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Abstract: Lithium-ion power batteries are widely used in the electric vehicle (EV) industry due
to their high working voltage, high energy density, long cycle life, low self-discharge rate, and
environmental protection. A multi-algorithm fusion method is proposed in this paper to estimate the
battery state of charge (SOC), establishing the Thevenin model and collecting the terminal voltage
residuals when the extended Kalman filter (EKF), adaptive extended Kalman filter (AEKF), and H
infinite filter (HIF) estimate the SOC separately. The residuals are fused by Bayesian probability
and the weight is obtained, and then the SOC estimated value of the fusion algorithm is obtained
from the weight. A comparative analysis of the estimation accuracy of a single algorithm and a
fusion algorithm under two different working conditions is made. Experimental results show that
the fusion algorithm is more robust in the whole process of SOC estimation, and its estimation
accuracy is better than the EKF algorithm. The estimation result for the fusion algorithm under a
Dynamic Stress Test (DST) is better than that under a Hybrid Pulse Power Characterization (HPPC)
test. With the emergence of cloud batteries, the fusion algorithm is expected to realize real vehicle
online application.

Keywords: lithium-ion power battery; state of charge; extended Kalman filter; adaptive extended
Kalman filter; H infinite filter; fusion estimation

1. Introduction

Lithium-ion power batteries (hereinafter referred to as lithium batteries) have become
the first choice for electric vehicles due to their high working voltage, high energy density,
long cycle life, low self-discharge rate, and environmental friendliness [1]. The state of
charge (SOC) is one of the important pieces of state information for lithium-ion batteries.
An accurate SOC can help the driver make an informed decision as to when to charge the
battery and help the battery management system (BMS) avoid overcharge or overdischarge
safety problems [2]. Due to the high non-linearity and time-varying characteristics of the
battery and the uncertainty of the battery chemical reaction, it is a difficult problem to
accurately estimate the battery SOC [3].

Lithium-ion battery SOC estimation methods can be roughly divided into the follow-
ing four types: the ampere-hour integration method, characterization parameter method,
model-based method, and data-drive method [4–7]. At present, the mainstream SOC
estimation method is based on a model to achieve battery SOC estimation, and the filter
algorithm based on the equivalent circuit model (ECM) is especially widely used to esti-
mate battery SOC. Compared with the complex electrochemical model, ECM can also use
fewer parameters to characterize the dynamic characteristics of the battery, which has the
advantage of less computation [8].

SOC estimation methods based on ECM include the Kalman filter (KF) series, sliding
mode observer, H infinite filter, particle filter (PF), etc. [9–12]. However, it is difficult to meet
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the SOC estimation accuracy requirements for complex driving conditions by using a single
algorithm. George S et al. [13] proposed a new and accurate hybrid SOC estimation method.
Combining the advantages of different estimation techniques to minimize SOC errors and
limit the amount of computation, the proposed solution can ensure the safe operation of
the battery within the acceptable SOC limits and extend its life. Li H et al. [14] propose a
state charge estimation method for energy storage systems based on the NARX network
and filter joint algorithm, and apply the extended Kalman filter (EKF) to the improved
nonlinear autoregressive algorithm with an exogenous neural network (NARXNN). The
proposed NARX-EKF algorithm proves that it has higher accuracy and robustness than
a single algorithm, which is validated by an experiment. Xiong R et al. [15] designed
a fusion algorithm of SOC and capacity in a complex application environment. The
convergence and anti-noise performance of the fusion algorithm are further discussed.
The experimental results showed that the proposed fusion algorithm can achieve high-
precision SOC estimation with a relative error of less than 2% when considering different
aging degrees for lithium-ion batteries in a wide temperature range. Zhang K et al. [16]
developed an adaptive weighted volume particle filter (AWCPF) method to estimate battery
SOC. Different initial SOC values under different working conditions have been considered
in the process of experimental verification. The results indicated that the proposed SOC
estimation method, in view of the AWCPF algorithm, has high estimation accuracy, strong
robustness, and fast convergence speed, and the maximum SOC estimation error is less
than 1%. Inspired by the above literature, this paper attempts to realize the fusion of
multiple algorithms based on a Bayesian formula and compares the estimation results with
a single algorithm in DST and HPPC conditions.

