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Abstract: Central to the design of a direct current fast charging (DCFC) network is the question of
how much energy a DCFC of a given power can supply to vehicles without users being forced to
queue to charge. We define ‘utilization factor’ as the ratio of the energy delivered by a DCFC in a
multi-day period to the maximum amount of energy it could deliver in period. Three and a half years
of data from 12 DCFCs are examined, characterizing each charging event by both the utilization factor
and the time lag since the termination of the previous charging event. Short lags between events
are inferred to indicate queuing. To keep the fraction of would-be users who have to queue below
10%, the overall utilization of the DCFC must likewise be limited to 10% (or 7–17% in exceptionally
heterogeneous or exceptionally homogeneous traffic patterns, respectively). E.g., a 100 kW DCFC
should not be expected to deliver more than 240 kWh per day (100 kW × 24 h × 10%).
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1. Introduction

Sales of electric vehicles (EVs) are expanding rapidly everywhere in the world, yet in
many locations the infrastructure for en-route direct fast charging (DCFC) is not. While
there is much interest in how to plan and design DCFC infrastructure, there is little guidance
from the literature on how to optimally size individual charging hubs to support future
fleets of EVs. What there is tends to rely either on speculative and complex modeled
driver behavior based on existing (internal combustion engine) trip data, or on highly
granular traffic flow data, which may only be available in select locations and for select
routes. We circumvent these shortcomings with a top-down observational approach, relying
only on more common daily traffic data, combined with observations of historical DCFC
utilization. The result is an indicator for charging hub sizing (DCFCs per hub) that is
accessible and implementable to policymakers and infrastructure planners. While this
scope seems restricted, it investigates a metric that is both important to the design of EV
charging infrastructure, and not well covered in the literature.

This research introduces a focus on the amount of energy DCFC infrastructure can
supply through time, relating that to the amount of energy a fleet of EVs will need from
each charging hub. We present a multi-day ‘utilization factor’, the average power that can
be delivered by a DCFC relative to its rated output. This is a crucial input to infrastructure
planning for future vehicle fleets with high penetrations of EVs. We use a top-down
approach to describe the fraction of EVs seeking charge that arrive to find the DCFC
occupied vs. the utilization of the DCFC across a multi-day window.

This work provides a crucial parameter of the operation of DCFC infrastructure. For
entities attempting to provide such infrastructure for the rapidly expanding population
of EVs, understanding this parameter and how it impacts charging hub design is crucial
to providing suitable infrastructure that will be able to provide enough energy to power
future vehicle fleets.
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1.1. Structure of Report

This research examines one specific factor that impacts the number of DCFCs of a
given power required at each charging hub: the average ‘utilization factor’ (UF) that can be
achieved by a DCFC before an excessive fraction of would-be users arrive to find it occupied.
In Section 1.2, the relevant cultural and academic context are presented as a literature review.
In Section 1.3, the definition and application of UF is described via a comprehensive and
fully generalizable equation. In Section 2, the data used in the investigation are described,
including source, extents, quality control, and the determination of UF from the data. The
final subsection of Section 2 presents the definition, justification of the assumptions, and the
calculation of queuing probability (QP) from the data. In Section 3 the results are presented
as QP vs. UF curves, in a series of sensitivity analyses to the underlying assumptions.
In Section 4 there is discussion of factors that should be considered in interpreting or
extrapolating the results to other cases. In Section 5 the main conclusions of the research
are presented, along with policy implications.

1.2. Literature Review

One of the attractions of EVs for users is that a majority of charging can be done while
the vehicle is parked at home or work, eliminating the inconvenience of detouring to a
gas station and pumping fuels. This quantity has been evaluated by numerous studies.
Infrastructure and energy modelling for both the USA [1] and Austria [2] found that 88%
of EV charging (by energy) takes place at home, while a charging infrastructure model for
Western Australia found that 90% of charging takes place at home or work [3]. Despite
this, when regional trips outside the EV range occur, the availability, reliability, speed, and
convenience of DCFCs is critical to providing equivalent transportation service to gasoline
or diesel vehicles.

