
Citation: Terapaptommakol, W.;

Phaoharuhansa, D.;

Koowattanasuchat, P.;

Rajruangrabin, J. Design of Obstacle

Avoidance for Autonomous Vehicle

Using Deep Q-Network and CARLA

Simulator. World Electr. Veh. J. 2022,

13, 239. https://doi.org/10.3390/

wevj13120239

Academic Editor: Chung-Neng

Huang

Received: 6 September 2022

Accepted: 8 November 2022

Published: 12 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Design of Obstacle Avoidance for Autonomous Vehicle Using
Deep Q-Network and CARLA Simulator
Wasinee Terapaptommakol 1,2, Danai Phaoharuhansa 1,*, Pramote Koowattanasuchat 2,*
and Jartuwat Rajruangrabin 2,*

1 Department of Mechanical Engineering, King Mongkut’s University of Technology Thonburi,
Bangkok 10140, Thailand

2 Rail and Modern Transports Research Center, National Science and Technology Development Agency,
Pathum Thani 12120, Thailand

* Correspondence: danai.pha@kmutt.ac.th (D.P.); pramote.koo@nstda.or.th (P.K.); jartuwat.raj@nstda.or.th (J.R.)

Abstract: In this paper, we propose a deep Q-network (DQN) method to develop an autonomous
vehicle control system to achieve trajectory design and collision avoidance with regard to obstacles on
the road in a virtual environment. The intention of this work is to simulate a case scenario and train
the DQN algorithm in a virtual environment before testing it in a real scenario in order to ensure safety
while reducing costs. The CARLA simulator is used to emulate the motion of the autonomous vehicle
in a virtual environment, including an obstacle vehicle parked on the road while the autonomous
vehicle drives on the road. The target position, real-time position, velocity, and LiDAR point cloud
information are taken as inputs, while action settings such as acceleration, braking, and steering
are taken as outputs. The actions are sent to the torque control in the transmission system of the
vehicle. A reward function is created using continuous equations designed, especially for this case, in
order to imitate human driving behaviors. The results demonstrate that the proposed method can be
used to navigate to the destination without collision with the obstacle, through the use of braking
and dodging methods. Furthermore, according to the trend of DQN behavior, a better result can be
obtained with an increased number of training episodes. This method is a non-global path planning
method successfully implemented on a virtual environment platform, which is an advantage of this
method over other autonomous vehicle designs, allowing for simulation testing and application with
further experiments in future work.

Keywords: obstacle avoidance; autonomous vehicle; deep Q-network; CARLA simulator

1. Introduction

With the growth of the automotive industry, road traffic injuries in Thailand are
increasing every year, with over 13,000 deaths and a million injuries each year [1]. Most
road traffic accidents are caused by human error. Autonomous vehicles are already being
sold in the public market, which can assist drivers through technologies such as adaptive
cruise control, automatic parking control, and lane-keep assist systems.

Thailand has one of the highest rates of injuries and fatalities due to car accidents
worldwide. The main reason for this is that drivers do not avoid obstacles in time, and
about 20,000 people die in road accidents each year [1,2]. The research paper [3] presented
statistics regarding the collision of a car with an obstacle in front, indicating that such a
scenario will cause a risk of injury in up to almost 100% of cases, and leads to a high risk
of death. Due to human error leading to injury and losses, autonomous vehicles were
developed to address this problem.

To improve autonomous control systems, one of the important issues is the considera-
tion of the safety of the driver and passengers. Conventional control systems are based on
mathematical models [4], but they only control the vehicle in a limited range of situations.

World Electr. Veh. J. 2022, 13, 239. https://doi.org/10.3390/wevj13120239 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj13120239
https://doi.org/10.3390/wevj13120239
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0001-7122-5336
https://doi.org/10.3390/wevj13120239
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj13120239?type=check_update&version=2


World Electr. Veh. J. 2022, 13, 239 2 of 13

Therefore, machine learning algorithms have been applied in autonomous systems [5,6] in
order to better control vehicles in varied situations.

For on-site experiments, tests need to be conducted on real traffic roads, which leads
to high costs for the preparation of the experiment, such as environmental control and the
measurement system. Therefore, simulation software has been extensively developed to
simulate the motion of vehicles in virtual environments before conducting experiments in
actual conditions.

