods of digital image processing [10,11], the
selection of the threshold value is inefficient. Thus, this paper proposes a lane line identifi-
cation method based on Markov random field. First, through image preprocessing, the lane
line pixels are enhanced; then, the Markov random field is used for image modeling; finally,



World Electr. Veh. J. 2022, 13, 106 3 of 14

the reasoning of the Markov random field is performed based on the graph cut method,
which can achieve the accurate and rapid identification of lane lines.

2. Image Preprocessing

Lane line identification is an important basis for automatic driving, and is also an
important part of advanced driving assistance systems (ADASs). Lane line identification
algorithms mainly rely on the analysis of camera imaging, although contemporary cameras
are generally affected by light, temperature, and vibrations, which will generate noise in
the image; often, high-quality images cannot be obtained. Therefore, it is necessary to
enhance the image, which is also known as image preprocessing [17]. In this study, the
methods of color space transformation, image smoothing, grayscale transformation, and
extraction of the region of interest are used for image preprocessing.

2.1. Color Space Transformation

When a camera shoots an image, it generally obtains a color digital image with an
RGB color model, including three color channels R, G, and B, involving more information.
In the lane line identification algorithm, in order to simplify the complexity of the model,
the color image is often converted into a gray image. Therefore, image graying is operated
in the following process.

Figure 1 shows the original color image; the gray image shown in Figure 2 can be
obtained by averaging the three color channels of each pixel. The conversion formula
is presented in Equation (1), where (x, y) represents the coordinates of the pixel point,
l_R(x, y), l_G(x, y), and l_B(x, y) represent the R, G, and B three-channel values of the
pixel point, respectively, and l(x, y) represents the gray value of the pixel point.

l(x, y) =
1
3

l_R(x, y) +
1
3

l_G(x, y) +
1
3

l_B(x, y) (1)
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2.2. Image Smoothing

After obtaining a single-channel grayscale image, the proposed technique performs
image processing in the spatial domain. Image smoothing is a method of spatial filtering.
The smoothing filter plays a significant role in image denoising; thus, we used the mean
filter to process the image. As shown in Figure 3, we set a 3 × 3 mask where the coefficients
in the mask were all 1 and 1

9 represented the average of the coefficients in the mask. At the
same time, the edge of the image is usually processed by mirror expansion to prevent the
loss of image edge information. Equation (2) represents the convolution process of an M ×
N image passing through an m × n weighted mean filter.

g(x, y) =

a
∑

s=−a

b
∑

t=−b
w(s, t) f (x + s, y + t)

a
∑

s=−a

b
∑

t=−b
w(s, t)

(2)
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For masks of dimension m× n, m and n should be odd, w(s, t) represents the coefficient
of the mask at (s, t), a and b represent the mask size, f (x, y) represents the gray value of
the image pixel, the pixels in the (x, y) neighborhood are averaged, and the final smoothed
gray value g(x, y) is obtained. The image processed with the minimum mask of 3 × 3 is
shown in Figure 4. It can be seen that after grayscale image smoothing, the image will
be slightly blurred, which can effectively suppress the influence of noise pixels. From the
details of the lane lines in Figure 4, it can be seen that the cracks in the original lane lines
are used as noise pixels to interfere with the judgment of the entire lane line. After image
smoothing, this noise can effectively be suppressed.
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2.3. Grayscale Transformation

In actual scenarios, the color of the lane line is quite different from the color of the
background road surface. Therefore, if the lane lines and the road surface can be better
distinguished, it will facilitate segmentation of the lane lines. As shown in Equation (3), the
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grayscale gamma transformation function can be constructed using the grayscale value of
the lane line, higher than that of the road surface:

s = crγ (3)

In Equation (3), c is a normal number. In this study, we set c = 1, r as the input gray
level of the image, s as the output gray level of the image, and γ as the gamma index
which was used to adjust the contrast change in the image trend. The output image had
higher contrast after applying gamma transform function to the original image. As shown
in Figure 5, by changing the value of γ, a narrower gray-level value could be mapped
to a wider range of gray-level output, and a wider gray level could also be mapped to a
narrower range of gray-level output. In this way, lane line pixels with higher gray levels
will be mapped to higher gray levels. For ground pixels with lower gray levels, the original
gray level will be suppressed, which can better distinguish lane lines and road areas.
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The results when γ is 5 and 10 correspond to Figures 6 and 7, respectively. It can
be seen that through the image grayscale transformation, the grayscale value of the lane
line increased and that of the road surface was reduced, forming a more intuitive sense
of contrast, also adding prior information for the segmentation of the lane lines below.
However, the noise pixels in the road surface were also enhanced; thus, it is necessary to
suppress the noise interference.

