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Abstract: This paper proposes a capacitor voltage offset suppression method based on reference volt-
age self-correction for a three-phase four-switch (TPFS) inverter-fed permanent magnet synchronous
motor (PMSM) drive system to improve the motor control performance. Firstly, the αβ-axis reference
voltage deviation caused by capacitor voltage offset is analyzed, and the relationship between the
voltage to be compensated and the offset is obtained. Then, the capacitor voltage offset is calculated
according to the motor speed, rotor position, current vector amplitude, and capacitance on the
capacitor bridge arm of the TPFS inverter. Finally, the reference voltage is corrected according to
the voltage to be compensated and the capacitor voltage offset. This method is simple and easy to
implement, and there is no need to add voltage sensors or filters in the system to extract the capacitor
voltage offset, and there is no complex parameter adjustment. The effectiveness of the proposed
method is verified by experiments on a 20 kW interior permanent magnet synchronous motor.

Keywords: three-phase four-switch inverter; permanent magnet synchronous motor (PMSM); capaci-
tor voltage offset suppression; reference voltage self-correction

1. Introduction

Permanent magnet synchronous motors (PMSMs) are widely used in industry because
of their high power density and reliable performance [1–3]. Due to the less power switching
devices, the three-phase four-switch (TPFS) inverter has become an alternative to the
conventional three-phase six-switch (TPSS) inverter in cost-sensitive or fault-tolerant PMSM
applications [4–6]. Therefore, the TPFS inverter-fed PMSM drive system has received
considerable attention in recent decades.

In contrast to the TPSS inverter, the power switch devices in one of the phase bridge
arms of the TPFS inverter are replaced by two series capacitors, which are connected to the
motor phase winding at the midpoint of the bridge arm. Due to this particular topology, the
phase current charges and discharges the capacitor, causing the voltage across the capacitor
to vary [7]. The resulting capacitor voltage offset causes the basic voltage vector of the
TPFS inverter to offset, affecting the control performance of the drive system [8].

To improve the control performance of TPFS inverter-fed PMSM drive systems, a
number of capacitor voltage offset suppression strategies have been proposed. To ensure
stable operation of the system, the model predictive control with a capacitor voltage balance
control term in the cost function is proposed in [9]. However, this method increases the
difficulty of adjusting the system weighting factor. To simplify the calculation, a model
predictive control method with a fixed weighting factor to suppress capacitor voltage offset
is proposed in [10] by establishing a prediction model for capacitor voltage difference
based on the relationship between capacitor voltage and phase current. A simplified model
predictive flux control considering capacitor voltage offset suppression is proposed in [11],
which only treats flux as the only control term in the cost function and avoids complex
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weighting factor adjustment. Model predictive control can improve control performance by
adding a capacitor voltage offset suppression term to the cost function, but it is inherently
computationally intensive and has a large current ripple.

To reduce the computational effort of TPFS inverter-fed PMSM drive systems and to
reduce the current ripple, the capacitor voltage offset suppression methods based on vector
control are proposed in [12–15]. The capacitor voltage offset is eliminated by introducing
a DC component compensation to the midpoint of the capacitor bank in [12], but the
method introduces a second-order low-pass filter to extract the capacitor voltage deviation,
which limits the dynamic and steady-state performance of the control system. An adaptive
trap filter instead of a second-order low-pass filter in [13], combined with an adaptive
control algorithm to suppress capacitor voltage offset and improve the dynamic and steady-
state performance of the system. A capacitor voltage balancing method without a filter
is proposed in [14], revealing the relationship between capacitor voltage bias and load
current through coordinate transformation and then injecting the required compensation
current into the stator current control loop. Although this method avoids the use of filters,
the system adds a proportional–integral (PI) controller and requires the adjustment of
parameters. In [15], the authors propose to directly measure the capacitor voltage using
voltage sensors and then compensate the reference voltage using the difference between
the capacitor voltage. This method requires no filter and no complex parameter adjustment
and is easier to implement than the above methods. Although the control strategy is
continuously simplified, voltage sensors are inevitably used, which increases the cost and
the size of the system.

A capacitor voltage offset suppression method based on αβ-axis reference voltage
self-correction is proposed in this paper. The method calculates the capacitor voltage using
the three-phase current, the angular velocity, and the rotor position angle, and then the
capacitor voltage offset is obtained by the difference of the capacitor voltage. The αβ-axis
reference voltage is corrected by capacitor voltage offset, which does not need to add
voltage sensors or filters in the control system to extract the voltage variation components,
and there is no complex parameter adjustment. The corrected reference voltage ensures that
the basic voltage vector is balanced, and then, the reference voltage vector is synthesized to
output the correct PWM pulse signal, which, in turn, modulates the correct three-phase
winding voltage, giving the motor good control performance.