Thus, the main motivation of this study is to reduce traffic fatality rates and accidents
on the road by testing the proposed method in a virtual environment. For this purpose, we
design and validate the hyperparameters and reward function affecting the behavior of the
DQN model to make decisions in the context of autonomous control. Therefore, this study
has value as a guideline for simulating and validating autonomous vehicle motion, and the
results will be applied to other methods in the future, including on-site experiments.

2. Related Work

In this section, we briefly review reference works in the literature related to this project,
such as those focused on object detection using LiDAR point clouds, simulation programs,
and a fusion of them. Over the past few years, autonomous vehicles have been tested
using the Deep Q learning technique [7]. The advantage of this technique is that it can
learn through training of the algorithm using huge sample spaces to provide solutions to
complex problems. In the research paper [8], a camera was used to detect the distance from
the vehicle to obstacles; however, this led to problems related to information uncertainty,
and the error is higher than that when using information from a LiDAR sensor.

Referring to [9,10], both papers have focused on autonomous vehicles and provided
algorithms based on a Deep Q-Network (DQN) for the control layer, which was simulated
in the CARLA simulator to avoid any risk during testing. The results indicated that the
use of image data had an effect on the calculation process in the DQN algorithm, as it
has a low frequency of information collection. For this purpose, LiDAR point clouds are
suitable for the detection of objects more than images. Therefore, we found it reasonable to
apply LiDAR in this project. The LiDAR point cloud boundary information was assessed
in the scope of the detection space, demonstrating that the distance between the vehicle
and obstacles is sufficient to avoid collisions.

The DQN algorithm uses this information to make decisions, based on the reward
function [11]. As mentioned above, the purpose of this project is to use LiDAR sensor data
to detect objects, while the DQN algorithm is applied as an avoidance control system, in
order to avoid obstacles. Both research papers above focused on adjusting the algorithm
to succeed in the same task using different models. Therefore, in this paper, we focus
on adjusting the reward function of the DQN algorithm to succeed in the mission while
ensuring smooth motion.

The Gazebo and CARLA simulators are open-source software, which can be used to
simulate autonomous vehicle motion with 3D visualization. In [12], Gazebo was used to
estimate the performance prior to real track tests, due to limitations in graphics quality
and physics engine. The CARLA software has been utilized in several papers [9,10,13], and
it may be better than Gazebo as it has been specifically prepared for testing autonomous
vehicles, including physics engines and sensors that can adjust for any noise. It has been
developed from the ground up to support the development, training, and validation of
autonomous driving systems by simulating the response of vehicles in virtual situations.
The advantages are that the program can obtain a certain physics engine and real-world
map, including many assets to create the experimental conditions, such as any type of
vehicle, traffic attributes, onboard sensors, and environment for the autonomous system. It
supports the flexible specification of sensor suites, virtual environmental conditions, full
control of static and dynamic actors, map generation, and much more, through the use of
python code for control.



World Electr. Veh. J. 2022, 13, 239 3 of 13

3. Autonomous Vehicle

Autonomous vehicle technology has been evolving rapidly with the continuous im-
provement of artificial intelligence technology. Its performance on highways with the
exact route path has been described [14]. Autonomous driving systems consist of two
main parts [15], as shown in Figure 1: hardware and software [16]. The hardware part
includes the mechanical components, such as sensors, Vehicle-to-Vehicle (V2V) hardware,
and actuators, while sensors are used to observe the environment. V2V hardware is set up
on each vehicle for communication and the sharing of data between the vehicles, while
actuators are used to power the sub-systems of the vehicle, such as the power train, steer-
ing wheel, and brakes. The software modules include perception, path planning, and
control systems [15]. The perception module collects data from the sensors and builds a
3D mapping of the environment around the vehicle, allowing the car to understand the
environment, as depicted in Figure 2. Then, path planning design can be conducted, based
on user commands. Finally, the control system sends action orders to the vehicle hardware
after observing the actual environment.

Figure 1. Architecture of autonomous driving system.

Figure 2. Example of point cloud output from a LiDAR.

The onboard sensors consist of several types of sensors, such as cameras, radar, and
LiDAR sensors. Camera sensors in automated driving systems have two concern points:
The sampling rate and response to visibility conditions.

Radar technology uses high-frequency electromagnetic waves to measure the distance
to objects based on the round-trip time principle. It is independent of light and weather
conditions and can measure up to 250 m under very adverse conditions.