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 5 of 15 
 

distinguished, it will facilitate segmentation of the lane lines. As shown in Equation (3), 
the grayscale gamma transformation function can be constructed using the grayscale 
value of the lane line, higher than that of the road surface: 

γ=s cr  (3)

In Equation (3), 𝑐 is a normal number. In this study, we set 𝑐 = 1, 𝑟 as the input 
gray level of the image, 𝑠 as the output gray level of the image, and 𝛾 as the gamma 
index which was used to adjust the contrast change in the image trend. The output image 
had higher contrast after applying gamma transform function to the original image. As 
shown in Figure 5, by changing the value of γ, a narrower gray-level value could be 
mapped to a wider range of gray-level output, and a wider gray level could also be 
mapped to a narrower range of gray-level output. In this way, lane line pixels with higher 
gray levels will be mapped to higher gray levels. For ground pixels with lower gray levels, 
the original gray level will be suppressed, which can better distinguish lane lines and road 
areas. 

 
Figure 5. Transformation curves corresponding to different γ values when c = 1. 

The results when γ is 5 and 10 correspond to Figures 6 and 7, respectively. It can be 
seen that through the image grayscale transformation, the grayscale value of the lane line 
increased and that of the road surface was reduced, forming a more intuitive sense of 
contrast, also adding prior information for the segmentation of the lane lines below. How-
ever, the noise pixels in the road surface were also enhanced; thus, it is necessary to sup-
press the noise interference. 

 
Figure 6. The transformation result when γ is 5. Figure 6. The transformation result when γ is 5.



World Electr. Veh. J. 2022, 13, 106 6 of 14World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 6 of 15 
 

 
Figure 7. The transformation result when γ is 10. 

2.4. Road Region of Interest Extraction 
ROIs (regions of interest) can be used to acquire key information in an image. In lane 

line identification, the desired image is the lane line image in a certain region [18]. Mask-
ing other irrelevant information can reduce the model noise and improve the detection 
accuracy. The lane line generally appears in a specific region of the camera, as shown in 
Figure 8. This paper defines the front triangular field of view as the region of interest, 
which is located in the lower middle area of the image. For an image of size 1020 × 520, 
we specify that the left vertex of the triangle is (0,500), the right vertex is (1020,500), and 
the center point of the triangle is (510,330). Through image preprocessing and lane line 
search in this region, the operating efficiency will be greatly improved. Specifically, in this 
area, we first convert the image from color space to gray space, then use a 3 × 3 mask for 
smoothing, and finally use grayscale transformation with a γ of 10 to obtain the final pre-
processed image. 

 
Figure 8. Extraction of the ROI. 

3. Markov Random Field 
After image preprocessing, we modeled the image using Markov random field and 

further segmented out the lane line pixels. Markov random field (MRF) represents an un-
directed probabilistic graphical model which can classify different pixels in an image [19]. 
It has the relevant advantages of describing different labels of pixels. For an image, the 
position set of all pixel information is 𝑆 = {1, … , 𝑁}, the random variable set associated 
with each pixel position is {𝑊 } , and the neighborhood set of each position pixel is {𝐸 } , where N represents the neighborhood range; in this study, we set N = 4. As in 
Equation (4), if a Markov random field is to be established, the model must meet the Mar-
kov features: 

Figure 7. The transformation result when γ is 10.

2.4. Road Region of Interest Extraction

ROIs (regions of interest) can be used to acquire key information in an image. In lane
line identification, the desired image is the lane line image in a certain region [18]. Masking
other irrelevant information can reduce the model noise and improve the detection accuracy.
The lane line generally appears in a specific region of the camera, as shown in Figure 8. This
paper defines the front triangular field of view as the region of interest, which is located in
the lower middle area of the image. For an image of size 1020 × 520, we specify that the
left vertex of the triangle is (0,500), the right vertex is (1020,500), and the center point of the
triangle is (510,330). Through image preprocessing and lane line search in this region, the
operating efficiency will be greatly improved. Specifically, in this area, we first convert the
image from color space to gray space, then use a 3 × 3 mask for smoothing, and finally use
grayscale transformation with a γ of 10 to obtain the final preprocessed image.
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3. Markov Random Field