The remainder of the paper is constituted as follows: Section 2 describes the modeling
process and the battery parameter identification method. Section 3 introduces the individual
estimation algorithms and the fusion algorithm. Section 4 verifies the algorithm under two
working conditions. Finally, the key conclusions are summarized in Section 5.

2. Modelling and Parameter Identification
2.1. Modelling for Lithium-Ion Batteries

The equivalent circuit model uses traditional resistors, capacitors, constant voltage
sources, and other circuit components to form a circuit network to describe the external
characteristics of the power batteries. The voltage source represents the thermodynamic
equilibrium potential of the power battery, and the RC network is adopted to describe
the battery dynamic characteristics. The main advantages of the equivalent circuit model
are its simple structure, small calculation amount, and high accuracy. The Rint model,
Thevenin model, and Dual Polarization (DP) model are the commonly equivalent circuit
models. [17,18]. Previous literature [19] comprehensively considers the accuracy of the
models’ parameter identification and the complexity of their structure, and considers the
Akaike Information Criterion (AIC) of the first-order RC ECM (Thevenin model) as the
smallest compared with other kinds of ECMs, which is the model with the best balance
between accuracy and structural complexity. In view of this, this experiment constructs a
Thevenin model as the research basis.

The experiments introduced in this paper were all implemented in a Arbin-BT2000
power battery single test equipment. At the same time, a programmable temperature
and humidity three-layer test box was used as the environmental simulation equipment,
and the temperature was controlled at 25 ◦C. Lithium battery A (ANR26650M1A) of
3.3 V/2.3 Ah and battery B (SPIM14245190) of 3.7 V/35 Ah were used in the experiment.
The maximum usable capacity of the two batteries were recalibrated at a room temperature
of 25 ◦C: 2.22 ah for battery A and 31.80 ah for battery B.

The computer used for this experimental algorithm is an HP 288 Pro G6 microtower
PC (HP, Palo Alto, CA, USA), which is configured with a 3.1 GHz Intel (R) core (TM)
i5-10500 CPU and 8 GB ram (Intel, Santa Clara, CA, USA). All estimation algorithms are
designed and implemented in MATLAB 2020b.
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As shown in Figure 1, UD is the terminal voltage; UOC is the open circuit voltage; RD
and CD are the polarization internal resistance and polarization capacitance, respectively;
Ri is the ohmic resistance; iL is the circuit current. The battery state space equation can be
written as follows: { .

UD = iL
CD
− UD

CD RD
Ut = UOC −UD − iLRi

(1)
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Figure 1. Thevenin mode.

The polarization voltage expression obtained by the model discretization is as follows;

UD[(k + 1)∆t] = e
−∆t

τ UD(k∆t) + RDiL[(k + 1)∆t][1− e
−∆t

τ ] (2)

among them
τ = RD × CD

2.2. OCV-SOC Curve

The open circuit voltage (OCV) test is performed on two batteries at room temperature
(25 ◦C), and the process is as follows:

1. The battery is fully charged through the standard constant current and constant
voltage (CC-CV) charging method. After standing for 5 h, the terminal voltage was
measured. This value is regarded as the open circuit voltage value of SOC = 100%.

2. Discharge with standard current and constant current. The cutoff condition is that
the discharge capacity reaches 5% of the maximum available capacity, or the battery
voltage drops to the discharge cutoff voltage. After standing for 5 h, measure the
terminal voltage.

3. Repeat step 2 until the power battery reaches the discharge cutoff voltage.

The OCV-SOC relation is fitted as follows:

UOC(z) = α0 + α1z + α2z2 + α3z3 + α4/z + α5 ln z + α61n(1− z) (3)

for battery A, α0 = 3.04342712, α1 = 0.69965544, α2 = −0.70823233, α3 = 0.31435882,
α4 = −0.014878876, α5 = −0.10513395, α6 = −0.01276305.