World Electr. Veh. J. 2022, 13, 239 4 of 13

Light Detection and Ranging (LiDAR) is an active-ranging technology that calculates
the distance to objects by measuring the round-trip time of a laser light pulse [17]. Laser
beams have a low divergence for reducing power decay, and the measured distance ranges
up to 200 m under direct sunlight. A 3D point cloud is shown in Figure 2, which represents
a 3D visualization of the environment generated according to information obtained from
the LiDAR [18].

4. CARLA Simulator

CARLA (Car Learning to Act) [19,20] is an open-source software for urban driving
environments, which was developed in order to simulate vehicles and vehicle control
systems, in order to support the training, prototyping, and validation of autonomous
driving models [21]. The simulator includes visualization relative to the vision of sensors
and third-person vision, as shown in Figure 3a,b, respectively. The process can be separated
to apply autonomous vehicle control simulation into three components, as shown in
Figure 4: Virtual environment, agent, and control system.

(a) (b)

Figure 3. CARLA simulator presents by LiDAR information and 3D visualization. (a) The LIDAR
information. (b) Third person visualization.

Figure 4. CARLA architecture for autonomous vehicle simulation.

4.1. Virtual Environment

The virtual environment is presented as 3D models, which consist of static and dy-
namic objects. Static objects include the road, buildings, traffic signs, and infrastructure,
while dynamic objects denote moving objects in the environment, such as pedestrians and
other vehicles. All models are designed to reconcile visual quality and rendering speed.
All environment models can be defined in terms of the dimensions of real objects, and are
presented as a 3D visualization; see Figure 3.



World Electr. Veh. J. 2022, 13, 239 5 of 13

4.2. Agent

Agents are objects that act relative to the control system, such as pedestrians and
vehicles. The agent is determined to be a vehicle, where a Tesla Model 3 is represented
instead of an autonomous vehicle, as shown in Figure 3b, a dynamical model of which is
included in CARLA. The agent consists of the sensors and actuators in the vehicle. The
sensors in the program are of several types, such as GPS, speedometer, IMU, LiDAR,
camera, and so on. To the output of the sensor, noise can be applied, in order to simulate
actual noise such as fog, rain, and smoke. The actuators describe such components as the
steering wheel, brake, and traction motor.

In this study, LiDAR is included with conventional sensors and is used to observe
obstacles and the environment. The attributes were set according to the sensor parameters
of the Velodyne HDL-32E [19,22], which obtains 32 channels, and the sensor was mounted
in front of the vehicle. The range of detection was set at 40 m. Vehicle motion was performed
by the steering wheel, acceleration pedal, and brake pedal. The steering wheel controls the
steering angle, which was between ±70 degrees. The acceleration and brake pedals can
each be assigned from 0 to 100%.

4.3. Control System

The control system can be used for feedback control or otherwise. This study is
designed based on the use of a DQN algorithm, which is a kind of reinforcement learning
method. The overall system includes path planning, obstacle detection, and the DQN
algorithm. The path planning is determined on the straight road, while the DQN algorithm
receives sensor data and determines the action to take to control the actuators.

5. Deep Q-Network Control

Deep Q-network is a kind of reinforcement learning approach, which was applied to
control the agent vehicle, in order to assign actions to actuators such as the acceleration
pedal, brake pedal, and steering wheel. This required definitions of the DQN model, its
training scheme, and the reward function. Deep Q-learning can work well with complex de-
cisions and requires a huge volume of data, such as large state input, elaborate environment,
and delicate action data.

Figure 5 presents the process of Deep Q-learning, which uses a neural network to
approximate the Q-value function. The state is given as the input, and possible actions
are generated as the output. The DQN model computes the reward function to choose the
action for a given state, and store its experiences in a memory buffer. Then, the model uses
the experiences from the memory buffer to train the target model, which calculates the best
way to maximize its reward.

Figure 5. Deep Q-Learning process.

To train the DQN algorithm, the best reward and state are collected in the memory
buffer, as shown in Figure 6. The remainder of this section is separated into four parts:
Model setting, action setting, reward setting, and hyperparameter setting. These four parts



World Electr. Veh. J. 2022, 13, 239 6 of 13

are very important in enabling the DQN model to learn correctly and appropriately for the
experiments. The details of designing the control system are provided below.

Figure 6. Process to select the action in DQN model.