2. Modeling for the TPFS Inverter-Fed PMSM Drive System

The topology of the TPFS inverter-fed PMSM drive system is shown in Figure 1. The
system consists of an input DC source, a DC-link capacitor, a one-phase capacitor bridge
arm, a two-phase controllable power switch devices bridge arm, and a PMSM. In this paper,
the phase A motor is studied as an example connected to the midpoint of the capacitor
bridge arm.
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In this figure, the shaded part is the capacitor bridge arm formed by the capacitor
instead of the controllable power switch devices, Vdc is the system input DC source, Cdc is
the DC-link capacitor, C1 and C2 are the two capacitors on the capacitor bridge arm, whose
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capacitor value is C1 = C2 = C, and Sb and Sc indicate the controllable power switch devices
on the bridge arm of B and C phases.

In the synchronous frame, the voltage equation of a PMSM can be expressed as[
ud
uq

]
=

[
Rs + pLd −ωeLq

ωeLd Rs + pLq

][
id
iq

]
+

[
0

ωe ϕf

]
(1)

where ud and uq are the stator voltage components of the motor in the d–q frame; id and
iq are currents in the d–q frame; Rs is the stator resistance; Ld and Lq are the d-axis stator
inductance and q-axis stator inductance; ωe is the electrical angular velocity; ϕf is the stator
flux linkage of the permanent magnet; p is the difference operator.

In Equation (1) id and iq are the projections of the PMSM stator current vector Is on
the d–q axis, respectively, which can be expressed as{

id = −Is sin β
iq = Is cos β

(2)

where Is is the stator current vector amplitude, and β is the angle between the current
vector and the q-axis.

A common control strategy for PMSM is the maximum torque per ampere (MTPA)
control strategy. For the interior PMSM, the current vector angle at the MTPA operating
point can be expressed as

βM = sin−1

−ϕf +
√

λ2
f + 8

(
Ld − Lq

)2 I2
s

4
(

Ld − Lq
)

Is

 (3)

where βM is the current vector angle at the MTPA operating point; according to the litera-
ture [16], this angle varies between 0 and 0.25π.

Assuming that the voltages across capacitors C1 and C2 are Vdc1 and Vdc2, respectively,
the voltages uAN, uBN, and uCN at the three-phase winding endpoints A, B, and C of the
motor relative to the motor midpoint N at different switching states of the TPFS inverter are

uAN = Vdc1
3 (−Sb − Sc) +

Vdc2
3 (−Sb − Sc + 2)

uBN = Vdc1
3 (2Sb − Sc) +

Vdc2
3 (2Sb − Sc − 1)

uCN = Vdc1
3 (−Sb + 2Sc) +

Vdc2
3 (−Sb + 2Sc − 1)

(4)

where Sb and Sc are the switching states of the B and C phase bridge arms, respectively.
When Sb and Sc are 0, it means the state in which the upper switch of the B and C phase
bridge arm is not conducting, and the lower switch is conducting; when Sb and Sc are 1, it
means the state in which the upper switch of the B and C phase bridge arm is conducting,
and the lower switch is not conducting. According to the states of the power switch devices,
there are four switching states of the TPFS inverter—namely, S00, S10, S11, and S01.

3. Capacitor Voltage Offset Suppression Strategy
3.1. The Influence of TPFS Inverter Capacitor Voltage Offset

Assuming that ∆V is the voltage offset across the capacitors of the TPFS inverter,
the voltages across capacitors C1 and C2 are Vdc1 = Vdc/2 + ∆V and Vdc2 = Vdc/2 − ∆V,
respectively. Substituting Vdc1 and Vdc2 into Equation (4), we can obtain the relationship
between the three-phase winding voltage and the switching state when the capacitor
voltage is unbalanced as 

uAN = Vdc
3 (−Sb − Sc + 1)− 2∆V

3

uBN = Vdc
3

(
2Sb − Sc − 1

2

)
+ ∆V

3

uCN = Vdc
3

(
2Sc − Sb − 1

2

)
+ ∆V

3

(5)



World Electr. Veh. J. 2022, 13, 24 4 of 14

The TPFS inverter capacitor voltage offset leads to different offsets in the PMSM
three-phase winding voltage. After the Clark variation, one can obtain the voltages in the
αβ-axis two-phase stationary coordinate system as{

uα = Vdc
3 (−Sb − Sc + 1)− 2∆V

3

uβ = Vdc
3

(√
3Sb −

√
3Sc

) (6)

As can be seen from Equation (6), although the capacitor voltage offset causes an
offset in all three-phase winding voltages, only the α-axis reference voltage uα is offset by
−2∆V/3 after the Clark transformation, while the β-axis reference voltage uβ is not offset.