2.3. Parameter Identification

At present, the main parameter identification methods can be divided into offline and
online identification [20,21]. The calculation amount for offline parameter identification is
much smaller than that for online parameter identification, and it is more widely used in
EVs. The online identification method can calculate the model parameters by measuring
the voltage and current in real time. It can achieve performance prediction according to
different battery aging levels and operating conditions [22–24]. In this experiment, the
HPPC test was used for two batteries to perform offline parameter identification of the
model, so as to obtain the model parameters under different SOCs.

The process is listed as follows:
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1. Fully charge the two batteries with the CC-CV charging method.
2. Let stand for 5 h.
3. Load the mixed pulse current excitation sequence, discharge the battery with constant

current for a certain period of time, and then let it stand for 1 h. (Constant current
discharge of battery to ensure 10% SOC interval between two times).

4. Repeat step 3 until the discharge reaches the cutoff voltage.

Offline parameter identification is carried out by the multiple linear regression method.
The identification results for battery A are shown in Table 1.

Table 1. Identification result for battery A.

SOC Ri RD CD

0.9 0.0200678 0.0280174 6005.6549
0.8 0.0198582 0.0295043 5975.013
0.7 0.0198537 0.0291771 6244.846
0.6 0.0198369 0.0250574 6376.551
0.5 0.0198402 0.0272475 6077.899
0.4 0.0201856 0.0312714 45,796.440
0.3 0.0203209 0.0322185 65,557.043
0.2 0.0206306 0.0360988 55,199.546
0.1 0.020996 0.0429594 44,303.6293

3. State of Charge Estimation
3.1. State of Charge Definition

SOC is a value that describes the ratio of the remaining capacity of the battery to the
current maximum available capacity:

SOCt = SOC0 −
1

Ca

t∫
0

ηiiL(τ)dτ (4)

where SOCt is the present SOC; SOC0 is the SOC’s initial value; iL is the instantaneous load
current (assumed positive for discharge, negative for charge); ηi is the Coulomb efficiency,
which is the function of the current and the temperature; and Ca is the present maximum
available capacity, which may be different from the rated capacity for the age effect.

Describing (4) with a discrete-time style:

SOCk = SOCk−1 −
ηiiL(k)∆t

Ca
(5)

3.2. Extended Kalman Filter Estimation Method

KF is mainly applicable to linear systems, while a power battery is a highly non-linear
system. In order to improve the estimation accuracy of the KF method for power battery
SOCs, the EKF method is proposed.

For a nonlinear discrete system, the general form of its state equation and observation
equation is as follows: {

xk = f (xk−1, uk−1) + wk−1
yk = h(xk, uk) + vk

(6)

in the Equation (6), the subscript k is the time; x is the system state vector; y is the observa-
tion vector; u is the system input vector; w is the state white noise with a mean value of 0
and a covariance of Q; v is the state white noise with a mean value of 0 and a covariance of
R; w and v do not affect each other.



World Electr. Veh. J. 2022, 13, 70 5 of 11

Expand f (xk,uk) and h(xk,uk) with the first-order Taylor formula, linearize them, and
substitute them back into the equation. Get the following Equation (7):{

xk ≈ Ak−1xk−1 + Bk−1up−1 + wk−1
yk ≈ Ckxk + Dk + vk

(7)

In the equation: x = [UD z]T (z means SOC), u = iL, y = Ut.

Ak =

[
e
−∆t

τ 1
0 0

]
Bk = [(1− e

−∆t
τ )RD;

ηi∆t
Ca

]

Ck =

[
−1

dUoc(z)
dz

]
Dk = UOC,k −UD,k − Riuk − Ckxk

3.3. SOC Estimation Algorithm with Adaptive Extended Kalman Filter Method

When the EKF method is employed to estimate the battery SOC, it is necessary to
define the initial value of the state white noise covariance Q and the observed white noise
covariance R. If the selection of the initial value is not appropriate, it can affect the SOC
estimation accuracy or even cause the divergence of the filter. In order to solve this problem,
the adaptive extended Kalman filter method is proposed in this study.