5.1. Model Setting

The DQN model consists of dense and hidden layers, which include nodes in the
neural network form. Each layer uses an activation function, which matches the type of
data that has been designed by the user. If the user does not configure it, the activation
function will be designated as a linear function by default. The activation function setting
must be considered, in order to minimize the problems of gradient vanishing and explosion.

A total of 32 dense layers are used in the network in this project, with 32 nodes per
dense layer, which are re-trained in all the algorithms. The ReLU activation function was
applied in the hidden layer; see the settings given in Table 1. Information such as distance
from start to destination, the real-time position for calculation in the X-Y coordinates,
velocity in the X-Y coordinates, and distance from the vehicle to the obstacle (which comes
from the LiDAR sensor) in X-Y coordinates are taken as input data to the DQN algorithm.
The LiDAR point cloud, which scopes the areas where the vehicle may potentially collide,
is used to find the nearest point, which is later used for calculating the penalty reward.

Table 1. List of hyperparameters and their values.

Parameters Values Descriptions

Number of hidden layers and
dense 32 × 32 × 32

The number of nodes in the
neuron network. In this case,
there are 3 hidden layers and

32 dense layers.

Activation function ReLU

Function which defines how the
weighted sum of the input is

transformed into an output from a
node (or nodes) in a layer of the

network.



World Electr. Veh. J. 2022, 13, 239 7 of 13

Table 1. Cont.

Parameters Values Descriptions

Replay memory size 1,000,000 SGD updates are sampled from
this number of most recent steps.

Target network update frequency 400

The frequency (measured in the
number of parameter updates)

with which the target network is
updated.

Discount factor 0.95 Discount factor gamma used in
the Q-learning update.

Learning rate 0.001

Tuning parameter that determines
the step size at each iteration

while moving toward a minimum
of the loss function.

Initial exploration 1 Value of ε in ε-greedy exploration.

Final exploration 0.0001 Final value of ε in ε-greedy
exploration

Final exploration step 1840 episodes (600,000 steps)
The number of steps over which
the initial value of ε is linearly

annealed to its final value.

Replay start size 4000

A uniform random policy is run
for this number of steps before

learning starts and the resulting
experience is used to populate the

replay memory.

Input data size 6 The number of the data that given
as input in Q-network

Output data size 4 The number of the action that
given as output in Q-network

5.2. Action Setting

In the action setting stage, we define four actions: straight forward, brake, and steering
wheel movement, bounded at ±35 degrees. The acceleration and brake pedals are acted
upon relative to the DQN algorithm considerations.

5.3. Reward Setting

The reward setting consists of three rewards: the main reward (Rm), penalty reward
(Rp), and extra reward (Rex). These should be set as continuous functions, in order to allow
the algorithm to learn in the correct and smooth direction. The hyperbolic function was
used, with different weights for each reward condition. If the agent can provide a good
solution, the reward will be doubled. If the agent provides a bad solution, the reward will
be negative. The function of each reward condition has an effect during the training period.
The total reward, RT , is given as

RT = Rm + Rp + Rex. (1)

The main reward (Rm) is designed relative to the distance from the vehicle to the
destination (dm), as detailed in Equation (2). This reward is designed based on the quadratic
polynomial, determining the farthest position with a negative value and the nearest position
having the highest value. Thus, the agent is driven to arrive at the destination. The
coefficients for the main reward were determined using the trial and error method, with
the maximum reward as 3000 and the minimum being −9500, based on the quadratic
polynomial equation.

Rm = −a(dm − b)2 + c, (2)

dm =
√
(xd − xv)2 + (yd − yv)2, (3)

where dm denotes the distance from the vehicle to the destination; xd and yd denote
the desired position’s x and y coordinates, respectively; xv and yv denote the vehicle’s,
respectively; and the coefficients of a, b, and c are −2.00, −98.00, and 3000, respectively.



World Electr. Veh. J. 2022, 13, 239 8 of 13

The penalty reward (Rp) is computed according to the distance obtained from the
LiDAR, as shown in (4). It depends on the minimum distance between the vehicle and
obstacles, where obstacles can be detected within the area at a distance of ±3 m on the
lateral axis, distance from the road to 1.3 m on the vertical axis, and distance of 0–70 m
on the longitudinal axis. Thus, decreasing the size of the LiDAR point cloud information
will affect the process of calculation, allowing the agent to make faster decisions while
still effectively detecting obstacles. A penalty reward was created to restrain the motion
to the destination while avoiding obstacles. The equation is designed as a fourth-degree
polynomial equation, which imitates human behavior. If the LiDAR detects the obstacle
at the farthest point, the value of the penalty reward is slightly positive. On the contrary,
when the distance between the vehicle and an obstacle is lower than 50 m, the function
takes a negative value in the penalty reward, which decreases rapidly when it is lower than
15 m and approaches 0 m (which is the critical point); this affects the algorithm to change its
decisions when compared with the main reward. The critical areas are calculated according
to the distance required to come to a stop when at a speed of 40 km/h. The coefficients of
the penalty reward were determined through the trial and error method and were designed
for balancing the main reward and the distance between the vehicle and the obstacle.

