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Abstract: For the task of obstacle detection in a complex traffic environment, this paper proposes
a road-free space extraction and obstacle detection method based on stereo vision. The proposed
method combines the advantages of the V-disparity image and the Stixel method. Firstly, the depth
information and the V-disparity image are calculated according to the disparity image. Then, the free
space on the road surface is calculated through the RANSAC algorithm and dynamic programming
(DP) algorithm. Furthermore, a new V-disparity image and a new U-disparity image are calculated
by the disparity image after removing the road surface information. Finally, the height and width
of the obstacles on the road are extracted from the new V-disparity image and U-disparity image,
respectively. The detection of obstacles is realized by the height and width information of obstacles.
In order to verify the method, we adopted the object detection benchmarks and road detection
benchmarks of the KITTI dataset for verification. In terms of the accuracy performance indicators
quality, detection rate, detection accuracy, and effectiveness, the method in this paper reaches 0.820,
0.863, 0.941, and 0.900, respectively, and the time consumption is only 5.145 milliseconds. Compared
with other obstacle detection methods, the detection accuracy and real-time performance in this
paper are better. The experimental results show that the method has good robustness and real-time
performance for obstacle detection in a complex traffic environment.

Keywords: obstacle detection; V-disparity image; U-disparity; Stixel-World

1. Introduction

With the milestone leaps in computer computing power and the continuous im-
provement of sensor precision, more and more researchers have turned their attention to
Advanced Driving Assistance Systems (ADASs) [1]. In the process of implementing ADASs,
real-time and accurate obstacle detection algorithms are undoubtedly the top priority. The
obstacle detection algorithm detects the position of obstacles on the road which provides
important information for the automatic driving decision-making system [2]. A large num-
ber of algorithms based on various sensors (such as cameras, lidar and millimeter-wave
radar) have been proposed to detect roads and obstacles on the road [3]. Lidar can convert
the surrounding environment information into point cloud data to detect obstacles around
the road and even make a preliminary estimate of the shape of the obstacle. However, for
small obstacles in traffic scenes, lidar risks making missing or false detections. Furthermore,
its high price also limits its application range. Millimeter-wave radar is a better choice for
multi-scale and multi-target detection, its widespread use is complicated due to its short
detection distance, being easily affected by environmental changes, and being expensive [4].

Compared to other sensors, vision sensors provide intuitive image data and there is no
signal interference between vision sensors. Therefore, vision sensors are widely deployed
in ADASs [5]. In addition, the real-time processing of image matching has been realized
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due to the improvement of GPU parallel computing technology. The research of obstacle
detection methods based on vision has gradually become a research field that has attracted
lots of attention.

At present, there are two popular research methods for obstacle detection based on
binocular vision. The two research directions are projecting the disparity image in the
image coordinate system and the polar coordinate system, respectively. The disparity image
projection method based on the image coordinate system usually converts the disparity
image into a depth image. The disparity image is, respectively, projected in the horizontal
and vertical directions to calculate the V-disparity image and the U-disparity image [6].
Then, road information is extracted from the V-disparity image by the Hough transform or
line fitting algorithm. The V-disparity image and the U-disparity image are recalculated
after removing the road information in the disparity image. Finally, the obstacle height and
width are calculated from the V-disparity image and the U-disparity image, respectively.
The object detection area is projected onto the original image to realize obstacle detection.
The obstacle detection method based on the U-disparity image and V-disparity image
has a good effect on plane obstacle detection. However, this method is computationally
expensive and has poor anti-interference performance.

In contrast to the disparity image projection method based on the image coordinate
system, the polar coordinate-based disparity image projection method generates a polar
occupancy grid (POG) by projecting the disparity image in polar coordinates [7]. Then,
the background is subtracted from the POG by setting a threshold. Furthermore, the
boundary of road-free space and the lower boundary of obstacles are calculated using
the DP algorithm. The optimal dividing line for the difference between the foreground
(target) and background is calculated by using DP again. The upper boundary of the
obstacle is extracted through the optimal dividing line. Finally, the upper and lower
boundaries of all obstacles are combined to generate Stixel-World to realize the detection of
an obstacle. Although the Stixel-World method has good performance in obstacle detection,
this method needs to run the DP algorithm twice, which makes its real-time performance
slightly insufficient. Furthermore, the obstacle detection accuracy of this method depends
on the result of the road shape fitting.