After image preprocessing, we modeled the image using Markov random field and
further segmented out the lane line pixels. Markov random field (MRF) represents an
undirected probabilistic graphical model which can classify different pixels in an image [19].
It has the relevant advantages of describing different labels of pixels. For an image, the
position set of all pixel information is S = {1, . . . , N}, the random variable set associated
with each pixel position is {Wn}N

n=1, and the neighborhood set of each position pixel is
{En}N

n=1, where N represents the neighborhood range; in this study, we set N = 4. As
in Equation (4), if a Markov random field is to be established, the model must meet the
Markov features:

P(wn|wS) = P(wn|wEn) (4)
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Among them, Wn represents the category of the n pixel, and in the lane line detection
task we specify that the categories are only lane lines and non-lane lines. WS represents
the prior category of the image as a whole, and WEn represents the category of the pixel n
neighborhood range. P (Wn|Ws) represents the conditional probability that the class of
pixel n is Wn when the global class is WS. This feature explains the principle of conditional
independence in undirected graph models, i.e., given a neighborhood, each pixel variable
should be conditionally independent of each other.

We further modeled the image by MRF and specified that the image pixels corre-
sponded to the nodes of the MRF one-to-one. In the MRF model, each node represents a
variable, and the edge between the nodes depicts the dependencies between variable levels,
as shown in Equation (5). The joint probability of the variables is described as the product
of potential functions:

P(w) =
1
Z

J

∏
j = 1

φj
[
wCj

]
(5)

where Z is the normalization factor of the joint probability distribution to ensure that the
result is an effective probability distribution, usually called the partition function, and the
factor φj

[
wCj

]
represents the jth potential function, which maps the set of random variables

to the real number domain and returns a non-negative value. This value depends on the
subset state of the variable set Cj ∈ {1, . . . , N}.

In the field of computer vision and image processing, we should not only consider
the continuity of adjacent pixels, but also ensure the correct classification of discrete pixels.
Therefore, it is necessary to use paired Markov random fields to obtain joint probability
distributions by adding node potential functions, as shown in Equation (6).

Pr(x1, . . . , xn) =
1

Zφ
∏
P∈V

φP(xp) ∏
(p,q)∈E

φpq(xp, xq) (6)

where φp(xP) is the energy potential function at the node p, and φpq
(
xp, xq

)
is the energy

potential function on the edge connected to the adjacent nodes p and q. Figure 9 shows a
2 × 2 MRF graphic model. By defining the energy potential function in the neighborhood
of four nodes and that of a single node, the joint probability distribution of the model can
be determined, as shown in Equation (7):

Pr(A, B, C, D) =
1

Zφ
φ1(A, B)φ2(B, C)φ3(C, D)φ4(D, A)φ5(A)φ6(B)φ7(C)φ8(D) (7)
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4. MRF Reasoning Based on Graph Cut Method

Probabilistic reasoning is equivalent to model solving. When the joint probability
distribution is known, the goal is to determine the maximum posterior probability state of
the model through reasoning, and the combination with the highest probability is viewed
as the optimal classification [20]. Therefore, this study used the graph cut method for
accurate reasoning of the MRF, which can support effective classification according to
pixel information.
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4.1. Maximum Posterior Probability Reasoning

After using Markov random fields for image modeling, the image processing problem
is transformed into a problem of maximum posterior probability reasoning defined in the
MRF, as shown in Equation (8):

max
x

p(x) ∝ ∏
p∈V

φp(xp) ∏
(p,q)∈E

φpq(xp, xq) (8)

where the maximum posteriori probability p (x) is proportional to the continuous product
of the paired MRF energy potential function. The maximum posteriori probability is equiv-
alent to the problem of obtaining a minimized the energy E (x); thus, it is transformed into
the logarithmic domain for a solution. Therefore, it can be indicated through Equation (9):

θp(xp) = − log φp(xp) (9)

θpq(Xp, Xq) = − log φpq(Xp, Xq)

min
x

E(x) = ∑
p∈V

θp(xp) + ∑
(p,q)

θpq(xp, xq)

where θp
(

xp
)

represents the observation cost under a given state xp at the single pixel
p, which can also be regarded as the cost of sample classification. Similarly, θpq

(
xp, xq

)
represents the cost function of placing category labels xp, xq at the two adjacent pixels p, q.
The normalization factor Z in the MRF is equivalent to a constant in reasoning; therefore, it
can be omitted.