The adaptive EKF method updates the Kalman gain matrix and the state estimation
error covariance P while iteratively updating Q and R. The specific update method is listed
as follows: 

Hk =
1
M

k
∑

i=k−M+1
eiei

T

Rk = Hk − CkPk
−Ck

T

Qk = Kk HkKk
T

(8)

where e is new innovation; H is the real-time estimated covariance function of innovation
obtained by the windowed estimation principle; M is the size of the window.

3.4. H Infinity Filter SOC Estimation Algorithm

The Kalman filter is based on the premise that the system model is accurate and the
external input characteristics are known, which does not conform to the actual situation.
In actual operation, the statistical characteristics of noise are difficult to obtain, and the
established model is also different from reality. In order to overcome the insufficiencies of
the Kalman filter and the uncertainty in the modeling process and improve the robustness
of the estimation, the HIF algorithm came into being.

The calculation process for the HIF algorithm is summarized in Table 2.

3.5. Multi-Algorithm Fusion SOC Estimation

The terminal voltage residual of the algorithm has a certain mapping relationship with
the SOC estimation accuracy. Assuming that the residuals obey a normal distribution, the
mean and variance of the residuals can be obtained by windowing (M), which can realize
the real-time estimation of the probability density, and then the fusion weight values of the
three algorithm can be obtained. The algorithm diagram is shown in Figure 2.



World Electr. Veh. J. 2022, 13, 70 6 of 11

Table 2. HIF process.

Establish the Linear Discretization Equation of Thevenin Model.

Initialization Set the Initial Value of the State Observer:
x0, P0, Q, R, λ, S

1© fromk− 1+to(k)−

System state estimation:
∧
x
−
k
= f (xk−1, uk−1)

HIF feature matrix estimation:
P−k = Ak−1Pk−1 Ak−1

T + Q

2© from(k)−to(k)+

Innovation matrix:
ek = yk − h(

∧
x
−
k

, uk)
Gain matrix:
Kk = AkP−k (1− λSP−k + CT

k R−1CkP−k )
−1CT

k R−1

System status correction:
∧
x
+

k
=
∧
x
−
k
+ Kkek

Feature matrix correction:
P+

k = P−k (1− λSP−k + CT
k R−1CkP−k )

−1

3© Time scale update Take the state and covariance matrix at time (k)+ as the final
output, prepare the state estimate at time (k + 1).

where x0 is the initial value of the state quantity, P0 is the initial state error covariance matrix, λ is the performance
boundary, S is the emphasis matrix; if there is a high degree of attention to a certain state quantity, the value in
the matrix corresponding to the state quantity is greater than the value in the matrix corresponding to another
state quantity.
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Specific steps are as follows:

1. Import the terminal voltage residuals of the previous three algorithms.
2. Calculate the residual mean rk,i and variance sk,i of each algorithm. (i = 1,2,3, corre-

sponding to the three algorithms).
rk,i =

1
M

k
∑

j=k−M−1
rj,i

sk,i =
1
M

k
∑

j=k−M−1
(rj,i − rk,i)

(9)

3. Calculate the conditional probability density function at time k for each algorithm.

fYk |αi,Yk−1
=

1√
2πsk,i

exp(−1
2

rk,i
Tsk,irk,i) (10)
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4. Calculate the weight ωk of each algorithm at time k, where n is the number of algo-
rithms.

ωk,i = (1−
fYk |αi,Yk−1

sk,i
n
∑

i=1
fYk |αi,Yk−1

sk,i

)/(n− 1) (11)

5. Obtain the SOC estimated value of the fusion algorithm according to the weight.

ZF,k =
n

∑
i=1

ωk,iZk,i (12)

4. Results and Discussion

Battery A is verified under DST using the three EKF, AEKF, and HIF algorithms to
fuse it, and the terminal voltage residuals and SOC estimated by the three algorithms are
imported into the fusion algorithm. The working condition current and voltage are shown
in Figure 3a,b. Battery B is verified under HPPC conditions using the three EKF, AEKF, and
HIF algorithms to fuse it, and the terminal voltage residuals and SOC estimated by the
three algorithms are imported into the fusion algorithm. The working condition current
and voltage are shown in Figure 3c,d.
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Figure 3. Testing.