Rp = a1d4
l + a2d3

l + a3d2
l + a4dl + a5, (4)

dl = min
√

x2
o + y2

o + z2
o , (5)

where, xo, yo, and zo denote the nearest detected positions, which are scalars of distance
vectors from vehicle to obstacle. The coefficients of a1, a2, a3, a4, and a5 are −0.0011, 0.15,
−6.60, 145, and −3040, respectively.

The extra reward (Rex) is a special reward, which is added to the total reward when the
agent can avoid collisions within the episode. This reward is added when the vehicle can
brake within 10 m of the obstacle. The design of this reward was aimed at driver behavior.
The value of this reward is effective in terms of affecting the choice when making decisions.
The reward is given as

Rex = b1xl + b2, (6)

where xl denotes the distance from the vehicle to an obstacle. The coefficients b1 and b2
take values of −200.00 and 2200, respectively.

5.4. Hyperparameter Setting

The hyperparameter settings can be separated into two parts, relative to the network
structure and training algorithm. They are defined in Table 1, where the hyperparameters
for the network structure include the number of hidden layers and units, dropout, network
weight initialization, and activation function. The hyperparameters for training algorithms
include the learning rate, number of epochs, and batch size. ε-greedy exploration is
an exploration strategy in reinforcement learning that takes an exploratory action with
probability and a greedy action [11]. We used an initial exploration value of 1 and final
exploration value of 0.0001, with the epsilon value decaying by a factor of 0.995 in every
episode. For every 2000 episodes, the DQN model that obtained the highest reward was
selected and re-trained with a new initial exploration value (i.e., 0.7), in order to protect
against convergence resulting in an incomplete collection of values.

6. Case Scenario

One of the most common accident cases in Thailand is where the agent vehicle drives
on the main road while an obstacle vehicle drives across the main road, as shown in
Figure 7.



World Electr. Veh. J. 2022, 13, 239 9 of 13

Figure 7. The scenario obstacle avoidance in low-speed control.

The agent vehicle cannot brake or avoid in time, making it challenging to design a
function for avoiding the obstacle vehicle using the DQN algorithm.

At present, the laws in Thailand on autonomous vehicles do not allow their use
in public areas, but they can be applied in private areas with a speed limit of 40 km/h.
Therefore, in the case scenario, we considered the initial velocity of the agent car to be
40 km/h and the destination to be 100 m. The front wheel’s angle is bounded at ±35 degrees.
Then, the agent vehicle is driven to the destination while the obstacle is placed on its
trajectory. The agent vehicle should learn to brake or avoid crashing.

7. Simulation Results

According to the case scenario, the parameters were configured as shown in Table 1.
The DQN model was developed relative to the number of training episodes. The motion
was presented by 3D visualization in the CARLA simulator, as shown in Figure 8. The
results are shown in Figures 9 and 10, which present the distance from the vehicle to the
destination, its velocity, and the reward functions.

(a)

(b)

(c)

Figure 8. Cont.



World Electr. Veh. J. 2022, 13, 239 10 of 13

(d)

Figure 8. The agent performs using DQN model at 1400, 5000, 7000, and 8000 training episodes.
(a) 1400 training episodes. (b) 5000 training episodes. (c) 7000 training episodes. (d) 8000 training
episodes.

(a)

(b)

Figure 9. The motion of the agent relative to the number of training episode for straight motion test.
(a) Distance from agent to destination. (b) Velocity of agent.