4.2. Binary Graph Cut Method

The graph cut method is widely used in computer vision and image processing,
mainly to solve the problem of energy minimization [21]. When using the binary graph cut
method for accurate reasoning, the value of each random variable should be two, and the
potential function between adjacent variables should meet the inequality relationship of
Equation (10):

θpq(0, 1) + θpq(1, 0)− θpq(0, 0)− θpq(1, 1) > 0 (10)

where θpq represents the corresponding energy potential function value when the pixels
p and q take different gray values. This inequality ensures that there will be no negative
cost. For the MRF model, it can be represented by a directed graph: G = (V, E). Here, V
represents the set of variables and E represents the set of adjacent variable edges. The edge
weights of graph G are assigned according to the energy function. Each node potential
function and edge potential function of the energy function are assigned to graph G in turn
through certain rules; then, the edge weights after assignment are accumulated, and finally,
a weighted graph G is formed.

Through the s–t cutting graph G, the corresponding maximum posteriori probability
is obtained. As shown in Figure 10, each node in the figure corresponds to a pixel. The
node set V is divided into two disconnected subsets, S and T. Here, the source node s is in
the set S, and the sink node t is in the set T. When a node u belongs to S, the node variable
takes the value of 0; when the node u belongs to T, the node variable takes the value of 1.
Adjacent nodes in the grid are connected by a pair of directed edges, the source node is
connected to each node by a directed edge, and the sink node is also connected to each
node by a directed edge.
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Figure 10. Directed graph G.

As shown in Figure 11, the minimum s–t segmentation problem is to find a segmenta-
tion to minimize the weights of all edges. It can be understood that when classifying pixels,
the cost allocated to S and T is Wuv. Considering the attributes of a single pixel and the
continuity of the pixels in the neighborhood, the minimum cost can be calculated, which is
specifically expressed as in Equation (11).

c(S, T) = ∑ wuv
u∈S,v∈T,(u,v)∈E

(11)
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In conclusion, the energy minimization problem can be solved by s–t segmentation
of the directed graph G, and each variable can be accurately classified by selecting an
appropriate energy potential function.

4.3. Maximum Flow Problem

According to [22], the minimum segmentation method is equivalent to the maximum
flow from the source node to the sink node. For the maximum flow problem, there are
many algorithms with time complexity as the polynomial level [23]. In a given graph G,
connected by directed edges, each edge has a non-negative capacity cmn, and there are two
vertices, s and t, called the source and sink nodes, respectively.

In the analysis of the maximum flow problem, when considering the capacity of each
edge, the goal is to push as much “flow” from the source node to the sink node as possible.

The augmented path algorithm is often used to solve the maximum flow problem,
which is an iterative process of the “flow”. First, a path from the source node s to the
sink node t is found, and the capacity of the path should be greater than zero. Then, the
maximum “flow” flowing through this path is calculated. For an edge constrained by a
path of minimal volume, all paths along the edge will lose the portion of “flow” so that a
new saturated edge is formed. This process is iterated until there are no paths that satisfy
the condition.

The saturated edge in the maximum flow problem can isolate the source and sink
nodes; therefore, the saturated edge can be used to achieve the purpose of segmentation.
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The minimum cost is achievable by reasonably choosing the energy function. Therefore,
the maximum flow problem is equivalent to the minimum s–t segmentation problem.

4.4. Determination of Energy Potential Function

In Markov random field, the energy potential function is used to reflect the interaction
between nodes, and is equivalent to the cost function of the minimum s–t segmentation.
Each pixel in the image is independent of each other, and the energy potential function can
be considered to obey the Gaussian distribution, which can be expressed by Equation (12):

P(w) = z−1e−
1
T ∑ c∈CVc(wc) (12)

where z is the normalization factor; parameter T is a non-zero constant which is used to
indicate the concentration degree of the classification; C is the set of all the potential groups;
and VC is the potential energy value of the potential groups which indicates the coupling
degree between different potential groups. It can be expressed as shown in Equation (13):

Vc(wc) = Vs,t(ws, wt) =

{
−βws 6= wt
βws = wt

(13)

where β is an adjustable parameter that is used to specify the degree of the difference
between the s and t set potential functions. Through the above formulas, the energy
minimization problem can be solved iteratively, i.e., the lane line segmentation pixels
are obtained.