Many indicators suggest that enroute DCFC is a key enabler of EV uptake. In 2008, the
electric utility in Toyko, Japan deployed a fleet of Mitsubishi iMiEV EVs, but found they
were not used extensively. Several months later, a 50 kW DCFC was installed about 10 km
from the vehicle depot. Average monthly driving distance then increased by a factor of
seven and the EV was returned to the depot with lower states of charge [4]. More recently,
a timeseries analysis by municipalities in Norway found that public charging infrastructure
led to EV uptake [5]. Similarly, counties in the US state of Washington exhibit a clear
correlation between the availability of DCFCs and the EV adoption rate, a fact which is
used as an input for siting recommendations for new DCFCs [6].

It is worth noting that vehicle shoppers may not initially consider the availability of
DCFC infrastructure in purchase decisions. A survey of Canadian car buyers found that in
general, DCFC availability was described as being of little importance relative to purchase
cost and technological familiarity [7]. This, along with challenging economic realities for
operators of DCFC infrastructure in an immature market, may correspond to differences
between the rate of adoption of EVs and the deployment of DCFC infrastructure. In some
jurisdictions however, charging infrastructure deployment has been vigorous. In the USA,
2022 saw a roughly 20% increase in the number of public DCFCs [8].

According to a survey of Canadian drivers, there is decreasing concern over the
technical abilities of EVs and a corresponding increase in concern of the convenience,
availability, and reliability of charging infrastructure [9]. The design of networks, however,
is regarded as “one of the most pressing challenges” for governmental entities concerned
with the electrification of transportation, while the design and sizing of such a network
is poorly understood [10]. Regardless of motivations or decision criteria for EV purchase,
EVs need to be able to travel public highways with nearly the same ease as gas- and diesel-
powered vehicles. Only the availability of electricity at key locations and at high power
rate via a DCFC permits such travel.

The market is evolving towards larger EVs including trucks, larger battery packs for
longer driving range, and better thermal management. All of these factors contribute to
increased ability of EVs to accept high power charging and for longer periods. While just a
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decade ago 50 kW charging power was the state of the art, that is no longer the case. At the
time of writing, the highest power charger on the market can deliver 360 kW [11], and this
value is widely expected to increase in the future.

The advantages of higher speed charging are widely recognized. The US Department
of Transportation proposed a design rule whereby charging hubs seeking federal funding
need a power rating of 150 kW or higher [12]. Some researchers argue that where there is
an adequately robust electrical grid, 350 kW DCFCs should be used in all locations, and
when potential grid impacts make that problematic, 150 kW charging power should be
regarded as a functional minimum [3]. Similarly, a survey of German car buyers indicated
that they may be less swayed by the number of charging hubs than by the promise of very
high power rates [13].

Ideally, chargers should be located within ‘hubs’, with multiple high power DCFCs at
the same location. Grouping DCFCs together offers several benefits to various stakeholders
relative to sporadic single units, even if the same broad area density of DCFCs is achieved.

For users:

• There is one destination to drive to, where if one DCFC is occupied, another is nearby
• If all DCFCs are occupied, the risk of a long wait time is reduced, assuming a single

queue for whichever DCFC becomes available next.
• Multiple co-located DCFCs offer greater reliability through redundancy. A recent

study in California’s Bay Area found that roughly 1 in 4 DCFC were unable to charge
a test vehicle [14].

For builders/operators:

• A charging hub may develop greater and more consistent traffic, so related busi-
ness opportunities (convenience stores, fast food, etc.) have more potential mar-
ket. This potentially presents both an improved experience for users and a local
business opportunity.

• Having multiple DCFCs of the same make and model increase the efficiency of keeping
spare parts, and technician knowledge can be more specialized, reducing maintenance
costs and improving uptime.

• There are significant economies of scale in land acquisition, site preparation and
permitting, as well as in burying electrical conduit, buying and placing transformers,
etc. A large proportion of the cost of a DCFC charging hub in North America are ‘soft
costs’, such as process costs and permitting [15].

These benefits, along with the advantage of providing a charging ecosystem as a
means to sell cars, are understood by industry. This has led both Tesla [16] and Audi [17]
to invest in charging hubs with multiple DCFCs at each, and increasingly an array of
consumer amenities. Likewise, the proposed US-DOT rules for charging hub design specify
four or more DCFCs at each [12].