Considering the distance and velocity of the agent vehicle in Figure 9, the distance
from the vehicle to the destination is provided in Figure 9a. As the number of training
episodes increased, the final position of the vehicle came closer to the destination. The
decision of the control system may switch between stopping and moving forward. Motion
after stopping is shown by the blue line in Figure 9, which presents the vehicle motion
according to the DQN model at 1400 training episodes. In the other cases, the vehicle
permanently stopped. Therefore, the decision of the control system using 1400 training
episodes may not have been sufficient for obstacle avoidance, as some nodes in the DQN
model may have still had blank nodes. Thus, the control system may continue to attempt
to find a better path, causing it to move forward after stopping.



World Electr. Veh. J. 2022, 13, 239 11 of 13

Figure 10. Reward for each number of training episode for straight motion test.

The velocity profile in each case is shown in Figure 9b. The initial velocity in all cases
was 40 km/h, and the velocity using the DQN models at 1400 and 5000 training episodes
decreased with low deceleration, after which the deceleration increased to zero velocity.
The velocity using the DQN models at 7000 and 8000 training episodes decreased with
almost constant deceleration to zero velocity.

Figure 10 illustrates the reward during the motion from the initial position to the
goal. The rewards increased when the vehicle came closer to the destination without any
collision. For this reason, the rewards for the DQN models at 1400, 5000, and 8000 training
episodes increased to convergent values, and the oscillation of rewards may have occurred
due to the penalty reward, as the minimum distance from the vehicle to an obstacle may be
affected by the shape of the obstacle.

As mentioned above, the number of training episodes affected the vehicle’s behavior.
The control system used DQN models trained to 1400, 5000, 7000, and 8000 training
episodes, respectively. The demonstration is shown in Figure 8. The vehicle control systems
using DQN models at 1400 and 5000 training episodes could stop before colliding with
the obstacle, but this was not good enough to avoid the obstacle, as shown in Figure 8a,b,
respectively.

With DQN models trained at 7000 and 8000 training episodes, the vehicle behavior
was improved, such that the vehicle could avoid the obstacle, as shown in Figure 8c,d.
The vehicles avoided the obstacle by decelerating and could stop at the destination using
the steering angle for control. The vehicle using the model at 7000 training episodes
immediately avoided the obstacle after it was detected by LiDAR. The vehicle using the
model at 8000 training episodes avoided the obstacle when it neared the obstacle, rather
than in other cases.

According to the reward graph, as shown in Figure 10, the values for training without
obstacles between the time steps 85–95 and 100–110 represented the attraction for DQN-
based decision making, with balancing of the coefficients for the main reward and penalty
reward. Thus, even if the LiDAR sensor detected an obstacle in the lane, it did not have an
effect on the decision as long as it was not in the critical area (i.e., within 15 m). Comparing
training with obstacles, the reward result also revealed the trend that the results were better
when the number of training episodes was increased. When comparing the reward graph
between 7000 and 8000 episodes of training, the shape of the former fluctuated more than
with 8000 episodes of training, due to disturbance by the LiDAR sensor. Therefore, the
DQN algorithm proposed in this study attempted to avoid sudden changes in reward value.

In [21], an autonomous vehicle control system was tested on the CARLA simulator
by evaluating three methods: Modular pipeline (MP), imitation learning (IL), and rein-
forcement learning (RL). The performance of the reinforcement learning method was not
satisfactory. Due to the driving scenarios, the agent must deal with vehicle dynamics and



World Electr. Veh. J. 2022, 13, 239 12 of 13

complicated perceptions in a dynamic environment during vehicle movement. Therefore,
the DQN algorithm was applied in our driving case scenario.

The limitation of this work was the use of a specific case scenario, involving avoiding
a static obstacle in front of the vehicle. If the obstacle is a dynamic obstacle or obstacles
are on the side of the vehicle, the proposed algorithm may not be successful. Different
boundary conditions must be set in a new critical data set, which includes collision risks,
and the algorithm should be re-trained.

8. Conclusions

According to our results, we successfully developed a control system using the DQN
algorithm for obstacle avoidance. CARLA was used to present the results through visu-
alization and graphs. The vehicle motion using the DQN model at a higher number of
training episodes was better than at a low number of training episodes.

To train the DQN model, the best training result was recognized as being related to
the replay memory size. If the model is trained by TensorFlow version 1, the recognized
memory may be divergent and some memories may not present the best results, thus
causing the failure of the simulation results. Therefore, TensorFlow version 2.8 should be
used, instead of version 1, as the results are better than those obtained with the first version.