The space vector pulse width modulation (SVPWM) of the TPFS inverter is an impor-
tant part to realize vector control of the drive system, where uα and uβ, as αβ-axis reference
voltages, determine whether the correct PWM pulse signal can be output. According to
Equation (5), the reference voltage uα is offset due to the capacitor voltage offset, which
causes the basic voltage vector of the TPFS inverter to shift along the α-axis. The reference
voltages uα and uβ that generate the offset cannot be synthesized into the correct reference
voltage vector according to the SVPWM strategy of the TPFS inverter. The wrong PWM
pulse signal will affect the control performance of the motor.

The four switching states of the TPFS inverter correspond to four basic voltage vectors,
V00, V10, V11, and V01. With the capacitor voltage offset taken into account, the distribution
of the basic voltage vectors of the TPFS inverter is shown in Figure 2.
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In the figure, the red dashed line shows the distribution of the basic voltage vector
when the capacitor voltage is offset, and the black shows the distribution of the basic
voltage vector when the capacitor voltage is balanced. The α-axis coordinates of the basic
voltage vector are shifted, compared with the capacitor voltage balance. The synthesis of
the reference voltage vector Vs in this state inevitably leads to an asymmetry of the three-
phase voltages. The three-phase voltage asymmetry will inevitably lead to an asymmetry
in the three-phase current, which affects the control performance of the motor.

3.2. The TPFS Inverter Capacitor Voltage Offset

According to Figure 1, the motor’s phase A winding is connected to the midpoint of
the capacitor bridge arm, and the current in this phase winding charges and discharges the
capacitor, causing a voltage offset across the capacitor. The capacitor voltage offset can be
expressed as

∆V =
Is

j2ωeC
(7)



World Electr. Veh. J. 2022, 13, 24 5 of 14

It can be seen from Equation (7) that the TPFS inverter capacitor voltage offset is
directly proportional to the current vector amplitude and inversely proportional to the
motor speed and capacitance, which explains the poor low-speed characteristics of the
TPFS inverter drive system.

To improve motor control performance, the capacitor value on the capacitor bridge
arm of the TPFS inverter can be increased, or the motor speed can be increased. However,
the capacitor value cannot be increased indefinitely, and the motor inevitably runs at low
speed in the TPFS inverter-fed PMSM drive systems. The use of a TPFS inverter capacitor
voltage offset suppression strategy is, therefore, of great importance for TPFS inverter-fed
PMSM drive systems.

3.3. Reference Voltage Self-Correction

According to the analysis in 3.1, the TPFS inverter capacitor voltage offset causes a
−2∆V/3 offset in the reference voltage uα. Therefore, the correct PWM pulse signal can
be guaranteed to be output by correcting the α-axis reference voltage to give good control
performance of the motor.

As the motor phase winding load current varies sinusoidally, the charging and dis-
charging of the capacitors results in the voltages Vdc1 and Vdc2 across the capacitors varying
with the motor rotation as follows:{

Vdc1 = Vdc
2 + Is

2ωeC cos(ωet) + ∆Vdc

Vdc2 = Vdc
2 −

Is
2ωeC cos(ωet)− ∆Vdc

(8)

where ωe is the angular velocity of the motor, and ωet is the rotor position angle of the
motor. ∆Vdc represents the DC voltage offset across the capacitors of the three-phase
four-switch inverter, which is negligible, due to the equal capacitance of the two capacitors
on the bridge arm of the selected capacitor in the TPFS inverter. Therefore, the voltage
offset across the capacitors can be expressed as

∆V =
1
2
(Vdc1 −Vdc2) =

Is

2ωeC
cos(ωet) (9)

According to Equation (9), the capacitor voltage offset can be calculated based on
the angular velocity of the motor, rotor position angle of the motor, capacitor value, and
current vector amplitude, without the need for additional voltage sensors or filters in the
TPFS inverter-fed PMSM drive system.