To avoid duplicated effort and to leverage economies of scale, central planning would
seem to be necessary for efficient investment. A USA national study [1] models EV adoption
scenarios and describe the total number of charging hubs and DCFCs needed in ‘cities’,
‘towns’, and ‘rural’ areas, but do not provide specific guidance on placement [1]. Many
authors develop algorithmic DCFC hub location strategies, some of these within highly
constrained spaces such as along specific highway routes [18,19]. This leaves open the
question of how a network of hubs should be designed to provide universal substitutability
of EVs.

Various network design strategies have been proposed, but there is no consensus on
what characteristics to prioritize. An agent-based model was used to support charging hub
recommendations based on simulated charging choices during trips within the USA state
of Washington [20]. Other researchers focus on locations with consumer amenities [21,22].
A modified flow-refueling location model is used to design a charging hub network to
cover the continental USA in [19], but restricted it to long distance highway travel between
major destinations, leaving much of the land mass inaccessible.
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A key parameter in hub network design is the target driving distance between hubs.
This parameter must be related to the range of EVs [23], but there is much disagreement as
to the nature of this relationship. A Canadian model uses a value of 65 km for Highway
401 in southern Ontario [18]; A 2022 proposal from the US White House specified a target
hub spacing of 80 km [12]; A 2017 report by the US Department of Energy uses a target hub
spacing of 112 km [1]; Tesla Motors, known for offering EVs with higher range than many
competitors, install hubs with a maximum spacing of ~175 km, [16]; Finally, [3] use a target
hub spacing of 200 km for an infrastructure model in Western Australia. EV driving ranges
are generally trending up, so greater spacing may be defensible [1], though support for
older, lower range vehicles is also a consideration.

EV range not only affects hub spacing, it also impacts the amount of energy that the
network as a whole must deliver, i.e., the number of DCFCs at a hub and the power of
each unit. A trip modelling study of USA driving patterns suggests that the number of
DCFC charging sessions and energy sourced from enroute DCFCs drops dramatically as
vehicle ranges increase [24]. I.e., the more range an EV has, the less frequently it will
need to charge anywhere other than at home or work. In aggregate, this will decrease
the systemwide number of DCFCs needed, an effect reflected in at least some charging
infrastructure models. This effect is responsible for a roughly six-fold variability in the
necessary quantity of DCFC charging based on vehicle fleet assumptions in [1].

1.3. Context of This Analysis

This investigation is intended to inform a larger question related to designing a
network of charging hubs to support EV adoption. The larger question is ‘how many
DCFCs are needed at this charging hub?’ to supply the energy needed by EVs seeking
charging. That question itself is contingent on having established a charging hub network
design. Note that charging hubs may be loosely differentiated into two categories; One set
primarily in urban locations to serve the charging needs of EV drivers who lack a dedicated
parking/charging location; Another set strategically located to serve long distance driving,
to enable travel by EV throughout a region. This analysis targets the later segment of
infrastructure, and as such is strictly subject to the exogenous nature of highway traffic
volumes. The number of DCFCs to place at a hub in a network may be answered with
Equation (1), which is relatively simple in construction and is designed to use broadly
available daily traffic data, but requires careful evaluation of assumptions.

DCFCs per hub =
∑
(

N × D
2

)
× 1 day

24 h × C × FDC

P × Ψ × UF
(1)

In Equation (1) the sum in the numerator ∑(. . .) seeks the total quantity of vehicle-
kilometers per day on a set of non-duplicative routes within this hub’s catchment. “Non-
duplicative” in this context means a driver is unlikely to transit more than two such routes
(one arriving and one departing the catchment) on a given one-way trip. The “catchment”
of the hub is the geographic area within which this is the closest hub, and for which this
hub can be thought of as being responsible for providing energy. We refer to these routes
as ‘spokes’ around the hub.

The first term within the sum, N, with units of “vehicles/day”, is vehicle count on the
‘worst day’ traffic along a given spoke. Traffic throughput is an exogenous input relying
on standardized traffic volume data, which is most widely and reliably available as daily
vehicle counts. This term refers only to EVs, and must be scaled to projected future EV fleet
fractions, and according to projected overall population growth.