It should be noted that ε-greedy exploration influences the quality of replay memory.
If a small initial exploration value is used, the model may not find a new solution. If the
final exploration value is a large value, the model may not make the decision by itself. For
the 0.5 ε-greedy exploration value, the model slowly improves, but it may not be suitable,
according to the scenario case, and takes a lot of time in training. Thus, the value in this
project was designed to slowly decay from 1 to 0.0001, as detailed in Table 1. The purpose
of this was to allow the model to search for a new solution and then, after that, to gradually
increase in order to make the decision by itself. The replay memory size was designed to
make sure that it can collect all the states sufficient for generation in the DQN model.

This work addresses just one of the functions of an autonomous control system.
Therefore, we intend to apply DQN models to the other functions and combine them for
fully autonomous vehicle control in future work.

Author Contributions: Conceptualization, J.R., D.P. and P.K.; methodology, J.R., W.T., P.K. and D.P.;
software, W.T. and P.K.; validation, J.R., P.K., D.P. and W.T.; formal analysis, D.P.; investigation, J.R.;
resources, J.R.; data curation, W.T.; writing—original draft preparation, W.T.; writing—review and
editing, W.T., D.P. and J.R.; visualization, W.T.; supervision, J.R. and D.P.; project administration, W.T.;
funding acquisition, J.R. and D.P. All authors have read and agreed to the published version of the
manuscript.

Funding: This research project is supported by Thailand Science Research and Innovation (TSRI)
Basic Research Fund: Fiscal year 2022 under project number FRB650048/0164.

Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization (WHO). Thailand’s Status against 12 Global Road Safety Performance Targets. 2020. Avail-

able online: https://www.who.int/docs/default-source/thailand/roadsafety/thailand-status-against-12-global-road-safety-
performance-targets.pdf?sfvrsn=92a24b064 (accessed on 10 June 2021).

2. Suphanchaimat, R.; Sornsrivichai, V.; Limwattananon, S.; Thammawijaya, P. Economic Development and Road Traffic Injuries
and Fatalities in Thailand: An Application of Spatial Panel Data Analysis, 2012–2016. BMC Public Health 2019, 19, 1449. [CrossRef]
[PubMed]

3. Klinjun, N.; Kelly, M.; Praditsathaporn, C.; Petsirasan, R. Identification of Factors Affecting Road Traffic Injuries Incidence and
Severity in Southern Thailand Based on Accident Investigation Reports. Sustainability 2021, 13, 12467. [CrossRef]

4. Kiran, G.R.K.; Deo, I.K.; Agrawal, S.; Haldar, S.; Shah, H.; Rudra, S.; Maheshwari, H.; Rathore, A.; Shah, P.; Nehete, A.; et al.
Design and Implementation of Autonomous Ground Vehicle for Constrained Environments. In Proceedings of the 2019 Third
IEEE International Conference on Robotic Computing (IRC), Naples, Italy, 25–27 February 2019; pp. 236–239.

https://www.who.int/docs/default-source/thailand/roadsafety/thailand-status-against-12-global-road-safety-performance-targets.pdf?sfvrsn=92a24b064
https://www.who.int/docs/default-source/thailand/roadsafety/thailand-status-against-12-global-road-safety-performance-targets.pdf?sfvrsn=92a24b064
http://doi.org/10.1186/s12889-019-7809-7
http://www.ncbi.nlm.nih.gov/pubmed/31684951
http://dx.doi.org/10.3390/su132212467


World Electr. Veh. J. 2022, 13, 239 13 of 13

5. Benterki, A.; Boukhnifer, M.; Judalet, V.; Choubeila, M. Prediction of Surrounding Vehicles Lane Change Intention Using
Machine Learning. In Proceedings of the 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (IDAACS), Metz, France, 18–21 September 2019; pp. 839–843.

6. Min, K.; Han, S.; Lee, D.; Choi, D.; Sung, K.; Choi, J. SAE Level 3 Autonomous Driving Technology of the ETRI. In Proceed-
ings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island,
Republic of Korea, 16–18 October 2019; pp. 464–466.

7. Sanil, N.; Venkat, P.A.N.; Rakesh, V.; Mallapur, R.; Ahmed, M.R. Deep Learning Techniques for Obstacle Detection and Avoidance
in Driverless Cars. In Proceedings of the 2020 International Conference on Artificial Intelligence and Signal Processing (AISP),
Amaravati, India, 10–12 January 2020.