In order to effectively detect obstacles on the road, Labayrade et al. proposed the
concept of a V-disparity image for obstacle detection on a non-flat road [8]. Hu et al.
proposed the concept of the U-disparity image to make up for the shortcomings of the
algorithm proposed by Labayrade [6]. Zhang et al. combined the straight-line fitting
algorithm and the Hough detection algorithm to process the V-disparity image, which
improved the original algorithm [9]. The road surface and the obstacle area can be projected
into line segments using the U-disparity image and V-disparity image, which transforms
the plane detection into line segment detection. This method can significantly reduce the
computational complexity and improve the accuracy of detection. Badino et al. proposed
the Stixel-World algorithm for the flexible representation of three-dimensional traffic scenes,
which effectively improved the detection speed of the obstacle [10]. Combined with the
SGM algorithm proposed by Hirschmüller [11], the algorithms of these two directions have
greatly improved the accuracy and real-time performance of obstacle detection. However,
for actual complex traffic scenarios such as crowded vehicles, cluttered backgrounds, and
mottled shadows, the accuracy and real-time performance of the above detection methods
still fall short of fully meeting the actual requirements of applications.

In order to improve the real-time performance and accuracy of algorithms, we propose
an obstacle detection algorithm with higher real-time performance and accuracy of obstacle
detection. In this paper, we propose an improved obstacle detection algorithm based
on Stixel-World combined with the U-disparity and V-disparity images. In contrast to
existing Stixel series algorithm for the estimation method of obstacle height information,
we developed an obstacle height estimation method based on the U-disparity and V-
disparity images, and improved the estimation speed of the free space on the road. The
depth information and the V-disparity image are calculated according to the disparity
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image. The free space on the road is calculated through the RANSAC algorithm and
DP algorithm. Furthermore, a new V-disparity image and a new U-disparity image are
calculated by the disparity image after removing the road surface information. Finally, the
height and width of obstacles on the road are extracted from the new V-disparity image
and U-disparity image, respectively. The detection of obstacles is realized by the height and
width information of obstacles. Experiments show that this method can be used under the
influence of crowded vehicles, cluttered backgrounds, mottled shadows, and bad weather
in actual traffic scenes.

The rest of the paper is arranged as follows: the second section introduces the proposed
method in detail; the third section uses complex traffic scenes in the KITTI dataset to verify
the experimental results of the proposed method; finally, the fourth section summarizes the
paper.

2. Road-Free Space Extraction and Obstacle Detection

The method we propose includes the two following parts: the calculation of free
space and the estimation of obstacle height information. The depth information and the V-
disparity image are calculated according to the disparity image. The free space on the road
surface is then calculated through RANSAC algorithm and DP algorithm. Furthermore, a
new V-disparity image and a new U-disparity image are calculated by the disparity image
after removing the road surface information. Finally, the height and width of obstacles on
the road are extracted from the new V-disparity image and U-disparity image, respectively.

2.1. Stereo Geometry

Figure 1 shows a stereo vision system model. A point p (X, Y, Z) is projected into the
left and right views to obtain the image coordinates (u, v). In order to simplify this issue,
we assume that θ is the pitch angle of the camera and h is the height of the camera above
the ground. b is the baseline distance between the left and right cameras. f is the focal
length of the left and right cameras in pixels. K represents the intrinsic parameter matrix of
the camera and its expression is shown in Equation (1).

K =

 fx 0 cx
0 fy cy
0 0 1

⇒


u0 = cx
v0 = cy
f = fx = fy

(1)
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According to the above parameters, the image coordinates (u, v) can be directly
calculated by Equation (2).

ul,r = u0 + fx
X±b/2

(Y+h)·sin θ+Z·cos θ

v = v0 + fy
(Y+h)·cos θ−Z·sin θ
(Y+h)·sin θ+Z·cos θ

(2)

Then, the disparity image coordinate (U, V) and the disparity value ∆ can be calculated
by Equation (3). 