The second term within the sum, D, with units “km/hub”, is the distance along this
spoke across which this hub needs to supply energy. In idealized terms, D is the hub
spacing, though spoke specific values should be applied in practice where geometrically
regular hub spacing is impossible. Note that the target spacing D is divided by two, because
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half of the distance along each route (and by inference half of the energy) is provided by
the hub at the other end.

The third variable in the numerator, numerator C is the weighted averaged worst case
energy consumption of EVs, in units of “kWh/km”. This value must likely be based on
winter conditions unless a non-winter driving season dominates seasonal variability.

The final term in the numerator of Equation 1, FDC, is unitless “kWhDCFC/kWhTotal”. It
is the fraction of vehicle charging done at DCFCs by energy delivered. FDC is an exogenous
input, estimates for which are informed by historical observations about EV use, and may
be tailored to this specific hub if suitable data are available. Within the literature, FDC is
subject to a range of values from 1.5% in an Austrian modelling study [2] to 5% in a USA
modelling study [25], to 10% in a Canadian observational study [26]. It will be strongly
influenced by vehicle range [24].

In the denominator, P, in “kW”, is the power rating of each cordsets. The number of
cordsets, Ψ, has units “Vehicles / DCFC” and a default value of one (1). Ψ may take on
values other than one (1) if the DCFC equipment can supply multiple vehicles at once. E.g.,
Tesla’s 2nd generation superchargers supplied 150 kW to two heads [27], and ABB’s Terra
360 supplies 360 kW to four heads [11]. In such a power sharing arrangement P must be
the total power of the DCFC divided by Ψ.

The final variable term in the denominator, UF, is unitless “kWhMaxUse/kWhPotential”,
the design maximum utilization factor of a DCFC. This is a design decision, and the focus
of this research, which attempts to answer the question ‘how much service can a DCFC
deliver before would-be users frequently have to wait for other EVs to finish charging’.

It should be noted that the accuracy of this equation’s output will depend on the
quality of data available. For example, traffic patterns may vary with day of the week
or with the season (e.g., summer driving vacation season or school season). Where such
data are available, a seasonally varying value of N and C may be appropriate. Similarly, C
and FDC may vary from one hub location to another according to the local mix of vehicles
and driving patterns. In such cases, the final result must be based on the worst (highest
demand) case.

2. Materials and Methods

This research is a data driven analysis of the relationship between DCFC utilization
and the frequency with which users must wait for another vehicle to finish charging before
they can access a DCFC. The sole data requirements is historical charging event data
from DCFCs.

2.1. Data

The electricity utility of the province of Nova Scotia, Canada owns and operates a net-
work of 12 hubs, with each hub having one 50 kW DCFC, in a network with approximately
80 km hub spacing. These hubs are along the major highways, and as of writing, account
for roughly half of the DCFC hubs in operation in the province. Recorded individual
charge event data from these DCFCs were provided for this study. The unit of analysis of
these data is the charging event, consisting of an activation and deactivation of a DCFC. In
addition to start and end times, each record includes a unique user number, the quantity
of energy delivered (kWh), the reason for session termination (user action, vehicle action,
fault, etc.) and several other parameters.

Quality control and pre-processing steps undertaken before the subsequent analysis
consist of:

(1) Locating and deleting duplicated events (same location, start time & kWh delivered).
(2) Aggregating multiple charging events by the same user, at the same location, if 20 min

or less –and no other user events– separate the end of one from the start of the next. It
was assumed that such iterated charging events reflect unexpected charging session
termination before the driver intended. In such cases, other EVs would likely not
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have had the opportunity to charge, so the utility of the charging infrastructure was
legitimately reduced.

(3) Disregarding any charging events remaining after (2) that transfer less than 1 kWh of
energy (a sensitivity analysis on this value showed no obvious cut-off points). Such
events were inferred to be EV drivers testing the system to verify vehicle compatibility,
so will likely become less frequent as EV ownership experience grows.

(4) Disregarding charging events that took place prior to the official launch of the net-
work. Such events were assumed to be technicians verifying the functionality of
the equipment.

After these quality control and pre-processing steps, just under 13,000 charge events
remained, covering about 4.2 years starting at the public activation of the network in June
2018, and ending with the delivery of the data set in early September 2022.