From Equation (6), it can be seen that the reference voltage uα generates an offset
of −2∆V/3 and the reference voltage uβ remains unchanged, so only 2∆V/3 needs to be
compensated on the reference voltage uα to obtain the corrected α-axis reference voltage.
The corrected αβ-axis reference voltage expresses as{

u′α = uα + 2∆V
3

u′β = uβ
(10)

By using the corrected αβ-axis reference voltage for the TPFS inverter using a space
vector pulse width modulation strategy, the correct PWM pulse signal can be generated
to output an offset-free reference voltage vector, modulating a symmetrical three-phase
winding voltage and controlling the PMSM to achieve good performance.

The block diagram of the TPFS inverter-fed PMSM vector control considering the
capacitor voltage offset suppression strategy proposed in this paper is shown in Figure 3.
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4. Simulation and Experimental Results
4.1. Introduction to the Experimental Platform

In order to verify the effectiveness of the capacitor voltage offset suppression strategy
proposed in this paper, experimental verification was carried out on a 20 kW interior PMSM.
The experimental platform of the TPFS inverter-fed PMSM drive system shown in Figure 4
was built.
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Figure 4. Experimental platform.

The experimental platform consists of a dynamometer, a DC power supply, an inverter,
a capacitor bridge arm, a controller, and a PMSM. The dynamometer is an induction motor
that provides the load torque for the experimental prototype. The digital signal processing
chip for the controller was TMS320F28335, and the inverter was an electric vehicle GD12-
WDI power unit manufactured by Semikron. The motor’s A-phase line was connected to
the neutral point of the capacitor bank, to form the A-phase capacitor bridge arm, which
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formed the TPFS inverter with the bridge arms of B- and C-phase-controlled power switch
devices of the Semikron inverter. The control frequency is 10 kHz, and the DC bus voltage
is 320 V.

The experimental prototype parameters are shown in Table 1.

Table 1. Experimental prototype parameters.

Parameter Symbol Value

Rated voltage UN 320 V
Rated current IN 150 A

d-axis inductance Ld 0.158 mH
q-axis inductance Lq 0.292 mH
Stator resistance Rs 7.34 mΩ

Permanent magnet flux ψf 0.067 Wb
Rated speed nN 3000 r/min
Rated torque TN 64 Nm
Pairs of poles p 4

4.2. Experimental Results for Comparision of Control Performance

In the experiments, the capacitor voltage offset suppression strategy proposed in this
paper was applied to the TPFS inverter-fed PMSM drive system, and the experimental
results were compared with those without any capacitor voltage offset suppression. The
effectiveness of the proposed method was verified in terms of torque ripple of the motor,
three-phase current of the motor, and capacitor voltage offset of the TPFS inverter.

Figure 5 shows the experimental waveforms at the speed 2500 r/min and the load
10 Nm. From the top to the bottom is the motor torque Te, three-phase current ia ib,
ic, capacitor voltage Vdc1 and Vdc2, the amplification waveforms of three-phase current,
and the amplification waveforms of capacitor voltage are shown, respectively. Figure 5a
shows the experimental waveforms without capacitor voltage offset suppression. The
waveforms show that the torque ripple reaches 21.5 Nm, and the three-phase current and
the capacitor voltage of the TPFS inverter are unbalanced, where the capacitor voltage offset
is 30 V. Figure 5b shows the experimental waveforms with the proposed method. Since
the proposed method corrects the reference voltage so that the TPFS inverter synthesizes
the correct reference voltage vector, the torque ripple of the proposed method is 9 Nm,
compared with the experimental waveform without capacitor voltage offset suppression,
which effectively reduces the torque ripple caused by the capacitor voltage offset. The
three-phase current and the capacitor voltage of the TPFS inverter are balanced by the
proposed method, where the capacitor voltage offset is reduced to 28 V, which effectively
improves the motor control performance.

Figure 6 shows the experimental waveforms at the speed 2500 r/min and the load
20 Nm, and Figure 7 shows the experimental waveforms at the speed of 2500 r/min and the
load of 30 Nm. The waveforms show that the torque ripple is 30 Nm and 45 Nm without
capacitor voltage offset suppression, and the three-phase current and the capacitor of the
TPFS inverter are significantly unbalanced, where the capacitor voltage offset is 49 V and
65 V. The capacitor voltage offset suppression method proposed in this paper reduces the
torque ripple to 9.8 Nm and 15 Nm. The three-phase current and capacitor voltage of the
TPFS inverter are balanced, where the capacitor voltage offset is reduced to 43 V and 57 V.
Therefore, the proposed method improved the control performance of the motor effectively.
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According to Equation (7), the capacitor voltage offset of the TPFS inverter is pro-
portional to the current vector amplitude. Comparing the experimental waveforms in
Figures 5–7 for the cases without capacitor voltage offset suppression reveals that the
torque ripple increases significantly with the increase in load torque, and the three-phase
current and capacitor voltage are unbalanced. After applying the proposed method to
suppress the capacitor voltage offset of the TPFS inverter, the torque ripple only increases
slightly as the load torque increases, while the three-phase current and the capacitor voltage
of the TPFS inverter remain in balance. The increase in load has little effect on the control
performance of the proposed method in this paper.