Ul,r = ul,r − u0 = f X±b/2
(Y+h)·sin θ+Z·cos θ

V = v− v0 = f (Y+h)·cos θ−Z·sin θ
(Y+h)·sin θ+Z·cos θ

∆ = ul − ur =
f b

(Y+h)·sin θ+Z·cos θ

(3)

Similarly, according to Equation (3), the depth information can be calculated by:

∆ =
f b
Z

D = Z =
f b
∆

(4)

As shown in Figure 2, the disparity image (b) is calculated based on the left image (a)
through Equation (4). Image (c) is a pseudo-color image of depth image.
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and (c) pseudo-color image of depth image.

2.2. Extraction of Free Space

As shown in Figure 3, the disparity image is projected to the horizontal and vertical
directions on the image coordinate system (U, V) to obtain the V-disparity image and the
U-disparity image. For the V-disparity image, the value in the V-disparity image represents
the cumulative sum of the same disparity value in the same row in the disparity image,
which converts the horizontal plane in the original view into line segments (obstacles are
usually in a vertical position and the road surface occupies a larger part [12]. Therefore, the
projection of the road surface in the V-disparity image is an obvious oblique line segment).
The value of the U-disparity image represents the cumulative sum of the disparity image
and has the same disparity value in the same column, and the vertical plane of the original
image is converted into line segments.

When the road surface is transformed into oblique line segments, the Hough transform,
least square method [13] or RANSAC algorithm [14] are used to extract straight line
segments in the V-disparity image to obtain road surface information. Since real traffic
scenarios usually contain noise and roads are usually not flat surfaces, we therefore use the
RANSAC algorithm to extract the straight line projected onto the road, which can reduce
the interference of noise and improve the accuracy and real-time detection.
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Figure 3. Projection result of the disparity image in the horizontal and vertical directions: (a) disparity
image; (b) V-disparity image; (c) U-disparity; and (d) line of road surface.

After extracting the road fitting straight line, we used the method proposed by Pfeiffer
D. et al. [15] to directly use the disparity image to obtain the score image. In the score
image, the DP algorithm was used to extract free space. Figure 4 shows the score image.
Then, we calculated the total cost function of each pixel in each column of the disparity
image, and the score of roads and obstacles can be calculated by:

Γv = α1ΓR
v + α2ΓO

v , with

ΓO
v =

vb
∑

v=vb−hv

|dR(vb)− dv|

ΓR
v =

V
∑

v=vb

|dR(v)− dv|

(5)

where Γv represents the score of pixel point dv on the disparity image; ΓO
v represents

obstacle evidence; ΓR
v represents road evidence; dR(vb) represents base point disparity; and

dR(v) represents given disparity profile.
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The final score is equal to the sum of roads and obstacles. A column in the disparity
image includes the points of road, obstacle and background. The small score means that
the object may be road or obstacle, and the current point is the junction of the two. All the



World Electr. Veh. J. 2022, 13, 69 6 of 10

junction points are extracted by the DP algorithm to obtain the best free space dividing line
and extract the free space on the road.

2.3. Height Information

We use the V-disparity image with the road surface information removed to calcu-
late the height information of obstacles. According to the aforementioned method, the
calculation formula of the obstacle height information is shown in Equation (6).

Z =
b f
∆

Y =
(v− v0)Z

f
− h (6)

where Y and Z represent the height and depth information of the target obstacle in the
disparity image, which can be calculated by the ∆ and v parameters of the V-disparity
image. Finally, setting a threshold for the obstacle height to remove the error data and
projecting the obstacle height into the disparity image to calculate the upper boundary of
the obstacle.