Figure 1 plots individual charging events at each of the 12 hubs for five days (Thursday,
18 August, through Monday, 22 August, 2022) as colored bars. The period shown is one of
the busiest in the dataset. Each event (i.e., each unique user) is given a contrasting color to
preceding and following charging events. Yellow triangles indicate where a charging event
started within 10 min of the termination of the previous charging event.
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Figure 1. Individual charge events (individual colors) after quality control, at the 12 DCFCs for which
data are available, during five days in August 2022. Yellow triangles indicate short time lags between
charging events. Note: “Each event (i.e., each unique user) is given a contrasting color to preceding
and following charging events.”

Figure 1 shows several important features related to travel patterns. First, there are
enormous differences between the number of charge events at different hubs (note that hub
#12 is believed to have been nonfunctional during this period). Second, the distribution
of charging events throughout the day is highly variable, with large clusters of events
during the middle of the day and evening, and very few charge events overnight and in
the early morning. This indicates that the maximum practical UF of these DCFCs will
never reach 100% because it is a function of inter-hourly traffic patterns, as noted by other
researchers [18]. Figure 1 also shows many back-to-back charging events with little or no
time separating them (yellow triangles). These events are important for this analysis, as we
seek to inform DCFC hub design which requires very little queuing.

2.2. Queuing for an Occupied DCFC

At points marked by yellow triangles, Figure 1 show little to no time lag between
successive charging events. It may be inferred that an EV driver was queuing for another
vehicle to finish charging and leave. Of interest to this research is the threshold time lag that
indicates queuing. The distribution of time lags between the termination of one charging
event and the start of the next for the full 4.2 years of data is shown in Figure 2. The x-axis
has been limited to 0–120 min for readability and relevancy.
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In Figure 2 there is a distinct reduction in the frequency of event lags between 6 min
and about 10 min. From this distribution, values less than ~10 min seem plausible as
indicating that a 2nd car was waiting for another vehicle to finish charging. No higher
values of time lag seem to indicate any behavioral or operational threshold relevant to
the analysis.

A threshold of 6–10 min makes some intuitive sense. Even for users familiar with
their vehicles and the DCFC equipment and network, it could plausibly take tens of
seconds for each of (i) unplugging the connector and arranging the cord on the hanger
(ii) driving the vehicle out of the charging spot, (iii) driving the second vehicle into the
charging spot, (iv) gathering the cord and attaching the connector to the second vehicle,
and (v) establishing communication, authorizing payment, and initiating charging. For
those unfamiliar with the equipment or the network, or simply not rushing, any of those
steps could take correspondingly longer.

Figure 2 also makes clear that a vehicle can arrive at any time after a previous charg-
ing event terminates. Specifically, a total of 1229 events start within 10-min of another
charging event’s end. This value must be compared to an average of 262 charging events
which start in each 10-min window between 10 and 120 min. Thus, only a fraction of
(1229 − 262)/1229 ~78% of those events starting in the first 10 min can be attributed to
queuing. This correction reduces the sensitivity to the lag length used to define queuing.

2.3. DCFC Utilization Factor

Each charging event in the data set was characterized in two ways. (1) the time lag
by which it followed the termination of the previous charging event at that hub, and
(2) the unitless parameter ‘utilization factor’ (UF), defined in Equation (2) for a single
cordset DCFC.

UF =
∑M

C=1 EC

P × ∆t
(2)

The sum in the numerator ∑( . . . ) refers to the total quantity of energy dispensed by
the DCFC within the time window ∆t. It is the sum of energy E, in kWh, of each charging
event C, among M events that occur in ∆t. We defined ∆t symmetrically around the start of
each charge event, such that each charging event has an associated UF that describes how
much service that charger is providing at around that time. For example, a 2-day window
around a charging event starting a 07:00 on Tuesday would span from 07:00 on Monday to
07:00 on Wednesday.

The term in the denominator of Equation (2) represents the maximum amount of
energy that could be dispensed, i.e., P, the nameplate capacity of the DCFC (50 kW in this
data set) multiplied by the width of the window ∆t (in hours).

For this analysis it is stipulated that in an adequate network of DCFCs, it should be rare
that an EV driver arrives at a hub and find all the DCFCs occupied. The terms ‘adequate’
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and ‘rare’ are italicized because of their highly subjective nature and definition. However,
avoiding a queue at a DCFC is important for EV drivers in making long distance trips [28].