In this study, first, the task of lane recognition was transformed into the problem of
energy segmentation between reasoning pixels by establishing a Markov model on the
preprocessed image. Then, the energy potential function was determined and applied to
s–t segmentation; finally, the optimal segmentation strategy was obtained by introducing
the maximum flow problem for completing the recognition of lane line pixels.

5. Experimental Results and Analysis
5.1. Experimental Environment and Simulation

For the above MRF modeling and reasoning, related experiments were conducted.
The experimental environment was Linux Ubuntu 20.4, CUDA 11.0, and the code writing
was completed using Python 3.7 on a 4 GB RAM computer.

First, the image was preprocessed. Figure 12 shows the result after the original image
was smoothed by the mean filter and processed by the grayscale transformation of gamma
= 4, with the region of interest of the lane line intercepted; it can be seen that the road
surface and the lane line were not segmented. Figure 13 shows the results after three
iterations by solving the maximum a posteriori probability of MRF and combining the
minimum s–t segmentation algorithm; it can be seen that the lane line and the road surface
in the image were basically segmented, although due to the interference from abundant
noise points, the noise points were wrongly recognized as a class with lane lines.
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Figure 14 shows the result after six iterations. Compared with Figure 13, the seg-
mentation accuracy was significantly higher, but there were still some noise points that
affected the accurate segmentation of the lane lines. Therefore, the number of iterations still
needed to be increased. Figure 15 shows the result after ten iterations. It can be seen that
the lane line and the road surface were clearly separated, which indicates the high-quality
semantic information between the lane line and the road surface. At this time, the lane
line and the road mask had different labels, which can help to quickly complete the lane
line recognition.
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5.2. Model Quantitative and Qualitative Analysis

To quantitatively analyze the performance of our model, we implemented lane line
detection on the more challenging Tusimple dataset [13]. The Tusimple dataset contains
2000 real-world autonomous driving images captured by in-vehicle cameras with accurate
annotations and evaluation criteria. The Tusimple dataset [13] uses accuracy to evaluate
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the detection. The expression of accuracy is given in Equation (14), where Npred denotes the
lane line prediction result and Ngt denotes the lane line ground truth label.

Accuracy =
Npred

Ngt
(14)

We selected studies [8,11] with which we could compare our method on single-frame
running time and accuracy. As shown in Table 1, we separately conducted ablation experi-
ments for image preprocessing. When no image preprocessing was used, our method was
slightly slower than those reported in reference [11], which was because lane line fitting by
the Canny-operator-based method [11] is a global one-shot process. However, our MRF
was a joint model of local and global images and had higher computational complexity
than those presented in reference [11]. However, the best performance was obtained in
detecting accuracy. After using the image preprocessing technique proposed in this paper,
our method significantly outperformed the data-driven method in reference [8] (+3.02%).
Moreover, our method only increased the running time by 11 ms and achieved an accuracy
of 87.61%, an increase of 2.97%.

Table 1. Algorithm comparison and ablation experiments.

Image
Preprocessing

Single-Frame Runtime (ms) Accuracy (%)

Reference [11] Reference [8] Our Study Reference [11] Reference [8] Our Study

Unused 127 178 163 82.02 83.97 84.74
Used 132 186 174 82.41 84.59 87.61

To more intuitively demonstrate the positive effect of our method, we selected different
scenarios from the Tusimple dataset for lane line detection. As shown in Figure 16, the left
is the original image, the middle is the result of lane line detection using our method, and
the right is the image after masking the detection result with the real image. As shown in
Figure 16a, our method demonstrated superior performance under well-lit and straight
lane lines. As shown in Figure 16b, our method could still accurately detect lane lines
under shadows. As shown in Figure 16c, our method had a strong fitting ability for curved
lane lines. As shown in Figure 16d, occluded lane lines were one of the main challenges for
our detection, and our method still has some shortcomings when detecting lane lines with
fewer pixels at long distances.
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6. Conclusions

Lane line recognition based on vision can extract track coordinates from images
captured by optical sensors and provide key lane information for the decision-making
processes and control of autonomous driving systems, which is the premise of vehicles
travelling autonomously.

This paper proposes a lane line identification method based on Markov random field.
First, the original image collected by the camera was preprocessed; then, the processed
image was modeled based on Markov random field theory, and energy potential function
was constructed based on the lane line segmentation task. Finally, the model was solved
using the graph cut method. Experiments showed that, after ten iterations, the algorithm
could quickly and accurately extract the pixels of the lane line, thus completing the semantic
segmentation between the lane line and the road surface.
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