The estimated and real SOC values of each algorithm under DST are shown in Figure 4,
and the estimated and real SOC values of each algorithm under HPPC conditions are shown
in Figure 5. The SOC errors of the single algorithm estimation and multi-algorithm fusion
estimation under DST are shown in Figure 6a, and the SOC errors of the single algorithm
estimation and multi-algorithm fusion estimation under HPPC conditions are shown in
Figure 6b. It can be clearly seen from the three figures that although the fusion algorithms
in the two test environments cannot achieve the local optimization, it is robust in the
whole process of SOC estimation. That is, the fusion algorithm has better robustness and
estimation accuracy than the single algorithm.
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Figure 4. (a) SOC estimates under DST; (b) Local graph of SOC estimates under DST; (c) Local graph
of SOC estimates under DST.
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Figure 5. (a) SOC estimates under HPPC; (b) Local graph of SOC estimates under HPPC; (c) Local
graph of SOC estimates under HPPC.
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Figure 6. (a) SOC estimation errors under DST; (b) SOC estimation errors under HPPC.

When the initial soc is 1, the four algorithms are compared according to the statistical
results of the relative errors of the algorithms. First, under DST (the specific results are
shown in Table 3), the indicators of the fusion algorithm such as the maximum error,
the mean error, and the root mean square of the error are only larger than those of the
AEKF algorithm. Under HPPC (the specific results are shown in Table 4), the indicators
of the fusion algorithm are close to the AEKF algorithm and the HIF algorithm and are
better than the EKF algorithm. In other words, in the whole SOC estimation process, the
fusion algorithm also has good estimation accuracy. The fusion algorithm is essentially a
post-processing method of data processing with little computational burden. It can also be
seen from the two tables that its running time is lower than that of the HIF algorithm and
AEKF algorithm.

Table 3. SOC estimation errors of the four algorithms under DST.

Algorithms ME (%) MAE (%) RMSE (%) Run Time (ms)

EKF 0.97 0.27 0.30 75
HIF 0.58 0.29 0.30 141

AEKF 0.25 0.20 0.20 150
FUSE 0.46 0.23 0.24 103

Table 4. SOC estimation errors of the four algorithms under HPPC.

Algorithms ME (%) MAE (%) RMSE (%) Run Time (ms)

EKF 1.41 0.82 0.92 180
HIF 0.97 0.42 0.52 430

AEKF 1.01 0.45 0.55 455
FUSE 1.12 0.53 0.64 382

5. Conclusions

This paper presents a method of multi-algorithm fusion to estimate SOC. Through the
establishment of a Thevenin model, the SOC estimation accuracy and algorithm running
time of a single algorithm and the fusion algorithm are compared and verified under the
tests of DST and HPPC. The experimental results show that the terminal voltage weighted
fusion algorithm based on a Bayesian probability formula is more robust and accurate in
SOC global estimation. In terms of algorithm time, as a data post-processing method, the
computational burden of the fusion algorithm is small, lower than that of the HIF algorithm
and AEKF algorithm. To realize the online application of the fusion algorithm in a real
vehicle, multiple algorithms need to be loaded on BMS, which is not feasible at present.
However, with the emergence of the cloud battery, the onboard BMS is no longer limited
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by storage and computing power. The fusion algorithm mentioned in this paper also has
the possibility of real vehicle online application in the future.

In the next step, the author also plans to carry out the comparison test between the
fusion algorithm and a single algorithm under different temperatures and different SOC
initial values, and analyze the advantages of the fusion algorithm from the perspectives of
battery capacity and impedance change.
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Nomenclature
EV Electric vehicle
SOC State of charge
EKF Extended Kalman filter
AEKF Adaptive extended Kalman filter
HIF H infinite filter
BMS Battery management system
ECM Equivalent circuit model
KF Kalman filter
PF Particle filter
NARXNN Nonlinear autoregressive algorithm with exogenous neural network
AWCPF Adaptive weighted volume particle filter
DP Dual polarization
AIC Akaike Information Criterion
CC-CV Constant current and constant voltage
HPPC Hybrid Pulse Power Characterization
DST Dynamic Stress Test
OCV Open circuit voltage
ME Mean error
MAE Mean absolute error
RMSE Root mean square error
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