2.4. Obstacle Detection

After calculating the free space on the road, the lower boundary of the obstacle can
be obtained. Considering the fact that the same obstacle in the traffic scene has similar
disparity values in the corresponding area in the disparity image, the free space results on
the road surface can be filtered by setting the threshold value of the disparity value. The
filtered disparity value takes the obstacle in the V-disparity image as the base point and
further filters the obstacle line segment to realize the obstacle height estimation. Similarly,
the disparity value of the U-disparity image is filtered to estimate the width of the obstacle.
As shown in Figure 5, it is the road-based obstacle detection result.
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3. Experiment
3.1. Datasets and Evaluation Index

The KITTI dataset [16] is an authoritative dataset used in computer vision for mobile
robotics and autonomous driving. The KITTI dataset has lots of images in different scenar-
ios which provide the verification and test benchmarks for testing various algorithms. In
order to evaluate the effectiveness of our proposed method, we used the road detection
benchmarks in the KITTI autonomous driving dataset for verification in our experiments.
The resolution of the binocular image of the detection benchmark is 1242 × 375, and it
mainly contains 1500 images of three typical traffic scenes including 600 images in the
urban scene, 400 images in the highway, and 500 images in the second-class road. The
KITTI dataset consists of three parts: the training set, test set and validation set. In order to
better test our proposed algorithm, we filter out three different non-overlapping parts from
the dataset: training set (300), validation set (100), and test set (300), and the proportions of
the three typical traffic scenarios are the same.
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In this paper, according to the actual ground and detection results, we mark each pixel
in the detection image as one of the four conditions of TN, FN, FP, and TP. Then, we use four
pixel-wise measures which including the quality, detection rate, detection accuracy and
effectiveness to test the effectiveness of the proposed method [17]. The specific definitions
are shown in Tables 1 and 2. In addition, in order to reduce error caused by the ground truth
generated by manual labeling, we discarded boundary pixels in the evaluation process.

Table 1. Contingency table.

Road Non-Road

Detected road TN FN
Detected non-road FP TP

Table 2. Definition of Measures.

Pixel-Wise Metric Definition

Quality Q = TP
TP+FP+FN

Detection rate DR = TP
TP+FP

Detection accuracy DA = TP
TP+FN

Effectiveness E = 2DR·DA
DR+DA

3.2. Calculate the Free Space

Section 3 introduces the main steps of the proposed algorithm to extract free space
on the road. We chose the work in [8,15] as the baseline algorithm. The first baseline
algorithm [8] was chosen because it is a representative work of the flat road assumption,
which is the most widely used model to date. In addition, to the best of our knowledge,
the work in [8] has the lowest computational complexity among all the reported three-
dimensional road detection methods. The second baseline algorithm [15] is a typical work
in the research direction of Stixel, and subsequent research in the Stixel algorithm is derived
from this work.

The work in [8] expresses the vertical road contour formula as the inclined straight
line of the flat road and the piecewise linear curve of the non-flat road in the V-disparity
image. Since the KITTI dataset contains flat road scenes, we use the flat road assumption
for the baseline algorithm to test. The main problem in work [8] is that it heavily relies
on data fitting and does not deal with lots of input data noise. Both roads and obstacles
will be projected as straight lines in the V-disparity image. Therefore, a line extraction
technique such as the Hough transform will eventually extract multiple lines, which makes
it difficult to identify the line (free-space) or line cluster (non-free-space) corresponding to
the actual road contour. Our proposed algorithm uses the RANSAC algorithm for straight
line fitting to extract the line of the road surface in the V-disparity image. The method in
this paper reduces both the computational complexity and the influence of noise on road
surface extraction.

The Stixel algorithm has higher accuracy for free space calculation and obstacle detec-
tion. The algorithm uses two DP algorithms to calculate the obstacle base point and estimate
the obstacle height, respectively, which reduces the real-time performance. Therefore, this
paper uses the RANSAC algorithm to fit and extract the line segments represented by the
free space in the V disparity image. Then, the method in this paper removes the parallax
of non-obstacles on the ground, which reduces the detection range of the ground in the
original parallax image and improves the real-time performance of the algorithm. Finally,
the score image is used to distinguish the obstacles and the ground. The DP algorithm
is used to traverse the entire image to extract the dividing line. The extraction result is
shown in Figure 6a. The template corresponding to the free space is mapped to the original
left-view image, shown in Figure 6b.
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free space on ground.