To further verify the effectiveness of the proposed method, experiments were carried
out at the speed of 1500 r/min with loads of 10 Nm, 20 Nm, and 30 Nm. The experimental
waveforms are shown in Figures 8–10. According to Figures 8a, 9a and 10a, the torque ripple
without capacitor voltage offset suppression is 26.5 Nm, 43 Nm, and 63 Nm, respectively.
The three-phase current and the capacitor voltage of the TPFS inverter are unbalanced;
the capacitor voltage offset is 45 V, 73.5 V, and 103 V, and the control performance of the
motor is poor. The experimental waveforms with the proposed method are shown in
Figures 8a, 9a and 10a, and the torque ripple with the proposed method is 10 Nm, 11.5 Nm,
and 15 Nm, respectively, which effectively reduces the torque ripple, compared with the
method without capacitor voltage offset suppression. The three-phase current and the
capacitor voltage of the TPFS inverter are balanced, and the capacitor voltage offset is
reduced to 42 V, 65 V, and 93 V. The method proposed in this paper improves the control
performance of the motor. Moreover, as the load torque increases, the torque ripple of the
proposed method only increases slightly. However, the torque ripple increases greatly as
the load increases without capacitor voltage offset suppression.
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According to Equation (7), the capacitor voltage offset is inversely proportional to the
motor speed. Comparing the experimental waveforms in Figures 5 and 8, Figures 6 and 9,
and Figures 7 and 10 reveals that the torque ripple increases considerably as the speed
decreases with the same load torque, and the unbalanced phenomenon of the three-phase
current and the capacitor voltage of the TPFS inverter is aggravated. The torque ripple
only increases slightly as the motor speed decreases with the proposed method, and the
three-phase current and the voltage across the capacitor remain in balance. The speed
reduction has little effect on the control performance of the proposed method.

The above experimental waveforms show that the torque ripple and the capacitor
voltage offset are reduced effectively with the method proposed in this paper while keep-
ing the three-phase current and the capacitor voltage in balance. The proposed method
improves the control performance of the motor. At the same time, it does not deteriorate
the control performance as the motor load torque increases and the speed decreases.

4.3. Simulation Results of the Capacitor Value Variation

Figure 11 shows the simulation results of the proposed method when the motor
running at 2500 r/min and 30 Nm operating conditions. In Figure 11, ia ib, ic is the three-
phase current, and Te is the motor torque. Figure 11a–c are the simulation results for
capacitor values of 2000 µF, 1500 µF, and 1000 µF, respectively. It can be seen from the
simulation results that the method proposed in this paper still maintains the three-phase
current balanced, and torque ripple is almost constant when the capacitor value variations.
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4.4. Simulation Results of Speed Transient

Figure 12 shows the simulation results of the proposed method during the motor
speed step change with 500 r/min from 1500 r/min to 2500 r/min. In Figure 12, n* and n
indicate the given motor reference speed and the actual motor speed, respectively; ia, ib, ic
is the three-phase current, and Te is the motor torque. It can be seen from the simulation
results that the motor will generate current and torque strikes but will soon return to
normal when the motor speed is transient, and the motor actual speed can quickly track
the reference speed. After the motor speed is stabilized, the three-phase current returns to
balance, and the torque ripple returns to normal.
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5. Conclusions

This paper proposed a voltage sensorless TPFS inverter-fed PMSM capacitor voltage
offset suppression strategy that enables the TPFS inverter to synthesize the correct reference
voltage vector by correcting the αβ-axis reference voltage. The effectiveness of the proposed
method was verified experimentally, and the method has the following characteristics:

(1). The proposed method effectively reduces the torque ripple while keeping the three-
phase current and capacitor voltage in balance. Load increase and speed decrease
have little effect on the proposed method;

(2). The proposed method does not need voltage sensors or filters to extract the offset
components, nor does it require complex parameter adjustment, as the algorithm is
simple and easy to implement;

(3). The proposed method will not affect the control performance of the motor when the
capacitor value variation and the motor speed are transient.
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