2.4. Computing the Probability of Queuing

To calculate the ‘queue probability’ (QP) as a function of UF

1. The set of all ~13,000 charging events was segregated into bins by UF. Bin sizes were
selected such that 20 bins would span the range of data for each ∆t evaluation.

2. For each UF bin, the charging events that started within a fixed time lag (10 min
by default) of the previous event’s termination (at that DCFC) were identified and
counted as events where there was a queue.

3. This count of queuing events was divided by the total number of charging events within
that UF bin. This quotient is described as the ‘queue probability’ (QP) for this UF.

4. The QP was multiplied by a factor of 78% to account for the vehicles that would
have arrived within that 10-min window irrespective of the presence of the previous
vehicle (refer to Section 2.2).

5. To improve model robustness, bins containing fewer than 6 data points were excluded
from subsequent analysis.

3. Results

The results of this analysis are presented as graphs of QP vs. UF. Each graph presents
a sensitivity analysis to one of the modelling input parameters or characteristics of the data.

3.1. Sensitivity to Time Window ∆t Width

Figure 3 shows the QP as a function of UF and of the time window ∆t used to calculate
UF. For this analysis, sequential charging events less than 10 min apart are used to define
queuing. The number of events in each UF bin are plotted on the right hand y-axis for
context in assessing significance.
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In Figure 3, QP vs. UF curves for values of ∆t between 6 h (±3 h, blue dots) and
30 days (±15 days, dark red line) were evaluated. Note that ∆ts of less than one day (dotted
lines) begin to account only for vehicle switching and connecting time and overlook daily
traffic patterns, and also fail to correspond to the widely available daily traffic data referred
to in Equation 1. Such short evaluations will also vary dramatically throughout the day,
so make interpretation of the results far more complex, since infrastructure cannot vary
throughout the day.

Longer duration ∆t are of interest as they dilute rare or unrepresentative traffic events,
such as a surge after a sporting event, during which some charging inconvenience may be
tolerable in the real world. A 30-day ∆t (dark red line) is of interest as it closely emulates the
span of time (usually 1 month) over which electricity tariff demand charges are evaluated
by the utility and are likely billed to the charging hub operator.

The results from ∆t of 24 h and greater in Figure 3 (solid lines) follow similar trends
and have reasonably similar values. All indicate that QP increase with UF but follow
slightly different paths. Figure 3 indicates that queuing is always possible but will happen
about 10% of the time when DCFCs see 10% utilization, and slightly more than 20% of the
time at 20% utilization.

Counterintuitively, there seems to be some flattening of QP vs. UF curves at high
UF. This effect occurs only where event counts per bin fall below ~200 per bin, but should
not be discounted. We do not know why this is, but conject that EV drivers may be
redistributing themselves when arriving at a DCFC with a queue. This behavior could
in theory increase the UF of nearby DCFCs without increasing the QP at any of them. It
relies on EV drivers having knowledge of the network and ideally on real-time network
utilization. Such information is not formalized in the network providing data, though
crowd-sourced information may be available (e.g., [29]).

3.2. Sensitivity to Time Lag in QP Definition

An investigation of the time lags between charging sessions indicated no obvious
threshold value greater than ~6 min (refer to Figure 2). The distribution of lag lengths in
Figure 2 requires that the choice of lag length used to identify queuing will impact the
QP curve. This is evaluated in Figure 4 for time lags between 1 and 20 min using a 2-day
window ∆t.
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As the distribution of lag duration in Figure 2 would suggest, the impact of different
lag length to indicate a queuing are small above ~5 min, but consistent. As the definitional
lag length is reduced, the allowable UF for a target QP increases. Figure 4 shows high
sensitivity when the definition of queuing is defined as lags of less than 5 min. This indicates
that it typically takes a minimum of about 3 min for the transaction of finishing one charge
session and starting another for a queuing EV. There is considerably less sensitivity from
3 min up to 20 min, suggesting that while there is no “correct” number of lag minutes to
define queuing, the results from this range are appropriate for planning purposes.

3.3. Sensitivity to Seasonal Driving Patterns

Nova Scotia, where the DCFC data originate, experiences an influx of tourist traffic in
the late summer [30]. The charging event data show a strong peak likely corresponding
to tourism. Corresponding seasonal peaks in DCFC network averaged utilization (total
energy delivered divided by total network power times window width) are shown in
Figure 5.
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Figure 5. Average UF of the DCFC network throughout the data set.