3.3. Estimate Height Information

We used the Stixel algorithm for height estimation, which followed the same process
as the calculation of free space. Firstly, the boundary between the foreground and the back-
ground is extracted. The contour line of the height information is obtained by traversing the
image with the DP algorithm. The Stixel-World algorithm is effective for obstacle detection.
However, it cannot distinguish obstacles near the ground with similar disparity and the
calculation is complicated. The V-disparity image is used to extract the height information
of the obstacles in the region of interest. The previous binocular system model shows that
the corresponding obstacle in the free space is expressed as a line segment that has an
intersection with the ground contour line on the line of the V-disparity image. The effective
extraction of this line segment can accurately obtain the height information corresponding
to the obstacle. However, it is difficult to make the entire area of the same obstacle in the
same vertical plane with the same distance from the camera in the real traffic scenario.
This problem will cause the projection of the same obstacle in the V-disparity image and
U-disparity image to be multiple discontinuous straight-line segments. Additionally, it
is more difficult and computationally complex to completely extract all the pixels of the
obstacle in the UV-disparity image. To solve this problem, we used a region growing
algorithm to fit the pixels of the disparity image corresponding to the obstacle in the UV
disparity image, which effectively improves the accuracy of obstacle detection in free space.
The result is shown in Figure 7.
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3.4. Results

In order to fully test the effectiveness of the proposed algorithm, the proposed al-
gorithm was compared with two existing obstacle detection algorithms. According to
4 parameters in Table 2, 3 algorithms are run with the same test dataset. In addition to
these 4 parameters, the average calculation time of the free space was also taken into
account with the same test dataset. All experiments in this paper were run on Intel’s Core
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i7-9750H CPU, based on Microsoft’s Visual Studio 2017 and open source programming
library OpenCV4.4.0 compilation environment. The final results are shown in Table 3. It can
be seen from Table 3 that the method in this paper is superior to the Stixel-origin algorithm
and the V-disparity based method in terms of quality, detection rate, detection accuracy,
effectiveness and speed. This proves that the method proposed in this paper has good
robustness, effectiveness and accuracy.

Table 3. Result of different algorithm.

Method Q DR DA E T (ms)

Stixel-origin 0.792 0.849 0.923 0.884 5.673
V-disparity-based method 0.781 0.921 0.831 0.874 6.345

Our method 0.820 0.863 0.941 0.900 5.145

As shown in Figure 8, it is the processing process and detection results of the method
in this paper for free space extraction and obstacle detection. It can be seen from the figure
that the method in this paper effectively detects the road and obstacles on the road, which
provides key information for the automatic driving system.
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4. Conclusions

In this paper, an obstacle detection and estimation algorithm based on Stixel vision
was proposed. Compared with the work in [8], our method computationally reduces the
complexity of making an effective Hough space and improves the accuracy of road surface
extraction results. Compared with the Stixel-World algorithm, the method in this paper
improves the real-time performance of obstacle height information estimation in complex
traffic scenes. The experimental results show that the proposed method achieves both
robustness and real-time obstacle detection. The method in this paper can realize the
real-time detection of obstacles and roads in the process of vehicle driving, which is helpful
for automatic obstacle avoidance and early warning. The method in this paper provides
new detection ideas for the field of autonomous driving, which will help the development
of the field of autonomous driving.

At present, this method has only been verified on public datasets. In the future, we
will to build experimental vehicle equipment and collect data for further analysis. We will
try to use more than two cameras for obstacle detection or use auxiliary devices such as
ultrasonic wave distance-measuring sensors to improve the performance of the detection
algorithm. In addition, this paper only conducts research on road and obstacle detection
and does not classify obstacles. On the basis of our research results, we will carry out
related research work on obstacle classification based on deep learning. We believe this
research direction will contribute to the development of the field of autonomous driving.
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