8. Barea, R.; Perez, C.; Bergasa, L.M.; Lopez-Guillen, E.; Romera, E.; Molinos, E.; Ocana, M.; Lopez, J. Vehicle Detection and
Localization Using 3D LIDAR Point Cloud and Image Semantic Segmentation. In Proceedings of the 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 3481–3486.

9. Pérez-Gil, Ó.; Barea, R.; López-Guillén, E.; Bergasa, L.M.; Revenga, P.A.; Gutiérrez, R.; Díaz, A. DQN-Based Deep Reinforcement
Learning for Autonomous Driving. In Proceedings of the Advances in Physical Agents II, Alcalá de Henares, Spain, 19–20
November 2020; Springer International Publishing: Cham, Switzerland, 2021; pp. 60–67.

10. Pérez-Gil, Ó.; Barea, R.; López-Guillén, E.; Bergasa, L.M.; Gómez-Huélamo, C.; Gutiérrez, R.; Díaz-Díaz, A. Deep Reinforcement
Learning Based Control for Autonomous Vehicles in CARLA. Multimed. Tools Appl. 2022, 81, 3553–3576. [CrossRef]

11. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep
Reinforcement Learning. arXiv 2013, arXiv:1312.5602.

12. Pan, Y.; Cheng, C.-A.; Saigol, K.; Lee, K.; Yan, X.; Theodorou, E.A.; Boots, B. Imitation Learning for Agile Autonomous Driving.
Int. J. Rob. Res. 2020, 39, 286–302. [CrossRef]

13. Dworak, D.; Ciepiela, F.; Derbisz, J.; Izzat, I.; Komorkiewicz, M.; Wójcik, M. Performance of LiDAR Object Detection Deep
Learning Architectures Based on Artificially Generated Point Cloud Data from CARLA Simulator. In Proceedings of the
2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland,
26–29 August 2019; pp. 600–605.

14. Sung, K.; Min, K.; Choi, J. Driving Information Logger with In-Vehicle Communication for Autonomous Vehicle Research.
In Proceedings of the 2018 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon,
Republic of Korea, 11–14 February 2018; pp. 300–302.

15. Serban, A.C.; Poll, E.; Visser, J. A Standard Driven Software Architecture for Fully Autonomous Vehicles. In Proceedings of the
2018 IEEE International Conference on Software Architecture Companion (ICSA-C), Seattle, WA, USA, 30 April–4 May 2018;
pp. 120–127.

16. Wang, C. 2D Object Detection and Semantic Segmentation in the Carla Simulator. Master’s Thesis, KTH School of Electrical
Engineering and Computer Science, Stockholm, Sweden, 2020.

17. Marti, E.; de Miguel, M.A.; Garcia, F.; Perez, J. A Review of Sensor Technologies for Perception in Automated Driving. IEEE Intell.
Transp. Syst. Mag. 2019, 11, 94–108. [CrossRef]

18. Warren, M.E. Automotive LIDAR Technology. In Proceedings of the 2019 Symposium on VLSI Circuits, Tysons Corner, VA, USA,
9–11 May 2019; pp. 254–255.

19. CARLA Documentation, Sensors Reference. 2020. Available online: https://carla.readthedocs.io/en/latest/refsensors/
(accessed on 22 June 2021).

20. Carla Simulator, Open-Source Simulator for Autonomous Driving Research. 2020. Available online: https://carla.org/
(accessed on 1 June 2021).

21. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An Open Urban Driving Simulator. In Proceedings of the 1st
Conference on Robot Learning (CoRL 2017), Mountain View, CA, USA, 10 November 2017.

22. Velodyne Lidar, High Resolution Real-Time 3D Lidar Sensor. 2020. Available online: https://velodynelidar.com/products/hdl-
32e/ (accessed on 1 June 2021).

http://dx.doi.org/10.1007/s11042-021-11437-3
http://dx.doi.org/10.1177/0278364919880273
http://dx.doi.org/10.1109/MITS.2019.2907630
https://carla.readthedocs.io/en/latest/refsensors/
https://carla.org/
https://velodynelidar.com/products/hdl-32e/
https://velodynelidar.com/products/hdl-32e/

	Introduction
	Related Work
	Autonomous Vehicle
	CARLA Simulator
	Virtual Environment
	Agent
	Control System

	Deep Q-Network Control
	Model Setting
	Action Setting
	Reward Setting
	Hyperparameter Setting

	Case Scenario
	Simulation Results
	Conclusions
	References