Note that in the summer of 2020 tourist travel, and much intra-provincial travel by
Nova Scotians, was inhibited by a set of restrictions intended to prevent the spread of the
COVID-19 virus. 2020 exhibits a distinctly lower late summer DCFC network utilization
peak than it otherwise might. Furthermore, note that systemwide utilization is far lower
(peaking at ~16%) than the higher values observed at the more heavily trafficked DCFC
sites (peaking at ~43%, purple line in Figure 3), this is due to intra-regional differences in
traffic volume and in the availability of DCFCs not included in these data.

The magnitudes of the late summer peaks are striking. Tourists (or long distance
drivers in general) are likely to be more reliant on public charging than local residents,
who primarily charge at home. Given this, it seems plausible that the QP vs. UF curve is
impacted by tourist traffic, which may be presumed to have different intra-day and intra-
week driving patterns than aggregate driving data. To investigate this, charging events
taking place in ‘tourist season’ (July–September inclusive) were isolated and evaluated
separately from those taking place the rest of the year. The results are shown in Figure 6.

Figure 6 shows that the tourist season (July through September, blue line) QP vs. UF
curve is neither consistently higher nor consistently lower than the ‘rest of the year’ curve
(orange line). Corroboration of the hypothesis that tourist season driving is more clustered
during the day is weak, suggesting that the preceding curves, and the conclusions of this
analysis in general, are relevant to all driving seasons. From Figure 6 it is also evident that
the UF in October through June (orange line) peaks at a far lower number, yet even these
less busy times see as much as 20% of users queuing, suggesting that the existing network
may already have been inadequate for the number of EVs on Nova Scotia’s roads as of the
fall of 2022, at least along more heavily used corridors.
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3.4. Sensitivity to Sub-Regional Driving Patterns

A range of different driving environments are represented in the data, including near
an international airport, corridors between urban population centers where commuter
traffic is significant, rural fishing villages, and routes to popular tourist and recreation
destinations. The differences of inter-hour traffic patterns at such sites may be expected to
have a significant impact on the QP vs. UF curve; Where traffic is more consistent across
time one might expect lower QP values for a given UF, while at sites where traffic is more
concentrated in certain hours of the day, higher QP would result.

Separate QP vs. UF curves were constructed for each of the 12 sites, and the diversity
of these curves was characterized by a minimum, maximum, mean, and standard deviation
of QP values for each UF. This is presented in Figure 7. Note in interpreting Figure 7 that
different DCFC sites have different maximum UF values, so representation of traffic pattern
diversity is lost as higher UF values are considered, particularly above about 20% where
only half of the sites contribute.
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Figure 7 shows that there is indeed a range of QP vs. UF curves. It suggests that within
the scope of traffic pattern variability exhibited in these data, a 10% QP could result from
UFs ranging from roughly 7% to roughly 17%. This is a significantly higher sensitivity than
is exhibited to the other model parameters, and points to the importance of evaluating the
homogeneity of traffic volumes throughout the day at sites of interest.

4. Discussion

Due to the intuitive and reported [28] desire of EV drivers to not have to wait to access
DCFCs on trips, we propose designing charging networks such that that occurs less than
10% of the time. I.e., EV drivers would arrive at a fast charging hub to find all DCFCs
occupied fewer than once in 10 times. From this analysis, that design choice requires a
maximum UF of DCFCs (UF kWhMaxUse/kWhPotential, in Equation (1)) be restricted to 10%
in designing such a network. This result is reasonably stable with respect to variables
used in the construction of the analysis, including time window used to define UF, the
lag between charging events used to infer if a user was queuing, or the driving patterns
of tourist season. Notably, this recommended UF is comparatively sensitive to traffic
patterns, which may enable UFs to range between about 7–17% to realize the same QP. In
addition, we have identified four factors impacting these conclusions that may benefit from
further examination.

4.1. DCFC Rated Power

The DCFC units providing data to this analysis are ‘first generation’ 50 kW units. In
practice that means that most of the EVs charging at them can make full use of the rated
power over a wide range of battery states of charge. As the state of the art technology
pushes the nominal power capability of DCFCs higher, it may be the case that fewer of the
vehicles they service will make as good use of their nominal rating.

UF as defined is normalized by the rated power of the DCFC. A future network of
350 + KW DCFCs may rarely supply their rated power (or specifically, rarely supply as
close to their rated power as these 50 kW units). This would result in lower UF values for a
given QP, i.e., it would compress the curves shown in Figure 3, etc. to the left, reducing the
target maximum UF to achieve a desirable QP.

4.2. Vehicles Choosing Not to Queue

If a vehicle arrives at the DCFC and finds it occupied, rather than joining a queue it
could depart for some other charger or activity. This will not be captured in the data used
to construct these curves because the data offers no record of their arrival. This represents
a systematic underestimation of the fraction of vehicles ‘inconvenienced’ by the degree of
utilization of the charger, i.e., QP underrepresent inconveniencing EV drivers. A curve of
‘inconvenienced drivers’ would be somewhat higher (greater value for a given UF) than
that observed. Estimating the magnitude of this effect is difficult, but it may be presumed to
increase rapidly with overall UF. This effect would suggest that a lower design UF would
be appropriate to achieve a target level of driver inconvenience.

4.3. Power Sharing

New designs of DCFC include power sharing among multiple cordsets. In such cases
Equation (2) must be modified to account for average shared power available through a
cordset. The data used in this analysis were not able to evaluate this scenario. The number
of people who have to queue will inevitably decrease, but the UF would remain the same.
In such cases the allowable design UF could be increased without exceeding a target QP.

Driving Patterns

While an effort was made to explore different driving patterns by tourist vs. non-
tourist driving (Section 3.3) and by driving patterns in different regions of the province
(Section 3.4), it is possible that substantially different driving patterns in other jurisdictions
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may produce different results. In particular, in a location where there is minimal variation
in traffic volumes throughout the day, a higher UF for a given QP may be realized.

5. Conclusions

Charging event from a network of 12 charging hubs were characterized by the utiliza-
tion factor of that charger around that event and by the time lag since the conclusion of
the preceding charging event. Short time lags were inferred to indicate that the second
event was delayed by the first, i.e., an EV was in a queue, waiting to access the DCFC.
By comparing the frequency with which DCFC users had to queue with the UF of the
DCFC, recommendations of the practical maximum UF of a DCFC, beyond which an
excessively large fraction of EVs would have to queue to charge, could be constructed. This
parameter then defines how much energy a DCFC of a given power rating can deliver over
a day, which indicates how much EV travel it can support. The design of a network of
DCFC hubs to supply a future population of EVs requires this parameter to avoid under or
over investment.

5.1. Key Results

A design maximum DCFC utilization factor of 10% is recommended to keep the
probability of queuing below 10%. Note that queuing will still occur, and that this prob-
ability is not (necessarily) constant throughout the day, but applies to all vehicles using
the DCFC. This conclusion exhibits low sensitivity to changes in the parameters of the
analysis (UF analysis time window, event lag threshold to define queuing, and seasonal
driving patterns), so is considered robust. However, sensitivity to driving patterns was
shown to be relatively high, accounting for variations on the order of ±50% (i.e., result in
UF values from 7–17% to obtain a 10% QP). The need to queue to access a DCFC increases
as utilization factors increase. A utilization factor above 30% may not be possible without
persistent and prolonged queuing.

5.2. Policy Implications

Fast charging infrastructure for EVs must supply electricity to those travelling beyond
the singe charge range of their vehicles. In a model of centralized planning to enable the
transition to EVs, this requires planners be able to translate known traffic patterns into
infrastructure needs. Knowing the impact of UF to the user experience of EV drivers is key
to the design of adequate charging networks. This value of 10% DCFC UF to limit QP to
10% is crucial to such planning.

Similarly, charging hub operators must design revenue models and set prices that
yield a profit in the context of upstream electricity costs that likely include both energy (per
kWh) and demand (per peak kW for the month) charge. Such revenue models must balance
between the limitations of client frustration at insufficient infrastructure and untenable
demand charges to the electric utility. Absent specially designed electricity tariffs, this
predicament may in some cases push hub operators to creative solutions like throttling
charging during peak hours [31].
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